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Abstract

Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On

average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping

to the canonical 50 and 30 splice sites. However, splicing mutations present in exons and

deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations

in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of

mutations that lead to defective splicing. This finding is confirmed by extending the sampling

to five other exons in the MLH1 gene. Further analysis suggests a more general phenome-

non of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted

splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical

splice sites also occupy a much higher fraction (36%) of total mutations than expected.

When performing a comprehensive analysis of splicing mutations in human disease genes,

we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2,

belonged to a class of 86 disease genes which are enriched for splicing mutations. Other

cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing

mutations in hereditary cancers strongly argues for additional priority in interpreting clinical

sequencing data in relation to cancer and splicing.

Author summary

To understand the extent to which disrupted pre-mRNA splicing causes human disease,

we re-analyzed coding mutations in MLH1, one of the causal genes of Lynch Syndrome.

We found that a high fraction of the MLH1 coding mutations resulted in disrupted splic-

ing. To further investigate a more general role of defective splicing across human disease

genes, simulation strategies were used to identify 86 disease genes prone to splice site

mutations. In these 86 genes, there was an enrichment of cancer genes including the three

main casual genes of Lynch Syndrome (MLH1, MSH2, and PMS2). Thus, it appears
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defective splicing may be the main driver of Lynch Syndrome and other cancers. Genes

prone to splicing mutations have certain features that allow for the comprehensive predic-

tion of splicing-prone diseases genes in the human genome. Our findings strongly argue

for additional clinical sequencing prioritization in both cancer genes and genes prone to

splice site mutations.

Introduction

As the cost of sequencing technologies is declining, the number of genomes and exomes

sequenced is increasing, resulting in an expanding archive of genetic variation in both diseased

and healthy individuals [1, 2]. To keep pace with the ever growing variant archive, in silico
tools are being created to determine the functional impact of variants discovered [3–6]. How-

ever, most tools used to determine the pathogenicity of variants rely on in silico methods

aimed at deciphering protein features associated with the variant and fail to take into account

the potential regulatory functions of sequences in gene processing mechanisms and expression

[7].

The sequences that encode for proteins (exons) and the intervening, noncoding sequences

(introns) are known to have an important regulatory role in an RNA processing mechanism

known as precursor messenger RNA (pre-mRNA) splicing. Variants that alter the regulatory

regions necessary for splicing typically result in the deletion of large portions of the coding

sequence and generally result in a non-functional protein [8]. Among the reported sequence

variants, splicing mutations located at the 50 and 30 canonical exon-intron boundaries, or splice

sites, make up 13.4% of the disease-causing mutations reported in the Human Gene Mutation

Database (HGMD) [9]. However, in addition to splicing variants located at the splice sites,

splicing variants within the exonic sequences can also modulate splicing by altering the multi-

tude of exonic splicing enhancers (ESE) and silencers (ESS) present in exons. Due to the diffi-

culty in classifying exonic mutations as splicing mutations, it is becoming evident that new

methods and tools will need to be implemented to correctly and thoroughly identify exonic

splicing mutations (ESM). An ESM is a hereditary disease allele that falls within the exon and

was originally annotated as a protein coding mutation. For the purpose of this analysis, a splice

site mutation (SSM) falls within the 5‘splice site (i.e. -3 to +6 position 5‘end of the intron) or

the 3‘splice site (i.e. -20 to +3 position of the 3‘end of the intron). Recently, studies have been

aimed at re-analyzing reported sequence variants for splicing defects [10, 11]. Much of this

work suggests that splice-altering variants are more common than previously anticipated. For

example, a recent re-analysis of 20 coding mutations located in exon 10 of MLH1, reveal a high

proportion of previously uncharacterized ESM (17 of the 20 or 77%) [11]. In fact, using the

position dependence of splicing elements as a measure to infer disruptive splicing, it has

recently been predicted that one-third of all disease-causing variants lead to aberrant splicing

[12].

Here, we present a comprehensive analysis of splicing mutations in human disease. We

report 86 genes enriched for SSM, in patients that present with hereditary disease (see Materi-

als and Methods). Of these 86 SSM-prone genes, three were the main causal genes of Lynch

Syndrome (MLH1, MSH2, and PMS2), which account for 32%, 39%, and 14% of Lynch Syn-

drome cases, respectively [13]. Lynch Syndrome, a cancer-susceptibility disorder caused by

autosomal dominant germline mutations in the mismatch repair (MMR) genes above,

accounts for ~5% of all colorectal cancers. In addition, individuals with Lynch Syndrome have

an elevated risk of developing early-onset colorectal and endometrial cancers [14]. With
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colorectal cancer being the second leading cause of cancer death in the United States [15], it

will be imperative to understand the disease mutational mechanisms underlying Lynch Syn-

drome to aid in the development of therapeutic strategies.

However, not only were Lynch Syndrome genes members of the 86 SSM-prone genes, but

it was also found that the COSMIC set of cancer genes were overrepresented [16]. This work

highlights the importance of allocating additional priority to investigating splicing defects in a

described set of genes, many of which have been associated with some feature of cancer risk or

progression.

Results

MLH1 has a high proportion of splicing mutations that are non-uniformly

distributed among its exons

A recent analysis of coding mutations located in exon 10 of MLH1 revealed a high level of cod-

ing mutations (17/22 or 77%) altered the splicing of exon 10 [11]. To see if the results of this

survey of MLH1 exon 10 was indicative of high levels of splicing phenotypes in exonic muta-

tions across all genes, a larger pool of exonic variants (outside canonical splice sites) was ana-

lyzed using a high-throughput reporter assay, MaPSy [10]. MaPSy was used to screen variants

in five additional MLH1 exons. Of the 36 pathogenic MLH1 exonic mutations surveyed with

MaPSy, 11 (30.5%) affected splicing (Fig 1A and 1B, S1 Table) in an in vivo minigene assay

and in an in vitro splicing assay. On average, disease causing point mutations disrupt splicing

Fig 1. MLH1 is frequently disrupted by splicing mutations. A. Disease coding mutations in exons 4, 5, 7, 8 and 15 of MLH1 were

analyzed with MaPSy. While none of the mutations in exons 4, 5 and 7 (blue bars) were found to disrupt splicing, almost all of the

mutations tested in exons 8 and 15 (red bars) significantly altered splicing (100% and 71%, respectively). B. Splicing efficiency of

wildtype (blue) and mutant (red) alleles that were tested with MaPSy in exons 8 and 15 of MLH1.

https://doi.org/10.1371/journal.pgen.1007231.g001
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10% of the time (MaPSy 5K panel, n = 4,964 alleles) [10]. In other words, the rate of splicing

misregulation in MLH1 disease alleles was almost three times higher than the background

rate of splicing disruption in disease alleles. Mapping potential exonic splicing regulatory

sequences (ESRs) [17] in the MLH1 exons analyzed in MaPSy revealed exon mutations that

altered splicing resulted in a greater difference in wild type (wt)–mutant (mt) ESR scores than

mutations not resulting in a splicing defects (average ΔESR score 1.845 and 0.8583 respectively,

P = 0.0280 Mann-Whitney, S1 Fig, S1 Table). MLH1 missense and nonsense mutations were

found to frequently disrupt splicing in vitro and in vivo: 6/22 (27%) missense mutations and 5/

14 (36%) nonsense mutations. Taken together, this data a) confirms the previous report that

exonic mutations in MLH1 frequently disrupt splicing b) exonic mutations that alter ESR sig-

nals are more likely to result in a splicing defect, and c) suggests that the rate of splicing disrup-

tion is not homogenous across genes (i.e. MLH1 is an outlier).

Interestingly, ESMs were also disproportionately distributed among the exons within the

MLH1 gene. Of the five exons that were included in this study, three had no ESMs. However,

all the exonic mutations in exon 8 (6/6) and 71% (5/7) of the mutations in exon 15 significantly

altered splicing (Fig 1A and 1B). Thus, it appears that certain exons in MLH1 are more prone

to splicing disruption. To investigate the possibility that certain exons may be more prone to

ESMs, a permutation approach was used to identify exons that exceeded the expected number

of ESMs discovered (see Materials and Methods). 11 of the 2,061 exons analyzed using

MaPSy were predicted with a P< 0.01 to have more ESM than expected (S2 Fig). Remarkably,

two of these 11 exons identified in the simulation as being enriched for ESMs were MLH1
exon 8 and exon 15, further confirming the previous finding.

To mechanistically investigate the defective splicing of MLH1 mutations, the representation

of MLH1 alleles in the fractions of the in vitro spliceosomal assembly assay was examined (see

Materials and Methods and S3 Fig). Here, the accumulation of an allele in intermediate com-

plexes was interpreted as an indication that the allele blocked the next stage of spliceosome

assembly [10]. In general splice site recognition is thought to occur early in spliceosome

assembly [8, 18], however for the ESMs in MLH1, the disruption occurred later. 63% of exonic

splicing mutations were primarily blocked at the A complex in transition to the B complex and

37% were blocked at the B complex (Fig 2). Several mutants reduce more than one step in the

assembly (Fig 2). As expected, adjacent mutations that were close enough to fall within the

same cis-element shared a similar pattern of disruption. In effect, these clusters of variants

mutationally defined a particular cis-elements required for particular spliceosomal transitions

(e.g. Fig 2, CM045463 and CM082944).

Non-uniform distribution of SSM across disease genes

The surprisingly high fraction of disease-causing splicing mutations both reported in the

splice-sites and unreported in exonic positions of MLH1 (as shown by the MaPSy 5K panel)

may be due to chance or the enrichment for splicing mutations in the gene/disease. To elimi-

nate the null hypothesis, Monte Carlo (MC) simulations were used to generate a distribution

of SSM frequencies for each gene given the total number of mutations reported in that gene

(see Materials and Methods). Of the ~3,600 disease genes reported in the HGMD, 86 genes,

including the three main casual Lynch Syndrome genes (MLH1, MSH2, and PMS2), had more

SSM than expected based on the distribution of SSM in the HGMD dataset (Fig 3A, S2 Table).

Although SSM generally have a severe impact on splicing outcome by disrupting the essen-

tial interactions with the core spliceosome components, variants located within the exonic

sequence can also alter splicing by disrupting the myriad of exonic splicing regulatory (ESR)

elements [18]. Using the results obtained from the MaPSy 5K panel, we found that the 86
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SSM-prone genes not only had a higher proportion of mutations in the canonical splice sites

but also contained exonic mutations that were almost twice as likely to disrupt splicing as

exonic mutations that occurred in the remaining genes (1.84-fold effect; P = 1.48 x 10−9, Krus-

kal-Wallis, Fig 3B). These results suggest that the 86 SSM-prone genes are not only prone to

SSMs but also to ESMs, with three ESMs in the 86 SSM-prone genes being validated in individ-

ual minigene constructs (Fig 3C).

Cancer genes are enriched in SSM–prone genes

We next sought to determine if a certain class of disease genes were overrepresented in the 86

SSM-prone genes (S2 Table). The initial report of an association between MLH1 and splicing

mutations also associated other cancer related genes such as BRCA1, BRCA2, and NF1 with

disrupted splicing. Furthermore, Gene Ontology (GO) enrichment analysis [19] of the 86

SSM-prone genes revealed an enrichment of genes associated with the DNA repair pathway

(P = 2.53x10-2, S3 Table), a pathway commonly associated with cancer phenotypes [20, 21].

To determine if cancer genes were overrepresented in the 86 SSM-prone genes, the Catalogue

of Somatic Mutations in Cancer (COSMIC) was crossed referenced with the HGMD disease

Fig 2. MLH1 ESM affect different stages of spliceosome assembly. The percentages of mutant mRNA retained in each stage of the assembly

relative to wildtype mRNA are shown for all ESM that were identified in MLH1 exon 8 and 15. The majority of ESM were blocked in the

transition from A and B complex. Two of the ESM (CM082944 and CM04546) in exon 8 also slowed down the final transesterification

reactions to yield spliced mRNA and the lariat.

https://doi.org/10.1371/journal.pgen.1007231.g002
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genes [16]. Of the 609 cancer genes associated with elevated somatic mutations in tumors (i.e.

the COSMIC gene set), 280 were reported with germline mutations in hereditary cancers (i.e.

HGMD). These cancer genes were particularly enriched in the SSM-prone genes (1.5 fold in

the upper category 20/86, P< 0.01, permutation test, Fig 4A). Not only were cancer genes

overrepresented in the SSM-prone genes, but they also contained 1.5-fold more SSM and

1.4-fold more ESM than the rest of the genes in the HGMD (P = 0.011 and P = 0.0075, Mann-

Whitney, for SSM and ESM respectively, Fig 4B and 4C). When further dividing the cancer

genes into oncogenes and tumor suppressor genes (TSG), it became apparent that TSG have

more SSM and ESM than the rest of the genes in the HGMD (P = 0.0178 and P = 1.14 x 10−4,

Mann-Whitney, for SSM and ESM respectively, S4 Fig). However, this enrichment for SSM

and ESM was not apparent when comparing oncogenes to the rest of the genes in the HGMD

(P = 0.4821 and P = 0.1914, Mann-Whitney, for SSM and ESM respectively, S4 Fig). Thus, it

appears that TSG are more prone to splicing dysfunction most likely due to their loss-of-func-

tion disease mutational mechanism.

Several features modulate the sensitivity of genes to SSM

A number of genomic and sequence features have been implicated in the context of splicing

[17, 22–25]. We, therefore, sought to determine if genomic and sequence features existed that

would result in the predisposition of a gene to SSM. In fact, multiple features appeared to

Fig 3. Non-uniform distribution of splicing mutations across disease genes. A. SSM versus all exonic mutations in the HGMD with regions of 99.9% confidence

interval shown in gray. Genes with more, expected, and less SSM are shown in red (Upper), blue (Expected), and green (Lower), respectively. Location of MLH1, MSH2,

and PMS2 are highlighted and labeled. B. Percent ESM of total mutations tested using MaPSy in each category. C. Due to the inability of MaPSy to observe mutant-specific

exon skipping events (as a result of the identical flanking exons), ESMs found in MLH1, BRCA1, and OPA1 were validated as individual wildtype and mutant minigene

constructs. All three mutant constructs showed exon skipping events, which were not shown in wildtype constructs.

https://doi.org/10.1371/journal.pgen.1007231.g003
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modulate the predisposition of a gene to SSM. When analyzing 19 genomic features (S4 Table)

[17, 23, 26–28], we found that the 86 SSM-prone genes contained 2.5 fold more introns than the

rest of the genes in the analysis (P = 2.54 x 10−14, Kruskal-Wallis, S5 Fig). Thus a trivial explana-

tion for predisposition of the 86 SSM-prone genes is the larger mutational target presented by

their higher number of splice sites. To determine if the SSM-prone genes were predisposed due

to the number of introns, we repeated the MC simulation normalizing for the number of

introns (see Materials and Methods). Surprisingly, this correction did not dramatically alter

the result. After normalization, about 74.4% (64/86) of the genes that were significantly enriched

for splice site mutations, were present in the recalculated SSM-prone gene list (S5 Table).

In addition to having more introns, the 86 SSM-prone genes are generally more haploinsuf-

ficient (HI), have shorter and more structured exons (predicted to have more base-pairing

interactions), and less conserved variants found in the exomes of ~60,000 healthy individuals

[26] (S5 Fig). To determine the relative contribution of each feature to the classification, sev-

eral machine learning approaches were trained on the HGMD mutation dataset. Briefly, the

Random Forest (RF) [29] and a Logistic Regression (LR) predictive models were utilized to

predict whether a gene would be associated with a significant excess of SSM (red dots, Fig 3A;

for feature ranking please see Materials and Methods). The model indicates that HI genes and

genes with less structured exons have a higher risk of being frequently affected by SSM (Fig

5A). In addition to feature prioritization, the classifier was also used to predict additional

genes that may be prone to SSM but had not yet been identified as human disease genes. To

test the performance of both classifiers, ROC curve analysis was performed. The mean area

under the curve was measured for both machine learning models. The RF model was the most

predictive (AUC = 0.839, Fig 5B, see S6 Table for cross-validation). A control classifier trained

to predict genes that were not prone to SSM (i.e. Lower-Expected genes, Fig 3A, green) was

considerably less accurate, presumably because this category is lower confidence with fewer

associated mutations overall.

As haploinsufficiency was an important feature in the prediction of SSM predisposition

(upper category) and splicing defects generally result in a severe loss of gene function, it is

Fig 4. Enrichment of cancer genes in SSM-prone genes. A. SSM versus all exonic mutations in the HGMD with regions of 99.9% confidence interval shown in

gray. COSMIC cancer genes are highlighted in Red. MLH1, BRCA1, BRCA2, and NF1 are highlighted and labeled. B-C. Average percent of SSM or ESM in cancer

genes versus non-cancer genes reported in HGMD. D. Average HI score of cancer genes in Upper, Expected, and Lower categories of genes.

https://doi.org/10.1371/journal.pgen.1007231.g004
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Fig 5. Random forest classification and prediction of SSM-prone genes. A. The order of variable importance by mean decease in accuracy for SSM-prone

genes versus genes with an expected number of SSM. The directions that associate with SSM-prone genes are indicated, positive directions are green, and

negative directions are red. B. Classification performance of the random forest models and the logistic regression models was calculated as the area under the

curve (AUC) in receiver operating characteristic (ROC) analysis. C. Scheme of random forest classification on all genomic genes. D. Average proportion of low

frequency ExAC splice-site variants per splice-site in predicted SSM-prone genes (probability: 0.60–0.86) versus genes not predicted to be SSM-prone

(P = 6.1043e-18, Mann-Whitney). E. Common variants are depleted from the category of variants that cause loss of splice-site signal at the 50 splice-site (upper

plot). Rare variants are enriched in the range of the splice site signal scores that abolish 50 splice-site recognition (lower plot).

https://doi.org/10.1371/journal.pgen.1007231.g005
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possible that the degree of haploinsufficiency largely determines a genes predisposition to

SSM. However, the RF model still performed well with HI removed (AUC = 0.805). Therefore,

it does not appear that there is a single dominant feature such as HI or the number of introns

that drives the accuracy of the predictor. Instead it is most likely a combination of features that

determine a genes predisposition to SSM. This analysis suggests that the prediction of genes

predisposed to SSM using a broad spectrum of features is feasible and could potentially be

used to identify new disease genes that are prone to splicing mutations.

499 novel genes predicted to be prone to SSM

In order to identify new disease genes that are prone to splicing mutations, the predictive

model was applied to ~13,000 non-disease associated genes (Fig 5C). While the classifier was

run at a range of stringencies. Using a probability cutoff of 0.6–0.86 returned by the classifier,

499 genes were predicted to be SSM-prone (see Materials and Methods, S7 Table). It is possi-

ble that these 499 genes were not previously identified as disease genes because their function

was required for organismal viability. To explore the degree to which variation can be tolerated

in these 499 genes, the aggregated exome sequencing data from 60,706 presumably healthy

individuals provided by Exome Aggregation Consortium (ExAC) [26] was cross referenced

with the 499 genes. The 499 predicted SSM-prone genes had significantly fewer reported

ExAC splice site (SS) region variants than the rest of the testable genomic genes in the analysis

(Fig 5D, P = 6.1043e-18, Mann-Whitney). This analysis suggests that the splicing elements in

the predicted SSM-prone genes are evolving under a higher level of selective pressure. How-

ever, this analysis considers all variations equivalently making no distinction between neutral

variants and clear loss of function variants. For the variants that fall within the splice sites,

position weight matrix (PWM) models can be used to evaluate whether a variant represents a

stronger or weaker match to the splice site consensus. In other words, PWM can potentially

distinguish loss of function splicing mutants from neutral variation. In this analysis, variants

that greatly weaken the match to a splice site model (e.g. Δ> 5, Fig 5E) and would be expected

to result in a loss of function are four fold underrepresented in common single nucleotide

polymorphisms (SNPs). This suggests a scenario where loss of function variants are eliminated

from the variant pool before the SNP can reach a reasonable frequency in the population. Con-

versely, variants that fall within the 50 ss but strengthen the agreement of the site to the consen-

sus tend to accumulate in the high frequency set (e.g. Δ< -2, Fig 5E.). The same trend is

observed in variants that localize to the 30 ss (S6 Fig). An independent measure of selection

can be found in analysis that maps obvious loss-of function variants to the predicted SSM-

prone genes. For example, 3,230 genes that were depleted of predicted protein-truncating vari-

ants (PTV’s) in the exomes of 60,706 individuals are a gold standard for genes in which loss

of function variants are poorly tolerated [26]. While PTV depletion is unrelated to splicing,

there is a four or five-fold enrichment of predicted SSM-prone genes in this dataset (S7 Fig,

P = 7.53e-98 Fisher’s Exact, S7 Table).

The lower proportion of ExAC variants located in the genomic genes predicted to be SSM-

prone and the enrichment of PTV-intolerant genes in the SSM-prone genes suggests that they

are intolerant to variation and appear to be functionally important genes. It is therefore more

likely that splice disrupting variants that map to these genes will be deleterious. To gain more

insight into the uncharacterized set of predicted SSM-prone genes, GO Enrichment analysis

was performed. Regulation of cell cycle (P = 2.20e-2) and mitosis (P = 5.08e-5) were the two

functions enriched in predicted SSM-prone genes (S8 Table, for individual GO term associa-

tions see S7 Table). Since the hallmark of cancer is generally the abnormal growth and division

of cells, it is possible that mutations within this set may play some yet undiscovered role in
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cancer. While a more complete characterization of these genes awaits future study, an online

browser has been developed to visualize the splicing results of the exonic mutations assessed in

the SSM-prone cancer genes studied using MaPSy (S9 Table).

Discussion

High rates of splicing disruption were reported in the literature for exonic variations in a panel

of exons in medically important genes [10, 11, 30, 31]. As there have been a wide variety of esti-

mates of the degree to which splicing defects accompany disease-causing mutations, this cur-

rent study was initially intended to perform this analysis at a larger scale. The query was

expanded to include both exonic and splice site mutations in the set of human genes known to

cause hereditary disease. This analysis confirmed the initial reports of high mutation rates in

the genes studied but also demonstrated that the degree to which splicing causes disease varies

significantly from gene to gene.

Recent analysis of mutations in MLH1, a mismatch repair gene tied to Lynch Syndrome,

indicated a high degree of splicing disruption as a common disease mechanism of exon 10.

Due to Lynch Syndrome’s highly penetrant nature in inherited colorectal cancer predisposi-

tion, understanding the pathogenesis of the syndrome will be fundamental in devising treat-

ment methods. To further analyze the disease mechanisms in MLH1, 36 additional exonic

mutations were tested with 31% disrupting splicing (Fig 1). The degree to which exonic muta-

tions affect splicing also vary across exons. For example, in MLH1, all of the ESM occurred in

two of the five exons tested (Fig 1A). Earlier work on spliceosome assembly suggested a mech-

anism where the spliceosome ‘commit’ to splice sites early in the process [32]. In contrast,

many of these mutations that disrupted splicing fairly late in the assembly of the spliceosome

(Fig 2). Overall, the MaPSy assay demonstrated a three-fold increase in likelihood that a mis-

sense mutation in MLH1 would result in a splicing defect. This study confirms earlier findings

of high frequency of splicing defects in MLH1 mutants, but also suggests that the Lynch Syn-

drome genes, MLH1, MSH2 and PMS2, and the other tested genes are outliers and are prone

to splicing disruption.

A major conclusion drawn from this study is the existence of a class of diseases that are

often caused by splicing mutations (i.e. SSM and ESM). The role that splicing defects plays in

genetic disease varies across disease genes but genes with elevated SSM also have elevated

ESMs (Fig 3). The discovery of a class of genes prone to splicing mutations, led to an explora-

tion of what features and cellular functions that predisposed splicing genes encode. GO term

analysis indicated that many of these genes were involved in cancer initiation and progression.

Defining a set of ‘cancer’ genes at the intersection of the COSMIC and HGMD dataset revealed

a significant elevation of SSM and ESM in cancer genes, including genes involved in Lynch

Syndrome (Fig 4). Cancer genes are enriched in the SSM-prone genes (Fig 3A, red category).

Cancer genes in this category have higher predicted haploinsufficiency than cancer genes asso-

ciated with lower levels of SSMs (Fig 4D). Machine learning was used to determine other fea-

tures associated with the SSM-prone genes (Fig 5A). In general, no single feature dominated,

rather a combination of features determined whether a disease gene was prone to splicing

mutations. However, there are certain properties of splicing mutation that warrant further

consideration. Splicing disruptions are potent loss of function mutations. This property proba-

bly explains the evidence of haploinsufficiency in the SSM-prone genes. Finally, unlike protein

coding variants, splicing variants could have tissue specific affects. Consistent with a model of

tissue specific affects, Lynch syndrome causes a wide variety of cancer types. While beyond the

scope of this work, further studies will be needed to explore tissue specific differences in splic-

ing for Lynch syndrome mutations.
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PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007231 March 5, 2018 10 / 18

https://doi.org/10.1371/journal.pgen.1007231


As there is a high medical importance in discovering new cancer genes, the random forest

classifier that was trained on the set of 86 SSM-prone genes was applied across the entire

genome to reveal a set of 499 predicted SSM-prone genes. One possibility is these 499 SSM-

prone genes could be targets of splicing factors that contain dominant oncogenic mutations

(e.g. SF3B1, U2AF1) [33–35]. Highly significant enrichment in the overlap between the targets

of these driver mutations and SSM-prone genes was observed. However, this enrichment dis-

appeared when a correction for intron number was applied to the analysis. While little is

known about this novel set of genes, the mark of purifying selection is evident in the degree of

variation tolerated in these genes. Using the ExAC dataset, significantly fewer variants are tol-

erated within splice site regions in the predicted SSM-prone genes. Stratifying these variants

by the degree to which the mutation disrupts the splice site suggests a strong selection against

splicing mutations in common SNPs. In other words, variants that significantly decrease the

PWM scores at the 50 ss and 30 ss are underrepresented in common SNPs implying that they

are removed by natural selection before they reach MAF >0.01 in the human population (Fig

5E, S4 Fig). The finding that more than half of the 499 predicted SSM-prone genes also do not

tolerate premature stop codons is further indication of strong selection (S5 Fig). While it is

beyond the scope of this work to define the role and function of each of these genes, there is an

indication that many relate to cancer. Of the 12 GO terms enriched in this set, 4 categories

were also associated with the original set of cancer genes suggesting the existence of novel can-

cer genes (comparison of COSMIC cancer gene GO terms and 499 predicted SSM-prone gene

GO terms). Taken together these findings suggest a set of genes that should be prioritized in

the analysis of clinical sequencing data with a particular emphasis on cancer.

Materials and methods

Splicing efficiency analyses of exonic mutations

The 36 exonic MLH1 mutations assessed for splicing defects mapped to internal exons and

were selected based on their classification of being disease causing (DM) with a previously

undocumented role in splicing. The splicing efficiency of wildtype and mutant exons was cal-

culated as below:

log2

spli=
Pn

i¼1
spl

inpi=
Pn

i¼1
inp

� �

where spli is the count for spliced output i,inpi is the count for input i, and n is the number of

species that were analyzed in the library pool. MaPSy experiments in vivo and in vitro were

performed as previously described [10]. Briefly, solid-phase oligonucleotide synthesis technol-

ogy was used to generate a 200 nt fragment (200-mer) that included both the wildtype and

mutant exons, 15 nt of the downstream intron and�55 nt of the upstream intron, and were

flanked by 15-mer common primer sequences.

The in vivo splicing reporters were generated using overlapping PCR and consists of the

Cytomegalovirus (CMV) promotor, Adenovirus (pHMS81) exon with part of its downstream

intron at the 50 end, followed by the 200-mer library, and exon 16 of ACTN1 with part of

intron 15 and the bGH polyA signal sequence at the 30 end. The resulting in vivo reporters

were transfected into human embryonic kidney hek293T cells. After 24 hours of transfection,

RNA was extracted and both the input reporters and spliced species were sequenced.

The in vitro splicing reporters have a similar design to the in vivo reporters, but exclude the

ACTN1 exon, and the CMV promoter was replaced with the T7 promoter. The in vitro splicing

reporters were obtained through in vitro transcription using T7 RNA Polymerase. The

Cancer genes are highly susceptible to splicing mutations
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resulting RNA was then used for splicing reactions in 40% HeLa-S3 nuclear extract. Pools of

the input and spliced RNAs were converted to cDNA and prepped for deep sequencing.

The allele ratios between wildtype and mutant exons in the different spliceosomal fractions

were obtained as follows:

log2

mie=mii
mje=mji

� �

where mie and mii is the counts for the minor allele in the selected pool and input, respectively,

mje and mji is the counts for the major allele in the selected pool and input, respectively. For

each wildtype-mutant pair, the allele that splices more efficiently is assigned as the major allele.

Validation

Wildtype and mutant sequences of exon 15 of MLH1 (NM_000249.3:c.1684C-T), exon 2 of

BRCA1 (NM_007294.3:c.5425G-T) and exon 12 of OPA1 (NM_015560.2:c.1199C-T) were

synthesized by Synbio Tech (Monmouth Junction, NJ) and incorporated into MaPSy in vivo

backbone (Adenovirus (HMS81) and ACTN1 exon 15 by overlapping PCR [10]. MaPSy con-

structs were transfected into 293T cells and RNA were extracted after 24 hours. RT-PCR were

subsequently performed and ran on 1.5% agarose gel, as previously described [10].

ESR mapping

Hexamer ESEs and ESSs were downloaded from published data (17). A sliding window of 1

nucleotide was used plot the predicted ESEs and ESSs in the MLH1 exons assayed with MaPSy

(S1 Fig). The ‘ESR wt/mt difference’ in S1 Table was computed as the wild type-mutant differ-

ence in hexamer scores (17).

Simulations

Disease causing splicing and coding sequence mutations (DM–disease mutations) were

selected from the Human Genome Mutation Database (HGMD). The mutations were then

classified as SSM, missense, or nonsense mutations. To be considered an SSM, the variant was

required to be within the canonical splice-sites (-3 to +6 positions at the 50 ss and -20 to +3 at

the 30 ss) and labeled as a splicing mutation by HGMD. The number of missense, nonsense,

and SSM mutations were determined for each intron-containing gene.

Scatter plot of total mutations vs. splicing mutations. The total number of mutations

were plotted against the total number of SSM in a gene. Weighted random sampling was then

used to construct a 99.9% confidence interval that capitulates the expected number of SSM

given the total number of mutations within a gene. Using the proportion of total SSM to total

mutations in the HGMD as a weight for random sampling (Eq 1), the proportion of SSM

given the total mutations in each gene was simulated 1,000 times. Genes falling outside the

simulated values represent genes that have more (above the confidence interval) or less (below

the confidence interval) SSM than expected (p-value<0.01) based on the distribution of muta-

tions types within the dataset.

weight ¼
totalspl
totalmuts

� �

ðEq 1Þ

Normalized simulation. The ratio in the previous simulation was normalized to the total

number of splice sites (ss) and the total length of the coding sequence (CDS) in the HGMD
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dataset (Eq 2). To obtain a weight for random sampling using this ratio, the number of SS and

the length of the CDS for each gene was used to obtain a unique SSM to total mutations weight

for each gene (Eq 3). The corresponding weights were then used as before to simulate 1,000

times the expected number of SSM for each gene. Genes that have more or less SSM than the

simulated values have more or less SSM than expected, respectively.

Normalizedweight ¼
totalspl
totalmuts

� �
totalCDS
totalSS

� �

ðEq 2Þ

Geneweight ¼
totalspl
totalmuts

� �
totalCDS
totalSS

� �
geneSS
geneCDS

� �

ðEq 3Þ

ESM exon simulation. The total number of mutations tested using MaPSy per exon were

plotted against the total number of mutations that altered splicing (ESM). Weighted random

sampling was then used to construct a 99.9% confidence interval that capitulates the expected

number of ESM given the total number of mutations tested in an exon. Using the proportion

of total ESM to total mutations in the an exon as a weight for random sampling (Eq 4), the pro-

portion of ESM given the total mutations in each exon was simulated 1,000 times. Exons falling

outside the simulated values represent genes that have more (above the confidence interval)

ESM than expected (p-value <0.01) based on the total number of mutations tested using

MaPSy and the total number of ESMs identified using MaPSy.

weight ¼
totalESM

totalmuts tested

� �

ðEq 4Þ

Gene Ontology (GO) enrichment analysis

The list of 86 SSM-prone genes from HGMD and the list of 499 predicted SSM-prone genes

were analyzed for the enrichment of specific GO terms using the PANTHER GO-Slim Biologi-

cal Process annotation data set provided by the PANTHER Classification System.

Enrichment of cancer genes in HGMD SSM predisposed genes

The list of cancer genes provided by the Catalogue of Somatic Mutations in Cancer (COSMIC)

was downloaded and intersected with the list of HGMD genes. A permutation test was then

performed to determine if cancer genes were overrepresented in the SSM-prone genes.

Random forest predictor variables and features

ESS, ESE, and ESR’s were downloaded from published data [17] and the density was calculated

by dividing the total number of regulatory elements by the length of the exonic sequences and

averaging the density per gene. SNP density was calculated using the list of common SNPs

(MAF > 0.01) provided by exome consortium [26] and dividing by the length of the exonic

sequence (‘Exon SNP dens’) or the length of the gene (‘Gene SNP dens’). Conservation was

scored using PhastCons46way placental for both the exonic sequences (‘Exon Cons’) and cod-

ing sequence (‘Gene Cons’). The free energy estimate (ΔG) was computed using RNAfold [27],

with default settings for both the exonic sequences (‘Exon ΔG’) and the for 70 nucleotides up-

and down-stream of the splice-sites (‘SS ΔG’). Haploinsufficiency scores were obtained from a

previous study that developed a haploinsufficiency prediction model using a large deletion

data set (Wellcome Trust Consortium) [23]. Splice site strength was calculated using perl

scripts from the MaxEntScan [28]. ExAC variant conservation was determined using the
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intersection of the ‘phastCons100way’ track with ‘ExAC Variant’ locations over each gene

reported in the HGMD. The intersection generated an average conservation score for the vari-

ant sites in each gene based on a zero to one scale.

Random forest classification and measure of variable importance

R implementation of random forest, package ‘randomForest’ [29], was used to determine the

individual contribution of various functional genomic features (see ‘Random forest predictor

variables and features’ methods section) in distinguishing SSM-prone genes from non-SSM-

prone genes and to generate a predictive model. ‘randomForest’ is a nonparametric ensemble

learning method where individual trees (kth trees) in a forest are constructed based off a differ-

ent sub-sample (bootstrap sample) from the original training set and then averaged to provide

unbiased estimates of predicted values. Two-thirds of the training set was used for the con-

struction of the kth trees with the remaining one-third (out-of-bag data) used for cross-valida-

tion and estimates of variable importance. Default parameters were used to construct the

random forest model, with the exception that ‘strata’ was used to sample the majority class

(genes with the expected number of SSM) to make the frequency of the expected class closer to

the frequency of the rarest class (genes with more SSM than expected). Variable importance

was measured by the degree of model accuracy decrease with the permutation of a single pre-

dictor variable. The larger the mean decease in accuracy, the more important the variable is

deemed in the classification of the data.

Logistic regression classification

R implementation of logistic regression, ‘glm()’ function, was used to generate a predictive model

for distinguishing SSM-prone genes from non-SSM-prone genes. Logistic regression is a classifi-

cation method that relies on fitting a regression curve given a set of predictor variables and cate-

gorical response variables. Again, two-thirds of the data was used to construct the model with the

remaining one-third of the data used for cross-validation. Default parameters were used to con-

struct the logistic regression model, with the exception that ‘family = ‘ was set to binomial.

Predicting novel SSM-prone genes

The random forest model generated from the HGMD dataset was then applied to the rest of

the testable genes in genome. Testable genes were required to be void of a previously described

disease phenotype by HGMD, contain introns, and have sufficient genomic feature data. This

resulted in ~13,000 genes that could be tested using the random forest predictive model. The

‘predict()’ function with ‘type = ‘ set to ‘prob’ was used to predict SSM-prone genes based on a

probability estimate. A probability threshold of> 0.6 was set to select SSM-prone genes, which

resulted in 499 predicted SSM-prone gene.

Splice site ExAC variation in predicted SSM-prone genes

All low frequency (MAF < 0.01%) single nucleotide ExAC variants reported in the splice site

regions of genes (-3 to +6 position at the 50 ss and -20 to +3 position at the 30 ss) were counted

for each gene and divided by the number of SS’s. The list of ExAC SS region variants per SS

was then intersected with the genomic genes tested using the random forest model. The genes

were then divided into genes predicted to be SSM-prone (n = 497, after intersection) and

genes predicted with a high probability (prob> 0.6) to have the expected number of SSM

(n = 5995). The average ExAC SS region variants per splice site were plotted for genes pre-

dicted to be prone SSM and genes with the expected number of SSM.
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Evaluation of selective pressure on splice site signal

The 499 predicted SSM-prone genes were intersected with RefSeq database and only the ones

having RefSeq transcript id were retained for the downstream analysis (n = 486). All ExAC var-

iants that fall within the splice sites (both 30 and 50) of the 486 genes were scored using the

Maximum entropy model for splice sites (PMID: 15285897). The ExAC variants were sepa-

rated based on their minor allele frequency into rare (MAF < 0.01%) and common (MAF >

1%). The entire distribution of scores and the two classes of alleles were plotted. The collapsed

plots based on splice site score threshold were also generated.

ExAC’s PTV-intolerant genes and predicted SSM-prone gene comparison

The list of 3,230 genes depleted of predicted PTV’s in ExAC (PTV-intolerant) were intersected

with the list of genomic genes analyzed with the random forest model. 1,746 PTV-intolerant

genes were analyzed using the random forest model. 281 of 1,746 were predicted to be prone

to SSM. The intersection of the two datasets was plotted as a Venn diagram and significance

was determined using the Fischer’s exact test.

Supporting information

S1 Fig. Map of predicted ESR’s in MLH1 exons analyzed in MaPSy. Predicted ESE’s (bottom

brackets) and ESS’s (upper brackets) [17] were mapped to the MLH1 exons analyzed with

MaPSy. Positions of exonic mutations assayed are highlighted in blue (no effect on splicing)

and red (resulting in defective splicing). Positions that had more than one mapped mutation

are bold. The sequences for both the branch point sequence (BP Seq) and polypyrimidine tract

(PY Tract) are also noted.

(TIF)

S2 Fig. Exons enriched for ESMs. ESM versus all HGMD exonic mutations tested in MaPSy

exons with regions of 99.9% confidence interval shown in gray. B. List of exons enriched for

ESMs (P< 0.01).

(TIF)

S3 Fig. Example MaPSy assembly assay and validation in patient samples. A. The results

from RT-PCR of the output RNA (spliced species) from MaPSy for three replicates is shown.

B. Spliceosomal complexes (B/C, A, E) visualized in native gels for the MaPSy heterogeneous

library substrates. C. Migration of RNA splicing intermediates from MaPSy heterogeneous

library substrates.

(TIF)

S4 Fig. TSG are prone to splicing dysfunction. Average percent SSM and ESM in COSMIC

identified oncogenes vs non-oncogenes and TSG vs non-TSG listed in HGMD. Star indicates

a significant difference between gene groups (P< 0.01, Mann-Whitney U test).

(TIF)

S5 Fig. Sample genomic features associated with SSM-prone genes. Average number of

introns, exon length, SS ΔG, HI score, and ExAC variant conservation score in genes with

more SSM than expected (Upper, red bar), expected SSM (Expected, blue bar), and less SSM

than expected (Lower, green bar). P-values calculated using Kruskall-Wallis test.

(TIF)

S6 Fig. Enrichment of rare ExAC variants in the functional 30 splice-site signal category. A.

Common variants are depleted from the category of variants that cause loss of splice site signal
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at the 30 splice site. B. Rare variants are enriched in the range of the splice site signal scores

that abolish 30 splice site recognition.

(TIF)

S7 Fig. Overlap of ExAC’s PTV-intolerant genes and novel 499 predicted SSM-prone

genes. Enrichment of ExAC’s PTV-intolerant genes in the 499 genomic genes predicted to be

susceptible to SSM (P = 7.53e-98, Fisher Exact).

(TIF)

S1 Table. Variants in MLH1 analyzed with MaPSy.

(XLS)

S2 Table. HGMD SSM-prone genes.

(XLS)

S3 Table. GO term enrichment analysis of 86 SSM-prone genes.

(PDF)

S4 Table. Features used in machine learning.

(PDF)

S5 Table. HGMD SSM-prone genes based on normalized simulation.

(XLS)

S6 Table. Cross-validation of random forest.

(XLSX)

S7 Table. 499 predicted SSM-prone genes, PTV intolerance, and individual GO term asso-

ciations.

(XLS)

S8 Table. Go Term enrichment analysis of the 499 predicted SSM-prone genes.

(PDF)

S9 Table. SSM-prone cancer genes with ESM browser links.

(XLSX)
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