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A B S T R A C T

Background: Transcriptional regulators are seminal players in the onset and progression of prostate cancer.
However, clarification of their underlying regulatory circuits and mechanisms demands considerable effort.
Methods: Integrated analyses were performed on genomic, transcriptomic, and clinicopathological profiles of
primary prostate cancer and transcription factor-binding profiles, which included estimating transcription
factor activity, identifying transcription factors of prognostic values, and discovering cis- and trans-regula-
tions by long noncoding RNAs. Interactions between transcription factors and long noncoding RNAs were
validated by RNA immunoprecipitation quantitative PCR. RNA interference assays were performed to explore
roles of the selected transcription regulators.
Findings: Sixteen transcription factors, namely, ETS1, ARID4B, KLF12, GMEB1, HBP1, MXI1, MYC, MAX, PGR,
BCL11A, AR, KLF4, SRF, HIF1A, EHF, and ATOH1, were jointly identified as a prognostic signature. Candidate
long noncoding RNAs interplaying with the prognostic signature constituent transcription factors were fur-
ther discovered. Their interactions were randomly checked, and many of them were experimentally proved.
Transcription regulation by MYC and its long noncoding RNA partner AL590617.2 was further validated on
their candidate targets. Moreover, the regulatory network governed by the transcription factors and their
interacting long noncoding RNA partners is illustrated and stored in our LNCTRN database (https://navy.shi
nyapps.io/lnctrn).
Interpretation: The prognostic signature constituent transcription factors and their interacting long noncod-
ing RNAs may represent promising biomarkers and/or therapeutic targets for prostate cancer. Furthermore,
the computational framework proposed in the present study can be utilized to explore critical transcriptional
regulators in other types of cancer.
Funding: This work was supported by National Natural Science Foundation of China and Fudan University.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Considerable advances illuminate the importance of transcrip-
tional dysregulation in cancer including prostate cancer as a driving
event that provokes the acquisition of cancer hallmarks [1,2]. A
genome-wide association study discovered 77 prostate cancer risk
loci the majority of which overlap putative enhancers [3]. Two single
nucleotide variants were further linked to the androgen sensitivity of
enhancers in prostate cancer cells through affecting the binding of
androgen receptor.

Androgen receptor (AR) acts as a transcription factor and medi-
ates the cellular action of androgen, which is required for develop-
ment, maintenance and function of the prostate gland [4]. The same
as normal prostate cells, proliferation and survival of prostate cancer
cells highly rely on androgen and AR, providing the rationale for
androgen deprivation therapy in management of prostate cancer
[1,2,5]. Deprivation is typically achieved by oral administration of
androgen antagonist to disrupt the binding of androgen to AR and
thereby suppress the androgen signaling axis. However, progression
of prostate cancer to castration resistance is inevitable [6]. A leading
cause for resistance is AR gene amplification and aberrant activation
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Research in context

Evidence before this study

Considerable advances illuminate the importance of transcrip-
tional dysregulation in cancer including prostate cancer as a
driving event that provokes the acquisition of cancer hallmarks.
Clarification of the underlying transcriptional networks and
mechanisms still demands a lot of effort.

Added value of this study

In the present study, we reveal the transcriptional network
governed by the prognostic signature transcription factors and
their interacting long noncoding RNAs in primary prostate can-
cer, which can be accessed via our LNCTRN database (https://
navy.shinyapps.io/lnctrn).

Implications of all the available evidence

The prognostic signature transcription factors and their inter-
acting long noncoding RNAs may represent potential bio-
markers and/or therapeutic targets in prostate cancer. In
addition, to the best of our knowledge, the present study is the
first to recognize the interaction between transcription factors
and long noncoding RNAs in a large scale. The computational
framework proposed in our study can be used to discover criti-
cal transcriptional regulators in other cancer types.
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that restore the androgen signaling and allow the cancer cell growth
despite a low level of circulating androgen [1,5,6]. More potent
agents targeting AR have been developed, and some of them such as
enzalutamide have shown promising clinical benefit in patients with
castration-resistant prostate cancer [1,2,5,6]. The antiandrogen enza-
lutamide not only competes with androgen for AR binding but also
prevent AR translocation to nucleus, and was recently approved for
castration-resistant prostate cancer.

Several other transcription factors have been implicated in the
prostate cancer as well. Translocation of ERG, a member of ETS family,
to downstream of androgen-dependent TMPRSS2 promoter was
observed in approximate half of prostate tumors, which results in
elevated expression of ERG [7]. The rearrangement is an early event
in prostate cancer and drives the initiation of prostate cancer [8]. ERG
overexpression leads to global chromatin reorganization [9] and pro-
motes cell invasion and neoplastic transformation [8]. Roles of MYC
in the tumorigenesis have been the subjects of intense investigation
for decades [10�12]. MYC overexpression contributes to multiple
hallmarks of cancer. Recurrent overexpression of MYC protein has
been detected at early stages of prostate cancer and is believed to
drive the prostate carcinogenesis [11,12]. In addition, MYC is a central
driving force of the evolution of prostate cancer to an androgen-inde-
pendent state.

Identifying and characterizing long noncoding RNAs (lncRNAs) is
undoubtedly a burgeoning field of the transcriptional regulation
research. Nuclear lncRNAs can change chromatin organization by
interacting with chromatin modulators [13,14]. NEAT1, a poor prog-
nostic factor tied up with the metastatic recurrence and castration
resistance of prostate cancer, has demonstrated the ability to modu-
late the chromatin status evidenced by its direction interaction with
active histone H3 modifications at target promoters upon NEAT1
overexpression, thus leading to upregulation of oncogenic genes
independent of AR [15]. ANRIL mediates epigenetic repression of the
INK4 cell cycle inhibitors through recruiting the polycomb repressive
complex 1 to the INK4 gene locus, which explains elevated level of
ANRIL in the prostate cancer [16]. In addition, it is reported that
lncRNAs activate or repress transcription through either recruiting
transcription factors to or sequestering them from regulatory regions
[13,14]. Cooperative binding of the lncRNAs PCGEM1 and PRNCR1 to
AR further recruits PYGO2, which selectively reinforces the looping
of AR bound enhancers over target gene promoters even in the
absence of androgen and thereby promotes resistance of prostate
cancer cells to the androgen deprivation [17]. Notably, the interaction
of AR, PCGEM1 and PRNCR1 is specific to the prostate cancer and has
not been detected in the normal prostate. However, a recent publica-
tion refuted the interaction between AR and those two lncRNAs in
the prostate cancer [18]. Thus, the interaction of AR, PCGEM1 and
PRNCR1 needs more delicate investigation. LncRNAs also impact
localization, stability and activity of transcription factors via direct
physical interaction [13,14]. HOTAIR binding to the AR protein pro-
tects AR from degradation by blocking the interplay between AR and
a E3 ubiquitin ligase MDM2 and therefore preventing the AR ubiquiti-
nation [19]. HOTAIR overexpression in prostate cancer stimulates the
androgen-independent AR activity and finally drives castration resis-
tance.

It is notable that lncRNAs generally exhibit a cell- and/or tissue/
tumor-specific expression pattern, making them attractive candi-
dates for diagnostic markers or therapeutics [20]. Testing for PCA3,
the first approved lncRNA biomarker in cancer, has greatly improved
the specificity of prostate cancer detection [21]. Rapid evolution and
increased success of the nucleic acid-based clinical trials have
encouraged more preclinical research into lncRNAs [20].

In the present study, integrated analyses were performed on
genomic, transcriptomic and clinicopathological profiles of the pri-
mary prostate cancers from the Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov) and transcription factor binding sites from the
GTRD ChIP-Seq database [22]. 16 transcription factors were identified
to work jointly as a prognostic signature for the prostate cancer. In
addition, transcriptional regulation by long noncoding RNAs were
predicted and deposited in our LNCTRN database (https://navy.shi
nyapps.io/lnctrn). Furthermore, our study was focused on the 16
prognostic transcription factors and their interacting lncRNA part-
ners. The interactions were randomly validated by RNA immunopre-
cipitation, the majority of which were proved.

2. Materials and methods

2.1. Data accession and processing

The copy number variation, genomic mutation, gene expression,
and clinicopathological profiles of primary prostate cancer were all
downloaded from the GDC data portal of the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov) which covered 498 primary
tumors and 52 normal tissues. A total of 20433 genes with RNA-Seq
counts per million values > 0.5 in over 10% of the examined samples
were considered in our analysis. Subsequently, gene expression esti-
mation and differential gene expression analysis were performed on
the RNA-Seq counts using edgeR [23]. In the former task, fragments
per kilobase per million mapped fragments (FPKM) values were cal-
culated, log2 transformed, and then finally Z-score scaled. The stan-
dardized values were called zFPKM, which estimated the relative
gene expression levels across samples. A total of 5946 genes were dif-
ferentially expressed between tumors and normal tissues (fold
change > 1.5 and false discovery rate [FDR] < 0.05). In addition,
molecular subtypes, preoperative PSA levels, and tumor cellularity
were obtained through TCGAbiolinks [24].

From the GTRD ChIP-Seq database [22], we extracted transcrip-
tion factor-binding sites in all collected cell types, which were
detected by at least three peak calling algorithms. A gene was consid-
ered as the target of a transcription factor if the transcription factor
bound to its proximal regulatory region. Herein, proximal regulatory
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regions referred to genomic regions within 1 kb from gene transcrip-
tion start sites.

2.2. Estimation of transcription factor activity

In total, 5946 differentially expressed genes were used in the cal-
culation of transcription factor activity. Multiple linear regression
was applied to estimate transcription factor activity in each sample
as follows:

Eti ¼ bt0 þ bt1Xi1 þ bt2Xi2 þ . . .þ btkXik þ eti ¼ bt0 þ
Xk

j¼1

btjxij þ eti; i

¼ 1; . . . ;n;

where Eti is the zFPKM value of the ith gene in the tth sample, xij is
number of binding sites of the jth transcription factor within 1 kb
from the transcription start sites of the ith gene, btj estimates the
activity of the jth transcription factor in the tth sample, bt0 is the con-
stant term in the model, and eti is the random error for the ith gene in
the tth sample. Transcription factors without statistical significance
(p-value > 0.01) were removed from the regression model.

Finally, transcription factors active in less than 5% of the samples
were not included in further analyses. Limma [25] was used to ana-
lyze differences between cancerous and normal prostate tissues in
transcription factor activity (FDR < 0.05).

2.3. Prediction of transcriptional regulation by lncRNAs

Similarly, 5946 differentially expressed genes were used in the
prediction of transcriptional regulation by lncRNAs. First, expression
correlation between each of these genes and each lncRNA was mea-
sured by Pearson correlation of their zFPKM values.

An lncRNA was considered to transcriptionally regulate a gene
in cis, if it satisfied two criteria: (1) their expression correlation
was high (|coefficient| > 0.3 and FDR < 0.01) and (2) the mini-
mum distance between their transcription start sites was smaller
than 1 kb.

An lncRNA was considered to regulate a target in trans by
forming an RNA�DNA triplex in the proximal regulatory region if
Triplexator [26] detected that the lncRNA bound a DNA fragment
within 1 kb from the target transcription start sites. Triplexator
was implemented with default parameters, except that the mini-
mum length of a putative triplex forming oligonucleotide, triplex
target site, or triplex was set as 20 bp. The minimum distance
between the transcription start sites of the lncRNA and its target
gene must also be farther than 1 kb. In addition, expression cor-
relation was considered (FDR < 0.01).

To predict the interaction between a transcription factor and an
lncRNA, we narrowed down the differentially expressed genes to the
transcription factor targets and then measured Spearman correlation
between their expression correlations (Pearson correlation coeffi-
cients) with the lncRNA and binding site numbers of the transcription
factor in their proximal regulatory regions (FDR < 0.01).

2.4. Survival analyses

Kaplan�Meier survival curves were plotted using the R package
survminer, in which high and low patient groups were divided by the
median. Log rank tests were used to compare the survival of patient
groups. Hazard ratios were estimated by univariate Cox proportional
hazard regression and LASSO Cox regression. Wald tests were per-
formed to calculate the significance of the univariate Cox regression
models (p-value < 0.05). The log rank tests and the univariable Cox
regression were accomplished by survival [27]. The LASSO Cox
regression was performed by glmnet [28].
The risk score of the selected transcription factors was calculated
as follows:

Risk score ¼
Xn

i¼1

Li � Xi;

where Li is the coefficient of the ith transcription factor calculated by
the LASSO Cox regression, and Xi is the Z-score transformed activity
of the ith transcription factor.
2.5. Statistical analyses

Differences between two groups was analyzed by two tailed t-
tests, except for comparisons of transcription factor activity between
prostate tumors and normal prostates. To compare more than two
groups, one-way ANOVA was first performed. If the ANOVA test was
significant (p-value < 0.05), then a Tukey’s HSD test was performed
for multiple pairwise comparisons.
2.6. Functional analyses

Gene Set Enrichment Analyses (GSEA) and over-representation
analyses were performed using clusterProfiler [29].
2.7. Data visualization and database construction

The data visualization tools used in this study included Cytoscape
[30] and R packages such as ggplot2 [31], ggsignif, ComplexHeatmap
[32], and clusterProfiler [29].

The online LNCTRN database was developed using the R package
shiny, which collected transcriptional circuits governed by transcrip-
tion factors and lncRNAs.
2.8. RNA immunoprecipitation quantitative PCR (RIP-qPCR)

Native RIP was performed as previously described [33] in the
LNCaP prostate cancer cells (American Type Culture Collection CRL-
1740) using 5 mg of antibodies against MYC (ab32072), AR
(ab74272), YBX1 (20339-1-AP), or IgG, except that immunoprecipi-
tated and input RNAs were purified by the TRIzol reagent (Invitrogen)
following the manufacturer’s protocol. RIP with anti-IgG served as a
negative control. Reverse transcription was conducted using Novo-
Script 1st Strand cDNA Synthesis SuperMix (Novoprotein), and quan-
titative PCR was performed in triplicate using AceQ qPCR SYBR Green
Master Mix (Vazyme Biotech). Primer sequences were listed in sup-
plementary Table S5.
2.9. Cell transfection

Synthesized siRNAs (GenePharma) were transfected into the
LNCaP cells using HilyMax (Dojindo). Sequences of siRNAs were listed
in supplementary Table S6. Cells were harvested six hours following
transfection, and then total RNAs were extracted by TRIzol. Quantita-
tive reverse PCR was performed as described in RIP-qPCR using the
primers shown in supplementary Table S5. Actin was used as the ref-
erence gene.
2.10. Role of funding source

Financial support was provided by National Natural Science Foun-
dation of China and Fudan University. None of these sponsors had
any role in the study design, the collection, analysis, and interpreta-
tion of data, the writing of the report, or the decision of paper sub-
mission.
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3. Results

3.1. Transcription factor activity in prostate tumors and normal
prostates

An increasing number of studies are focusing on the roles of tran-
scription factors in driving and promoting the initiation and progres-
sion of prostate cancer [1,2]. Their activities rely not only on
expression levels but also on protein modifications, such as phos-
phorylation, which may alter transcription factor stability, structure,
localization, and interactome [34]. Furthermore, their transcriptional
effects usually necessitate cooperation of multiple factors and are
dependent on cellular contexts [34,35]. In the present study, a multi-
variate regression model [36] was adopted to estimate transcription
factor activity. In brief, a multiple linear regression analysis was per-
formed in each sample. In the analyses, the transcription factor occu-
pancies were regarded as the predictor variables and the gene
expression levels (standardized fragments per kilobase per million
mapped fragments [zFPKM]) as the outcome variables (Fig. 1a). Given
that the present study focused on transcription factors potentially
involved in prostate carcinogenesis, the regression analyses were
restricted to genes showing differential expression between primary
tumors and normal tissues. Regression coefficients are estimates of
transcription factor activity. To ascertain whether our regression
model could infer transcription factor activity, we first investigated
the two well-studied tumor proteins MYC and TP53. MYC acts as a
master regulator of cell growth by orchestrating the expression of
genes involved in cell cycle, DNA replication, ribosome biosynthesis,
and other metabolisms [10]. The characteristic genes appeared at the
top of the gene list ranked by expression correlations with MYC activ-
ity (Fig. 1b and Supplementary Fig. S1). In addition, MYC activity
increased with gene copy gains (p-value = 4E-6, Fig. 1c). By contrast,
the activity of the other transcription factor, TP53, which is also
known as a p53 tumor suppressor, decreased with gene copy losses
(p-value = 5E-5, Fig. 1c). TP53 is one of the most commonly mutated
proteins in human cancers, including prostate cancer [7,37], even
though somatic mutations are far less frequent in prostate cancer
than in other solid tumors [7]. Notably, the mutations led to reduced
TP53 activity (p-value = 3E-3, Fig. 1d), albeit with no change in
Fig. 1. Calculation of transcription factor activity in normal prostates and primary prostate ca
ear regression was applied to the zFPKM values of a gene set and binding site numbers of tra
set of genes were those differentially expressed between tumors and normal tissues. Regres
showing expression correlation with MYC activity (BH adjusted p-value < 0.05), which were
and (d) mutations affected TP53 and MYC activity. Mutations included deleterious mutation
lion mapped fragments.
expression levels (p-value > 0.05), a result consistent with that of a
previous report [38]. Moreover, not all transcription factor activities
were influenced by genomic copy number alterations (data not
shown). Copy number variations may change gene expression levels
[1]. However, expression level is not the only determinant of tran-
scription factor activity [34,35]. This fact may explain the discrepancy
between genetic copy variations and the activity of the transcription
factors.

The activity of 67 and 63 transcription factors increased and
decreased in prostate cancer, respectively (Figs. 2a�2e and Supple-
mentary Table S1). The reduced activity of the TP53 tumor suppressor
(Fig. 2b) and the elevated activity of the MYC proto-oncogene (Fig. 2c)
in primary tumors were expected. The enhanced AR activity observed
in the tumors (Fig. 2a) agreed with the previous findings that the AR
signaling pathway is a central axis in promoting the growth and sur-
vival of both normal prostate cells and prostate cancer cells [1,2,4,5].
A prominent example of the role of AR in prostate cancer initiation is
the androgen-dependent activation of ERG. Recurrent fusion of the
androgen-dependent TMPRSS2 promoter and ERG and thereby ERG
overexpression drive prostate cancer cell invasion [8]. Indeed, ERG
activity increased in the primary tumors (Fig. 2d). Furthermore, dis-
ease ontology analysis of the above 130 transcription factors showing
differential activity between tumors and normal tissues revealed that
almost all of the enriched terms were regarding cancer (Fig. 2f and
Supplementary Fig. S2), and prostate cancer ranked at the top. In
addition, the pathway of transcriptional misregulation in cancer was
overrepresented (Fig. 2g).

Overall, the multiple linear regression model approximated tran-
scription factor activity on the basis of the activity profiles of the key
transcription factors participating in the prostate cancer pathogene-
sis, such as MYC, TP53, AR, and ERG, which was confirmed by com-
prehensive in silico functional analyses.

3.2. Transcription factors associated with the clinicopathological
characteristics of prostate cancer

The clinical value of the transcription factors was then evaluated
by calculating the Pearson correlation between their activity and the
clinicopathological factors of prostate cancer. The Gleason score is a
ncers. (a) Computational workflow of transcription factor activity. In brief, multiple lin-
nscription factors in the proximal regulatory regions of the same gene set. The selected
sion coefficients estimated transcription factor activity. (b) Biological roles of the genes
in accordance with the reported functions of MYC. (c) Genomic copy number variations
s, missense, and in-frame INDELs. zFPKM, standardized fragments per kilobase per mil-



Fig. 2. Differential transcription factor activity between normal prostates and primary prostate cancers. (a�e) Activity profiles of transcription factors activated/repressed in pri-
mary prostate cancers compared with those in normal prostates. Activity changes are displayed in the rightmost column. (f) Disease ontologies (top three) and (g) KEGG pathways
enriched in the altered transcription factors (BH adjusted p-value < 0.05). TF, transcription factor; FC, fold change.
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grading system of prostate cancer that ranges from 6 to 10; in this
system, cancers with a higher score are more aggressive [39]. A total
of 26 and 30 transcription factors were positively and negatively cor-
related with the histologic grading, respectively (Figs. 3a�3e and
Supplementary Table S2). The TNM staging system is also commonly
used to determine the malignancy of prostate cancer [39]. Herein, we
focused on clinical T staging which describes the size and extent of
primary tumors. Prostate cancers are mainly classified into T1, T2, T3,
and T4. A larger number after T indicates a larger tumor and a wider
spread to nearby tissues. Positive and negative correlations with the
T stage were found in 16 and 22 transcription factors, respectively
(Figs. 3f�3j and Supplementary Table S3). MYC, TGIF2, ETS1, MYBL2,
ARID4B, BARX1, FOXA1, KDM5A, ZEB1, TFDP1, RELA, SMC3, SOX6,
HBP1, and SMAD5 were positively correlated with both histologic
grading and clinical staging. By contrast, AR, GATA6, KLF15, PGR,
ZNF687, HIF1A, MAX, NCOA3, NFE2, DLX2, SPIB, EHF, JARID2, HOXA5,
TBX5, NFATC1, and SRF were negatively correlated with both clinico-
pathological parameters. These transcription factors might be indica-
tive of cancer malignancy. Intriguingly, AR activity declined in
advanced tumors. AR is generally thought to promote the growth
and survival of prostate cancer cells [1,2,5]. However, a recent study
has demonstrated that overactive AR induces DNA double-strand
breaks and cell cycle arrest [40], which indicates the complex roles of
AR in prostate cancer.

3.3. Prognostic transcription factors for prostate cancer

Various risk stratification systems have been developed to assist
the decision-making process in prostate cancer treatment [39]. A
scheme that incorporates traditional clinicopathological parameters



Fig. 3. Activity profiles of transcription factors correlated with the clinicopathological characteristics (FDR< 0.05). (a�e) Activity profiles of transcription factors correlated with his-
tologic grading. (f�j) Activity profiles of transcription factors correlated with clinical staging. Samples are arranged from left to right in ascending order of aggressiveness. Pearson
correlation coefficients between transcription factor activity and grading/staging are displayed in the rightmost column. TF, transcription factor.
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performs well, but uncertainty about progression risk still persists.
Several newly developed molecular tools have been demonstrated to
improve the accuracy of prognosis. In this study, Kaplan�Meier sur-
vival analyses were performed on transcription factor activity to dis-
cover novel biomarkers. A total of 20 transcription factors, namely,
ARID4B, CIC, ERG, ETS1, GATA6, GMEB1, JARID2, KLF12, MBD1, MYC,
PAX6, RELA, SMC3, SOX4, SOX6, STAT6, TBX5, WT1, ZNF740, and
ZNF83, were strongly associated with prostate cancer relapse
(Fig. 4a). Less significant relevance was found in GMEB2, HIC1,
HOXA5, KLF6, MAX, MNT, PGR, RUNX2, SPI1, SRF, TFDP1, and ZNF664
(Supplementary Fig. S3a). Among these transcription factors, high
levels of JARID2, TBX5, HOXA5, MAX, PGR, RUNX2, SRF, and ZNF664
favored a good prognosis. The potential prognostic factors for overall
survival included ARID4B, FOXA1, HBP1, JUND, KAT7, KLF12, NCOA3,
SIX2, SPDEF, STAT1, TEAD3, and TFDP1 (Fig. 4b). The less reliable
ones included DMAP1, MYC, NRF1, and WT1 (Supplementary Fig.
S3b), all of which implied a high risk of death. Moreover, univariate
Cox regression analyses for cancer recurrence revealed that ARID4B,
ETS1, GMEB1, KDM5A, MYC, HBP1, MYBL2, MXI1, KLF12, and ZNF224
were poor prognostic factors, whereas SRF, PGR, MAX, KLF4, BCL11A,
ATOH1, ZNF214, EHF, HIF1A, and AR were good ones (Fig. 4c and Sup-
plementary Fig. S4b). In terms of risk of death, HBP1, KLF12, WT1,
ZNF143, TGIF2, TFDP1, and MYC implied poor outcomes, whereas
OVOL3, SPIB, HOXA5, NFATC1, MAX, SRF, and ATF3 suggested benefi-
cial effects (Supplementary Fig. S4a).

A LASSO Cox regression model was applied to remove the tran-
scription factors with minimal effects on patient survival, build a
prognostic signature, and predict clinical outcomes better. Sixteen



Fig. 4. Potential transcription factors essential for prostate cancer progression. (a) Disease-free and (b) overall survival associated transcription factors (p-value < 0.05). (c) Hazard
ratios and 95% confidence intervals of hazard ratios of transcription factors in relation to disease-free survival (p-value < 0.05). The x-axis is truncated at �20 and 20. (d) LASSO Cox
regression coefficients of transcription factors in relation to disease-free survival. In (c) and (d), a red transcription factor indicates a bad prognosis, whereas a blue transcription fac-
tor denotes a protective effect.
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transcription factors, namely, ETS1, ARID4B, KLF12, GMEB1, HBP1,
MXI1, MYC, MAX, PGR, BCL11A, AR, KLF4, SRF, HIF1A, EHF, and
ATOH1, were selected to construct the prognostic signature for pros-
tate cancer relapse (Fig. 4d). However, no transcription factor was
identified to independently contribute to the overall survival. The
mean follow-up time after radical prostatectomy is less than 2 years,
which limits the survival analysis because of the long natural history
of prostate cancer [7]. We focused on these prognostic transcription
factors hereafter. Among them, MYC, MAX, and MXI1 share an identi-
cal DNA binding motif (position weight matrix) [41]. Thus, our analy-
sis might not have been able to differentiate them or even identify
other paralogous transcription factors. However, no correlation was
observed among the activities of MYC, MAX, and MXI1 in prostate
cancer, except for a moderate correlation between MYC and MXI1
(Pearson Correlation = 0.17 and 0.01 < false discovery rate < 0.05). In
fact, although paralogous transcription factors often share similar/
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identical DNA binding motifs, they have intrinsic differences in DNA
binding preferences that contribute to their distinct in vivo binding
[42].

Risk scores were calculated on the basis of the 16-gene prognostic
signature. The Gleason score, clinical stage, age, tumor cellularity,
and PSA level are all associated with the risk of prostate cancer [39].
Higher risk scores were observed in the patients of older age, higher
preoperative PSA levels, higher Gleason scores, or higher T stages
who are actually at a higher risk for prostate cancer (Figs. 5a�5e).
However, no difference was detected in tumor cellularity in terms of
the risk score (Supplementary Fig. S5a). Overall, the risk score agreed
well with the clinicopathological factors. The TCGA research group
defines seven distinct molecular subtypes in prostate cancer accord-
ing to genomic profiling [7]. However, there seemed to be no rela-
tionship between the subtype and the risk score (Supplementary Fig.
Fig. 5. Prognostic value of the risk transcription factors. (a) Clinicopathological differences b
age (b) and higher in preoperative PSA levels (c), histologic grade (d), and T stage (e). (f) Wo
0.01). (g) Hazard ratios and 95% confidence intervals of hazard ratios of clinicopathological ch
free survival. TF, transcription factor. * denotes p-value < .05; ** indicates p-value < .01; *** s
S5b). Further Kaplan�Meier survival analysis suggested that the risk
score of the 16-transcription factor signature could be a prognostic
factor (Fig. 5f). Additional univariate and multivariate Cox regression
analyses confirmed the prognostic value of the 16-transcription fac-
tor signature and could independently predict patient survival
(Figs. 5g and 5h).

More than half of the prognostic signature constituent transcrip-
tion factors have been implicated in prostate cancer (Supplementary
Table S4). Except for those of BCL11A and HIF1A, their effects on sur-
vival were consistent with their reported roles in cancer probably
because of the complexity of gene interaction and cancer heterogene-
ity. For example, MAX interacts with not only pro- but also anti-onco-
genic factors [41]. As another example, ATOH1 prevents gastric tumor
formation [43] but promotes medulloblastoma growth [44]. These
signature transcription factors participated in gland development,
etween groups of low and high risk scores. Risk scores increased in the patients older in
rse disease-free survival was observed in the group with a higher risk score (p-value <

aracteristics. (h) LASSO Cox regression coefficients of risk factors in relation to disease-
ignifies p-value < .001; **** represents p-value < .0001.
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epithelium morphogenesis, epithelial cell proliferation and migra-
tion, response to hypoxia and drug, and pri-miRNA transcription by
RNA polymerase II (Fig. 6a), aside from cancer pathways, G0 and early
G1, Ub-specific processing proteases, and response to stress and
external stimuli (Fig. 6b).

3.4. Cis- and trans-regulation by long noncoding RNAs in prostate
cancer

Another type of transcriptional regulator is long noncoding RNA
which can act either in cis (adjacent to its transcription start site) or
Fig. 6. Network regulated by the prognostic signature constituent transcription factors. (a) B
tors. The edges linking transcription factors are marked in dark grey and their width is scaled
by the STRING database [55].
in trans (distal to it transcription start site) [13,14]. The involvement
of lncRNAs as transcriptional regulators in carcinogenesis has been
demonstrated in certain primary cancers, including prostate cancer
[20,21,45]. Herein, we constructed a transcriptional network to deci-
pher the lncRNA regulation of dysregulated genes in prostate cancer.

A total of 42 cis-regulations by lncRNAs that involved 41 lncRNAs
were identified on the basis of expression correlation and distance
between gene loci (Supplementary Fig. S6a).

Trans-regulation by lncRNAs might be achieved by its direct inter-
action with genomic regulatory elements and/or by binding to other
transcriptional regulators such as transcription factors [13,14]. For
iological processes and (b) KEGG pathways governed by the signature transcription fac-
according to the combined interaction scores between transcription factors calculated



Fig. 7. Long noncoding RNAs interacting with the prognostic signature constituent transcription factors. (a) Prediction pipeline of transcription factor interaction with lncRNAs by
measuring the correlation between lncRNA regulation of gene expression and transcription factor occupancies in proximal regulatory regions among differentially expressed tran-
scription factor targets. (b) The LNCTRN database provides comprehensive information of both cis- and trans-regulations by lncRNAs in prostate cancer. (c and d) A glance at the
transcriptional network governed by the MYC� and AR�lncRNA interactions. Each gene is depicted as a multi-ring circle listing expression correlation (Pearson) with histologic
grading, hazard ratio of disease recurrence, tumor grades, copy number variations, and zFPKM values from the inner to the outer layer. The outermost three datasets are plotted in
the way that each “spoke” represents a single sample. Samples are arranged in the same order for all genes. (e) MYC-interacting lncRNAs displayed in (c) were validated by RIP-
qPCR in LNCaP prostate cancer cells. (f) AR-interacting lncRNAs exhibited in (d)were validated by RIP-qPCR in LNCaP cells, in addition to their interactions with YBX1 (g). (h) Effects
of AL590617.2 (siAL590617.2), MYC (siMYC), and AL590617.2/MYC (siAL590617.2/siMYC) knockdown on AL590617.2 and MYC candidate targets in LNCaP cells. * denotes p-value <

.05; ** indicates p-value < .01; *** signifies p-value < .001; **** represents p-value < .0001.
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the first type of regulation, we focused the analysis on lncRNAs that
might form lncRNA�DNA triplexes in transcription regulatory
regions (Supplementary Fig. S6b). Accumulating evidence provides
more insights into the RNA�DNA triplex formation as an important
mechanism of transcriptional regulation by lncRNAs [46]. In sum,
9474 trans-regulations through lncRNA�DNA triplexes that involved
531 lncRNAs were identified.

LncRNAs can bind to transcription factors to alter their activity,
stability, localization, and interacting partners [13,14]. We developed
a pipeline to recognize interactions among lncRNAs and transcription
factors (Fig. 7a) on the basis of the hypothesis that lncRNAs can regu-
late gene transcription by interacting with transcription factors.
Therefore, an lncRNA and a transcription factor should share com-
mon target genes if they can interact with each other. In our analysis,
the common target genes were confined to the transcription factor
targets also showing differential expression in prostate cancer. The
occupancies of the transcription factors in the proximal regulatory
regions of the common target genes were obtained to approximate
their effects on the target expression. Pearson correlations with the
common target genes in the expression level were also computed for
the lncRNAs to estimate their regulation of the targets. Finally, Spear-
man’s rank correlation was calculated between lncRNA regulation
and transcription factor effects to explore their interactions. In total,
11398 interactions were found that included 839 lncRNAs and 124
transcription factors.

3.5. LNCTRN database for lncRNAs involved in transcriptional circuits

The aforementioned regulatory circuits in which lncRNAs partici-
pate were recorded in our database named LNCTRN (https://navy.shi
nyapps.io/lnctrn) (Fig. 7b and Supplementary Figs. S7a�S7c). All
three types of relationships are represented in the form of a chart in
which the first two columns list Ensembl IDs and official symbols of
lncRNAs, the next two columns register Ensembl IDs and official sym-
bols of lncRNA-regulated genes or interacting transcription factors,
and the last two columns itemize the estimates of relationship
strength by correlation analyses. In addition, distances between the
transcription start sites of lncRNAs and their target genes are shown
for the cis-regulation relationships. A click on an Ensembl ID will trig-
ger the redirection to its gene record. Entering a string in the search
box above a table will enable partial matching and return rows con-
taining the string. Furthermore, a simple gene search is provided that
supports a single query of either an Ensembl ID or an official symbol
(Supplementary Fig. S7d).

In each gene record, the following pieces of information are listed
from top to bottom: basic gene information, subcellular localization,
correlations with histologic grading and clinical staging, linkage with
survival, and transcriptional regulations involved (Supplementary
Fig. S7e). In the section of basic gene information, the official symbol,
Ensembl ID, full name, and chromosomal location are displayed, in
addition to a boxplot of expression levels in prostate tumors and nor-
mal prostates. An external link to Ensembl is added to the Ensembl
ID for further gene information. In the section of subcellular localiza-
tion, the database provides subcompartment enrichment on the basis
of cytoplasmic and nuclear RNA-Seq and other types of experimental
evidence obtained from public resources [47,48]. In the sections of
correlations with histologic grading and clinical staging, expression
differences between grades, between T stages, and between N stages
are displayed. Comparison between M0 and M1 was skipped because
of the limited number of M1 samples (only three). In the section of
survival analyses, association with death and tumor recurrence are
shown. In the sections of transcriptional regulations, all types of rela-
tionships are listed in tables, and links to respective gene pages are
also provided. With lncRNA AP006284.1 as an illustrative example,

https://navy.shinyapps.io/lnctrn
https://navy.shinyapps.io/lnctrn
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the following pieces of information can be obtained from LNCTRN: (1)
Ensembl ID is ENSG00000254815 and full name is LMNTD2 antisense
RNA 1, which is located on the positive strand of chromosome 11
from position 557,595 to 560,107; (2) mean FPKM values are 1.7 and
0.6 in prostate cancer and normal prostate, respectively; (3) its
expression is enriched in nucleus; (4) expression levels increase in
tumors of high grade (8 to 10) and advanced stage (T3b and N1); (5)
higher expression level is significantly linked to a shorter relapse
period and moderately associated with shorter overall survival time;
(6) it probably regulates two genes in cis; (7) it may regulate one
gene in trans by forming an RNA�DNA triplex near the transcription
start site of the target gene; and (8) it may function as a transcrip-
tional regulator by interacting with one or more of 27 transcription
factors.

3.6. Transcriptional network governed by the signature transcription
factor�lncRNA interactions

We focused our study on the prognostic transcription factors and
their lncRNA partners. Among the 16 transcription factors, MYC and
AR were hub genes showing high connectivity (Fig. 6). We then nar-
rowed down our focus to MYC and AR. In total, 201 and 147 lncRNAs
were identified to potentially interact with MYC (Supplementary Fig.
S8a) and AR (Supplementary Fig. S8b), respectively. At least three
MYC and AR interacting lncRNA candidates were randomly selected
for experimental validation (Figs. 7c and 7d).

One out of the three MYC candidates were confirmed to physically
interact with MYC (Fig. 7e). AL590617.2 expression increased with the
advance of tumor grade (Fig. 7c). It might probably either form a
complex with MYC to transcriptionally regulate MYC targets or trans-
regulate genes such as MARVELD1, HOXB7, PYCR3, AMIGO2, BNIP3L,
and ZNF121 by forming an lncRNA�DNA triplex in the regulatory
regions of the target genes followed by MYC recruitment (Fig. 7c).

Four randomly selected lncRNA partners of AR, namely,
AC110285.1, TPM1-AS, AL031714.1, and HOXA10-AS, were confirmed
(Fig. 7f). AL031714.1 and AC110285.1 exhibited elevated expression in
high-grade tumors, and patients with high AL031714.1 levels were
prone to bad prognoses (Fig. 7d). YBX1 can interact with AR and func-
tion as an AR activator in LNCaP prostate cancer cells [49]. Co-immu-
noprecipitation of AC110285.1, TPM1-AS, AL031714.1, and HOXA10-AS
with YBX1 (Fig. 7g) confirmed the interactions between AR and the
lncRNAs HOXA10-AS, AC110285.1, TPM1-AS, and AL031714.1 which
might cooperate with AR to regulate the transcription of the AR tar-
gets. The first two lncRNAs might be able to trans-regulate genes,
such as AC005336.2, SCARA3, FREM1, ATP6V1B1, and AC012640.2, by
forming lncRNA�DNA hybrids in the regulatory regions of the target
genes and may further recruit AR (Fig. 7d).

Transcription regulation by MYC�AL590617.2 was further
explored. We performed RNA interference targeting AL590617.2 and
MYC and examined expression changes in the top four AL590617.2-
correlated MYC target genes (Supplementary Excel S1). AL590617.2
and MYC knockdown substantially reduced the expression of two
targets, namely, OXLD1 and REX1BD (Fig. 7h). In addition, MYC knock-
down decreased AL590617.2 expression levels. Thus, MYC and
AL590617.2 may form a feed-forward regulation loop that is a wide-
spread strategy of transcriptional control [50].

4. Discussion

Over the past decades, earlier detection and treatment have
accounted for over 50% reduction in deaths due to prostate cancer
[39]. Beyond the traditional diagnosis scheme that considers Gleason
grade, stage, and PSA, the use of molecular biomarker assays has
greatly enhanced the sensitivity and specificity of prostate cancer
detection and is believed to provide more accurate guidelines for
optimal treatment choice [39]. By combining transcriptomic,
epigenetic, and clinicopathological data, we constructed a prognostic
signature consisting of 16 transcription factors, namely, ETS1,
ARID4B, KLF12, GMEB1, HBP1, MXI1, MYC, MAX, PGR, BCL11A, AR,
KLF4, SRF, HIF1A, EHF, and ATOH1. The score of the signature could
reflect prostate cancer malignancy and independently predict recur-
rence risk. Thus, the prognostic signature may serve as a marker for
prostate cancer progression. Out of the 16 signature transcription fac-
tors, AR and MYC are known as prostate cancer drivers [1,2,5,11,12].
In addition, ETS1, KLF12, MAX, BCL11A, SRF, and EHF are regarded as
pivotal prostate cancer regulators as reported by Dhingra, et al. who
integrated single nucleotide variation, structural variation, DNA
methylation, and DNase I hypersensitive sites and discovered 153
transcription factors potentially playing a key role in the transcrip-
tional network of prostate cancer [51]. Furthermore, the signature
transcription factors were implicated in gland development and epi-
thelium morphogenesis. Dedifferentiation of functional mature cells
into progenitor-like cells is generally regarded as an essential early
step in cancer initiation [52]. Development and carcinogenesis usu-
ally share a set of machinery, such as transcription factors many of
which participate in not only cellular identity specification but also
oncogenic dedifferentiation [52]. The involvement of signature tran-
scription factors in gland development and epithelium morphogene-
sis implies the importance of these factors in prostate cancer. Human
oncogenes are considerably more numerous than oncogenic tran-
scription factors, making transcription factors ideal for therapeutic
targeting [2]. Except for AR, MYC, and MAX that have had approved
targeting drugs [1,2,5,6], the prognostic signature constituent tran-
scription factors, especially the oncogenic ones, can be novel candi-
dates for drug development in prostate cancer.

Emerging evidence increasingly highlights the influence of
lncRNA interplay with transcription factors on fine-tuning transcrip-
tional programs [13,14]. In the current study, 11398 interactions
were discovered between 839 lncRNAs and 124 transcription factors
in primary prostate cancer by integrating the transcriptomic data of
primary prostate cancer and transcription factor-binding profiles. To
the best of our knowledge, the present study is the first to identify
the interaction between transcription factors and lncRNAs in a large
scale. Interactions involving MYC, AR, and the AR activator YBX1
were randomly checked, and many of them were experimentally
confirmed. Thus, our pipeline can be applied to other tissues or can-
cer types to recognize interactions among lncRNAs and transcription
factors. However, the interactions identified in our study are still
“correlations” in essence. Under the circumstance that a transcription
factor exerts similar effects on regulating the expression levels of an
lncRNA and other targets, our algorithm may consider an interaction
that exists between the transcription factor and the lncRNA even
though there is no interaction in fact. Thus, given the complexity of
transcriptional regulation, the interactions should be contemplated
with caution.

Transcription factor-bound lncRNAs may enhance or attenuate
the transcription of target genes by altering transcription factor activ-
ity and stability [13,14]. Moreover, lncRNAs may directly target gene
regulatory regions, subsequently recruiting their transcription factor
partners [13,14]. Exploring the transcriptional regulation by lncRNAs
aided in not only illustrating the full transcriptional network but also
identifying novel oncogenes and tumor suppressors. The interacting
lncRNA partners of the key transcription factors to cancer can be rea-
sonably implicated in cancer development. Indeed, among the AR-
interacting lncRNAs experimentally proved in this study, AL031714.1
and AC110285.1 expression correlated with tumor malignancy, and
high AL031714.1 levels contributed to a bad prognosis. Moreover,
HOXA10-AS was recently demonstrated to promote cell proliferation
of lung adenocarcinoma [53] and KMT2A-rearranged leukemia [54],
although its expression was not found to correlate with either tumor
grade or survival in prostate cancer. Thus, the interacting lncRNA
partners of the prognostic signature constituent transcription factors
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may represent potential biomarkers and/or therapeutic targets in
prostate cancer.

In conclusion, we identified 16 transcription factors whose com-
bined activity can be an independent prognostic factor for prostate
cancer, in addition to their interacting lncRNA partners. Further
investigation on these transcriptional regulators may provide a path
toward the development of new therapeutic targets. Moreover, the
regulatory network governed by the transcription factors and their
interacting lncRNA partners were illustrated and stored in the
LNCTRN database. The computational framework proposed in our
study can be applied to discover critical transcriptional regulators in
other cancer types.

Data sharing

Copy number variation, genomic mutation, gene expression, and
clinicopathological profiles of primary prostate tumours and/or nor-
mal prostates were downloaded from the GDC data portal of the Can-
cer Genome Atlas (TCGA, https://portal.gdc.cancer.gov). Molecular
subtype, preoperative PSA level, and tumour cellularity of primary
prostate tumours were obtained through TCGAbiolinks [24]. Tran-
scription factor-binding profiles were downloaded from the GTRD
ChIP-Seq database [22].

Our LNCTRN database records comprehensive information of reg-
ulatory network governed by transcription factors and their interact-
ing long noncoding RNA partners and can be explored at (https://
navy.shinyapps.io/lnctrn).
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