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Abstract

Optimizing COVID-19 vaccine distribution can help plan around the limited production and

distribution of vaccination, particularly in early stages. One of the main criteria for equitable

vaccine distribution is predicting the geographic distribution of active virus at the time of vac-

cination. This research developed sequence-learning models to predict the behavior of the

COVID-19 pandemic across the US, based on previously reported information. For this

objective, we used two time-series datasets of confirmed COVID-19 cases and COVID-19

effective reproduction numbers from January 22, 2020 to November 26, 2020 for all states

in the US. The datasets have 310 time-steps (days) and 50 features (US states). To avoid

training the models for all states, we categorized US states on the basis of their similarity to

previously reported COVID-19 behavior. For this purpose, we used an unsupervised self-

organizing map to categorize all states of the US into four groups on the basis of the similar-

ity of their effective reproduction numbers. After selecting a leading state (the state with ear-

liest outbreaks) in each group, we developed deterministic and stochastic Long Short Term

Memory (LSTM) and Mixture Density Network (MDN) models. We trained the models with

data from each leading state to make predictions, then compared the models with a baseline

linear regression model. We also remove seasonality and trends from a dataset of non-sta-

tionary COVID-19 cases to determine the effects on prediction. We showed that the deter-

ministic LSTM model trained on the COVID-19 effective reproduction numbers outperforms

other prediction methods.

Introduction

The supply of approved vaccines for the COVID-19 will be limited in early stages [1]. There-

fore, the basic question of what the optimized vaccine distribution might be must be answered.

Regarding this question, the Centers for Disease Control and Prevention (CDC) and the

National Institutes of Health (NIH) asked the National Academies to perform a consensus

study on the equitable allocation of the COVID-19 vaccines among potential recipients [2].

The study takes different factors into account, such as high-risk individuals, population health

disparities, assuring communities of color about the vaccine, addressing vaccine hesitancy
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among individuals, and considering ethical values [3, 4]. However, one of the main criteria for

optimizing vaccine distribution is the geographic spread of the active virus at the time of vacci-

nation [2]. Therefore, predicting the future spreading patterns of virus across different regions

is important.

In this article, we develop real-time approaches for predicting the behavior of COVID-19 in

all US states. We use data from the Centers for Disease and Prevention website and create two

time-series datasets of the number of confirmed cases, and the effective reproduction numbers

for all US states. The effective reproduction number, Rt, is defined as “the average number of

secondary cases of disease caused by a single infected individual over her or his infectious

period” [5].

To avoid training the models for all states, we use a self-organizing map (SOM) [6] to cate-

gorize all states into four groups according to their similarity in the reported effective repro-

duction numbers. In each group, we select the leading state (the state with earliest outbreaks).

A deterministic Long Short Term Memory (LSTM) model [7], recurrent neural network

(RNN) model, and stochastic Mixture Density Network (MDN) model [8] are then trained on

data from each of the leading states.

In the deterministic LSTM model, the network output is the number of confirmed cases

and the value of effective reproduction number in the next time-step. We use an LSTM RNN

because (1) more confirmed cases can lead to more potential infection among populations in

the future, and therefore, retaining all relevant historical information is important, and (2) this

intelligent sequence analysis model has been reported by several studies to have high efficiency

in time series forecasting problems [9].

In the stochastic MDN model, the network output is parameters of mixture distributions

rather than a direct prediction value. The proposed MDN model is a combination of LSTM

layers and a mixture of distributions. In this model, LSTM layers supply parameters for one or

several distributions, which are then combined with weighting [8]. Finally, a sample of data

can be extracted from the developed mixture distributions as an actual prediction [10].

We then compare the performance of developed models with a baseline linear regression

model [11]. We aim to study whether using deterministic and stochastic sequence-learning

models might have better predictive performance than linear regression. We also use an Aug-

mented Dickey Fuller test [12] to assess the stationary and non-stationary status of the input

dataset. We then remove seasonality and trend from the non-stationary datasets to investigate

their effects on predictive performance.

This article is structured as follows. Section two discusses a published article on using artifi-

cial intelligence and machine learning to predict the behavior of the COVID-19 pandemic.

Section three presents a brief mathematical explanation of Rt, seasonal-trend decomposition,

SOMs, RNNs, and mixture density networks (MDNs). Section four discusses the development

of sequence learning predictive models. Finally, section five explains the experimental setup,

performance metrics, and results.

Literature review

On December 8, 2019, the government of China reported treatment of several new virus cases

of a disease later named coronavirus disease 2019 (COVID-19) [13]. Since then, COVID-19

has spread across many countries and become a pandemic. COVID-19 is a highly transmissi-

ble respiratory disease with symptoms such as cough, fever, and breathing problems; it spreads

through contact with infected individuals [14]. In January 2020, the US reported its first con-

firmed case of COVID-19; in mid-February 2020, the COVID-19 pandemic began to cause

unprecedented social and economic consequences [13]. On December 14, 2020, the CDC
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reported 16,113,148 confirmed COVID-19 cases and 298,266 deaths in the US [15]. In this

dire situation, the successful prior application of artificial intelligence and machine learning in

critical problems inspired researchers to use these techniques against the COVID-19 pan-

demic. Artificial intelligence and machine learning have been used in various areas of predict-

ing, contact tracing, screening, forecasting, and drug development for the COVID-19

pandemic [16].

Ribeiro et al. [17] have used cumulative confirmed Brazilian COVID-19 cases to train a

support vector regression algorithm to forecast case numbers 6 days in advance. Chakraborty

and Ghosh [18] have developed a hybrid method based on a Wavelet-based forecasting model

and autoregressive integrated moving average model to forecast case numbers 10 days in

advance for France, India, Canada, South Korea, and the UK. Chakraborty and Ghosh [18]

have indicated that these forecast numbers of COVID-19 cases can act as an early-warning for

policymakers and can be useful for the efficient allocation of health care resources. Kapoor

et al. [19] have used mobility data and Graph Neural Networks to predict COVID-19 cases

and have reported a 6% lower root mean squared logarithmic error than the best-performing

baseline models.

Hartono [20] has indicated that developing an efficient predictive model is difficult because

of the unknown characteristics of the virus causing COVID-19, as well as the political and geo-

graphical influences. Hartono [20] has used a topological autoencoder (TA), a topological neu-

ral network, to map the transmission dynamics of COVID-19 spread in several countries. TA

produces a two-dimensional map in which countries with similar transmission dynamics are

located close to each other. After selection of a target location for forecasting, TA has been

used to identify a reference location with similar transmission dynamics that experienced ear-

lier spread of the virus causing COVID-19. Finally, LSTM has been trained on data from the

reference location to forecast the COVID-19 distribution in the target location.

Tomar and Gupta [21] have used LSTM and curve fitting to predict the number of

COVID-19 positive cases and the number of recovered cases in India 30 days in advance. In

that study, the data were collected from January 30, 2020 to April 4, 2020; 80% of the data were

used for training, and 20% were used for testing. Li et al. [22] have developed an integrated

spatiotemporal model based on RNNs and epidemic differential equations to predict the num-

ber of COVID-19 cases in Italy 7 days in advance.

Arora et al. [9] have used RNN based LSTM variants including Deep LSTM, Bidirectional

LSTM, and Convolutional LSTM to predict the number of COVID-19 cases in India 1 day and

1 week in advance. In that study, the states of India are categorized into different areas accord-

ing to the daily growth rate and the number of confirmed COVID-19 cases. The dataset con-

tains time-series data of confirmed COVID-19 cases from March 14, 2020 to May 14, 2020 for

each state in India [9]. Arora et al. [9] have conducted an experiment on open source libraries

and have used the Adam optimizer to optimize the mean squared error loss. The authors used

the mean absolute percentage error (MAPE) to compare the performance of several predictive

methods and found an average MAPE of 3.22% for bi-directional LSTM, 4.81% for Stacked

LSTM, and 5.05% for conv-LSTM.

Shahid et al. [23] have used support vector regression, autoregressive integrated moving

average, LSTM, and Bidirectional LSTM for predicting confirmed COVID-19 cases, deaths,

and recoveries in Israel, Russia, Brazil, Spain, the UK, Germany, Italy, China, India, and the

US. The study used the mean absolute error, root mean square error, and r2_score indices to

measure the performance of the models. The methods were found to rank as follows from best

performance to worst performance: Bidirectional LSTM, LSTM, support vector regression,

and autoregressive integrated moving average.
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Chimmula and Zhang [12] have collected data on the numbers of confirmed COVID-19

cases, of fatalities, and recovered patients in a time series format from the Canadian Health

Authority and Johns Hopkins University. The Augmented Dickey Fuller test was used to iden-

tify the effects of trends on the dataset and to report the stationary and non-stationary nature

of the data [12]. The study has also developed an LSTM model to forecast the pandemic out-

break in Canada.

Mathematical models

In this section, the mathematical formulae of effective reproduction numbers, SOMs, RNNs,

and MDNs are explained.

Effective reproduction number

The effective reproduction number, Rt, is defined as “the expected number of new infections

caused by an infectious individual in a population where some individuals may no longer be

susceptible” [24]. One of the main reasons for calculating Rt is to determine how interventions

and control efforts in population immunity, policy, and other elements affect transmission in

specific time-steps [25]. Furthermore, Rt can be used to study real-time changes in COVID-19

transmission [24]. To bring the pandemic under control, Rt must be decreased to less than 1

and as close to 0 as possible [5]. Therefore, predicting Rt, which is situation- and time-specific,

can aid in understanding the pathogen transmissibility during the COVID-19 pandemic in the

future. Several methods have been developed to estimate Rt but we use the method of Cori

et al. [5], in which the effective reproduction number is as follows:

Rt ¼
ItPt

s¼1
It� sws

ð1Þ

where It is the number of incidents of infections on day t, and ws is the generation interval,

which is defined as “the time between the infection time of an infected person and the infec-

tion time of his or her infector” [26]. In this equation, the generation interval is the only

parametric assumption adopted from Nishiura et al. [27]. That study obtained 28 infector-

infectee pairs and used the log-normal distribution and the discretized gamma distributions to

generate the results. Nishiura et al. [27] have reported the standard deviation and mean of the

serial interval at 2.9 days (95% credible interval (CrI): 1.9, 4.9) and 4.7 days (95% CrI: 3.7, 6.0).

For estimating Rt, the Excel file of EpiEstim package was borrowed from Cori et al. [5] (Please

refer to https://github.com/RezaDavahli for input data; 10 February 2021) [28].

Seasonal-trend decomposition

Normally, time series data can be decomposed into the trend, seasonality, and residual, as rep-

resented in the following equation:

q ¼ tt þ st þ rt ð2Þ

where t = 1, 2, � � �, N; xt is an original signal at time t; τt is the trend; st is the seasonality, which is

the patterns that repeat with a period of time; and rt is the residual. Several decomposition algo-

rithms have been proposed for periodic and non-periodic datasets [29]. In this article, we use Sea-

sonal-Trend Decomposition in six steps, which have been fully discussed by Qin et al. [30].

Before removing the seasonality and trend, we apply the Dickey Fuller test to determine

whether the datasets are stationary or non-stationary. For the stationary dataset, seasonality

and trend are not removed.
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Self-organizing map

Teuvo Kohonen developed the SOM as a new form of neural network architecture and learning

algorithm in the 1980s [6]. SOM uses an unsupervised learning process to analyze and represent

the basic structures of a dataset as a map [31]. Therefore, SOM is commonly used to convert

high-dimensional datasets into one- or two-dimensional maps [32]. Suppose that the input vari-

ables are X = (x1,x2,� � �xp)0; the weight vector assigned to the node l is ul = (ul1,ul2,� � �ulp) 0; ulj is

the weight associated with node l of input variable xj; and p is the number of input variables [33].

The learning concept of SOM involves detecting and moving the winning node closer to

each training case. For this purpose, the Euclidean distance di between the weight vector and

the input variables is calculated for each item i in the training case. Subsequently, the weights

of the winning node with the smallest di are updated by a learning rule. In each step, the index

q of the winning node is:

q ¼ argminkusl � xik ð3Þ

where usl is the weight for the lth node on the sth step, αs is the learning rate for the sth step,

and xi is the input variable for the ith training case. For the winner node, the update rule is:

usþ1

q ¼ usqð1 � a
sÞ þ xia

s ¼ usq þ a
sðxi � usqÞ ð4Þ

where ul
s+1 is set to ul

s for all non-winning nodes.

Recurrent neural networks

Deep learning methods are effective for prediction because they automatically extract appro-

priate features from datasets [34]. RNN, a deep learning method, can store extensive historical

information and use it to accurately predict the next steps in time-series problems [35]. How-

ever, its main disadvantage is long training time, because of vanishing gradient problems [21].

To overcome this problem, the LSTM structure, comprising a cell, an input gate, an output

gate, and a forget gate, was developed to consider a long-term dependency [7]. In this struc-

ture, the cell stores values over arbitrary time intervals, and the gates adjust the flow of infor-

mation in the recurrent hidden layer, as represented in Fig 1 [21].

The states of an input gate, an output gate, and a forget gate can be demonstrated mathe-

matically by five equations:

ft ¼ sðWf :½ht� 1; xt� þ btÞ ð5Þ

it ¼ sðWi:½ht� 1; xt� þ biÞ ð6Þ

eCt ¼ tanhðWc:½ht� 1; xt� þ bcÞ ð7Þ

Fig 1. LSTM structure [36].

https://doi.org/10.1371/journal.pone.0253925.g001
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Ct ¼ ft � Ct� 1 þ it � eCt ð8Þ

ot ¼ sðWo:½ht� 1; xt� þ boÞ ð9Þ

ht ¼ ot � tanhðCtÞ ð10Þ

In these equations, σ is the logistic sigmoid activation function; Ct is the cell state; W indi-

cates the weight matrices; and i, o, and f indicate the input gate, output gate, and forget gate,

respectively [36]. In this structure, the input gate specifies the flow of information and protects

the cell from irrelevant information, the forget gate deletes irrelevant information, and the out-

put gate regulates the flow of information passing through the rest of the network [9].

Mixture density networks

MDNs are a combination of a neural network and a mixture of distributions, as represented in

Fig 2. In MDNs, neural networks are used to model a mixture of components [37]. The main

aspects of MDNs include the type of neural network, the number and size of the hidden layers,

the dimension of the output, the number of input parameters, the type of distribution, and the

number of distributions [37]. Unlike the LSTM deterministic model with fully determined

outputs, MDNs estimate probability distributions of potential outcomes.

In the following equation, the mixture of the probability density function (PDF) p(x) is rep-

resented as a combination of the m PDFs with weights Ω = {ω0,. . ., ωm−1}, where the sum of

weights is equal to 1:

pðxÞ ¼
Pm� 1

j¼0
ojpjðxÞ ð11Þ

Fig 2. Mixture density networks [38].

https://doi.org/10.1371/journal.pone.0253925.g002
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Each pj is a normal distribution defined by a variance σj and a mean μj, according to the fol-

lowing equation:

pðxÞ ¼
Pm� 1

j¼0

oj
ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q expð
� 1

2s2
j

ðx � mjÞ
2
Þ ð12Þ

The model can be fit to the following objective loss function:

f ðxÞ ¼ �
Pn� 1

i¼0
log
Pm� 1

j¼0
ojpjðxÞ ð13Þ

In this study, RNNs are used to output the parameters of a mixture model including the

mixing coefficient of each Gaussian kernel (the probability of each kernel), and the mean and

variance of each Gaussian kernel.

COVID-19 predictive models

In this section, the deterministic and stochastic sequence-learning models are explained.

These models are used to predict the number of confirmed COVID-19 cases and the effective

reproduction numbers in all states in the US. We use data from the Centers for Disease and

Prevention website, and have developed a dataset of the number of confirmed COVID-19

cases in all states of the US from January 22, 2020, to November 26, 2020, as indicated in

Table 1.

Next, we use the EpiEstim package to compute effective reproduction numbers for all time-

steps and all states, as represented in Table 2.

Both datasets contain 310 rows (time-step-days) and 50 columns (US states). To decrease

the dimensionality of datasets, we use SOM to categorize all states into four categories. We

apply the Minisom package [39] to a dataset containing the effective reproduction numbers

from August 26, 2020 to November 26, 2020 for all US states. In the dataset, time-steps are

considered features, and states are nodes. We have categorized all states into four groups

according to the behavior of the effective reproduction numbers over time, as represented in

Fig 3.

As shown in Fig 3, most neighboring states are interestingly clustered into the same group,

thus indicating that the COVID-19 behavior is similar in close states. This conclusion appears

logical, because there is more commuting and traveling between neighboring states.

We also use the R package Chorddig [40] to visualize all relationships among states accord-

ing to their similarities in effective reproduction number (Fig 4).

After categorizing the states into four groups, we select the state with the earliest outbreaks

as the leading state in each group. These leading states are used for training the models. Two

sequence-learning models are considered: a deterministic LSTM model and a stochastic

LSTM/MDN model. Fig 5 represents the structure of the stochastic LSTM/MDN model.

In the stochastic LSTM/MDN model, the neurons corresponding to the means μk(x) are

passed to the negative log likelihood cost, but neurons corresponding to the variances σk(x)

are passed through an exponential function before moving to the negative log likelihood cost.

To satisfy the constraint of a sum of weights equal to 1 (Ω = {ω0,. . ., ωm−1}), the neuron

Table 1. The confirmed case dataset at one time-step.

Date Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida . . .

3/29/2020 110 12 146 34 480 246 469 18 891 . . .

. . .

https://doi.org/10.1371/journal.pone.0253925.t001
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corresponding to weights passes through the softmax function. Softmax creates probabilities

between 0 and 1 from real values that add up to 1:

SoftmaxðzÞj ¼
ezj

Pn
k¼1
ezk

ð14Þ

As described earlier, the probability density of yt can be calculated according to the follow-

ing equation:

pðytjxÞ ¼
PM

k¼1
okðxÞgkðytjxÞ ð15Þ

where gk(yt|x) is represented in the following equation as the kth multivariate Gaussian kernel.

gk ytjxð Þ ¼
1

ð2pÞ
N=2

exp
jjyt � m2

kðxÞjj
2

2skðxÞ
2

( )

ð16Þ

where the vector μk(x) is the center of kth kernel. Finally, the error function is represented as

follows:

Et ¼ � lnf
PM

k¼1
okðxÞgkðytjxÞg ð17Þ

Both deterministic and stochastic models were trained to provide predictions for time-step

t + 1 after input of values up to time-step t. However, the output of the LSTM model is a value,

whereas the output of the LSTM/MDN model is a mixture density parameters of a Gaussian

mixture distribution. Therefore, for the stochastic model, a sample selected from this Gaussian

mixture distribution is considered a prediction of the next time-step.

Experimental study

In this section, the developed stochastic and deterministic models are evaluated on two data-

sets of confirmed COVID-19 cases and effective reproduction numbers (Please refer to https://

github.com/RezaDavahli for models and input data; 10 February 2021). Then they are

Table 2. The Rt dataset at one time-step.

Date Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida . . .

3/29/2020 2.06 1.89 2.11 1.28 1.77 1.92 2.39 1.91 2.26 . . .

. . .

https://doi.org/10.1371/journal.pone.0253925.t002

Fig 3. Categorization of all states according to the effective reproduction numbers over time (red: Group one,

blue: Group two, green: Group three, yellow: Group four).

https://doi.org/10.1371/journal.pone.0253925.g003
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compared with a linear regression model to better understand their predictive ability. In the

next experiment, after performing an Augmented Dickey Fuller test, we remove the seasonality

and trend of the non-stationary dataset. We then investigate the performance of the developed

models trained on the residuals dataset.

Experimental setup

The performance of the developed deterministic and stochastic models is evaluated with

the datasets of confirmed COVID-19 cases and effective reproduction numbers. The data-

sets contain values from January 22, 2020 through November 26, 2020 (Please refer to

https://github.com/RezaDavahli for models and input data; 10 February 2021). In each

dataset, 95% of the data are used for training (including 76% for training and 19% for vali-

dation), and 5% are used for testing. The testing set is considered from November 11, 2020

to November 26, 2020. The number of days for the testing set was borrowed from Arora

et al. [9] and Hartono [20] aiming to provide comparability of our results. For developing

the training dataset, 14 previous days are used in one batch to train the model and predict

the value for the next day (1 day in advance). The Tensorflow [41] and Keras [42] libraries

are used for developing the networks. The list of parameters in the two models is shown in

Table 3.

Fig 4. The relationships among states in terms of the similarity of effective reproduction numbers.

https://doi.org/10.1371/journal.pone.0253925.g004

Fig 5. The LSTM-MDN learning model through time-steps.

https://doi.org/10.1371/journal.pone.0253925.g005
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Performance metrics

We use Mean Absolute Percentage Error (MAPE), which is the percentile error of the models,

to test the performance of the developed predictive models [43]. As represented in the follow-

ing equation, yi, t is the real value in state i at time-step t, whereas ŷi, t is the predicted value.

MAPEi ¼
1

T
PT

t¼1

jyi;t � ŷi;tj
yi;t

ð18Þ

We compare the developed stochastic and deterministic predictions with that of linear

regression to better understand the performance of the models.

Performance results

To fully understand the efficient model, we report the average MAPE for all leading states and

for different combinations of models and datasets, as shown in Figs 6 and 7.

Several specific patterns are seen among the data. First, the predictive models trained on

effective reproduction numbers showed much better performance than models trained on

confirmed cases. On average, there was a 16% difference between the predictions based on

confirmed cases versus effective reproduction numbers. Second, unlike the confirmed cases

dataset, the Rt dataset is stationary, and there is no need to remove the seasonality and trend.

However, with the confirmed cases dataset, the greatest improvement in performance due to

removal of seasonality and trend was seen in the stochastic LSTM/MDN model. Third, the

deterministic LSTM model exhebited the best performance for the two datasets. The LSTM

model trained on the effective reproduction number has the best performance, with 3.46%

MAPE among all fusions.

We also represented the performance of models from November 11, 2020, to November 26,

2020 in the leading state of California in group one (see in Figs 8 and 9).

As shown in Fig 8, although deterministic LSTM had better performance, stochastic LSTM/

MDN was more successful in following the trend of the actual data. However, stochastic

Table 3. List of parameters in the two models.

Elements LSTM LSTM/MDN

Time step length Day Day

Normalization Yes Yes

Number of sequences 14 14

Number of hidden layers 3 2

Number of nodes in each hidden layer 50 10

Number of mixture Gaussian kernels - 1

https://doi.org/10.1371/journal.pone.0253925.t003

Fig 6. The performance of different combinations of models and datasets.

https://doi.org/10.1371/journal.pone.0253925.g006
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LSTM/MDN was much more sensitive to large changes in the actual data. We also show the

performance of models on COVID-19 datasets when seasonality and trend are removed in

comparison to the original datasets in the leading state of California (Fig 9).

Limitations

In this study, we developed models to predict the behavior of COVID-19 within the leading

US states. Therefore, the main limitation is that we did not consider the effect of states on one

another. Many states issued a stay-at-home order, asking residents to stay at home, which

reduced mobility between states.

In our subsequent study, we plan to investigate the impacts of mobility on the performance

of the sequence learning models.

Although we indicated that the models trained on Rt have much better performance, there

are some limitations associated with that. The main limitation is that Rt can be calculated

using different methodologies, which do not give the same estimate. The final major limitation

relates to using SOM for dividing US states into four groups. SOM uses an unsupervised learn-

ing process to analyze and represent the Rt dataset as a map. SOM decreased the dimensional-

ity of the Rt dataset by clustering states based on similarities in their respective Rt numbers

from August 26, 2020 to November 26, 2020. In the resulting map, most neighboring states

were clustered together, but there were several exceptions. Because this is an unsupervised

clustering technique, the reasoning behind the clusters and exceptions is not clear.

Conclusion

This study developed stochastic and deterministic sequence learning models based on RNNs

and MDNs to predict the behavior of COVID-19 virus in different US states. We trained the

Fig 7. The performance of different combinations of models and datasets.

https://doi.org/10.1371/journal.pone.0253925.g007

Fig 8. The performance of different combinations of models and datasets in the leading state of California in group

one: (a) performance of deterministic and stochastic models trained on the COVID-19 cases dataset, (b) performance

of deterministic and stochastic models trained on the dataset of COVID-19 cases after removal of seasonality and

trend, (c) performance of deterministic and stochastic models trained on the effective reproduction numbers dataset,

(d) performance of deterministic and stochastic models trained on the effective reproduction numbers dataset.

https://doi.org/10.1371/journal.pone.0253925.g008
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models on historical confirmed cases and Rt patterns. The developed models can predict geo-

graphic spreading of the active virus. The primary dataset contains 310 time-steps and 50 fea-

tures (US states). To avoid training the models for all states, we used the unsupervised learning

methods of SOM to categorize all states into four groups according to their similarity in

COVID-19 behavior. After selecting one state from each group as the leading state (the state

with the earliest outbreak), we trained the developed models. We found that the predictive

models trained on Rt have much better performance than those trained on confirmed cases. In

addition, the deterministic LSTM model exhibited better performance than the stochastic

LSTM/MDN and linear regression models. However, the stochastic model was more success-

ful in predicting the trends in the actual dataset. Finally, LSTM trained on Rt showed the best

performance, with a MAPE value of 3.46%.
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