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Abstract

CD19-directed chimeric antigen receptor T-cell therapy (CAR-T) represents a signifi-

cant advancement for patientswith relapsed/refractory large B-cell lymphoma (LBCL).

Long-term follow-up confirms durable remissions in nearly half of the patients, a pop-

ulation that was previously estimated to have a median survival of around 6 months

with standard salvage therapy. This initial success ofCAR-Thas led to significant expan-

sion across other lymphoma histologies resulting in the recent regulatory approval of

CAR-T in mantle cell lymphoma and follicular lymphoma. Additionally, multiple novel

platforms of CAR-T therapy are under development to improve efficacy and limit tox-

icity such dual antigen targeting, allogeneic and natural killer CARs. In this review, we

focus on the new indications of CAR-T in lymphomas beyond LBCL as well as emerging

platforms of CAR-T therapy.
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1 INTRODUCTION

Chimeric antigen receptor modified T-cell (CAR-T) therapy represents

a novel treatment for patients with relapsed and/or refractory (R/R)

large B-cell lymphoma (LBCL). Axicabtagene ciloleucel (axi-cel) fol-

lowed shortly by tisagenlecleucel (tisa-cel) were the first to receive

Food and Drug Administration (FDA) and EuropeanMedicines Agency

(EMA) approval for patients with R/R LBCL who had failed 2 or more

lines of systemic therapy [1–3]. Long-term follow-up data confirms

remissions lasting 3 years and beyond for approximately 40% of such

patients after CAR-T therapy [4]. Recently, lisocabtagene maraleucel

(liso-cel) was approved for LBCL in third or later line [5]. Objective

response (OR) was achieved in 73% with complete remission (CR) in

53%. Notably grade ≥3 cytokine release syndrome (CRS) and neuro-

logical adverse events (NAEs) were seen in only 2% and 10% patients,

respectively, [5].

The remarkable efficacy and manageable toxicity in a patient pop-

ulation that previously had dismal outcomes has not only led to
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significant expansion of CAR-T across other disease subtypes, but it

has also led to the development of new platforms of CAR-T delivery.

Mantle cell lymphoma (MCL) and follicular lymphoma (FL) arebothhet-

erogeneous B-cell non-Hodgkin lymphomas (NHL) that are considered

incurable with standard chemoimmunotherapy (CIT) [6, 7]. CAR-Twith

brexucabtagene (brexu-cel) and axi-cel is now commercially available

for R/R MCL and FL respectively.<COMP: Please set Reference cita-

tions as per the journal style.>

In this review, we discuss new indications for CAR-T in NHL beyond

LBCL. We also discuss emerging experimental platforms of CAR-

T in lymphomas that are expected to challenge our current clinical

practices.

2 MANTLE CELL LYMPHOMA

MCL comprises about 6% of all adult NHL and is generally aggres-

sive in its clinical presentation although a subset present with an
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TABLE 1 Autologous CD19-directed CAR-T studies in mantle cell lymphoma and follicular lymphoma

CAR-T Trial(ref no)

CAR-T product/

construct

Patients enrolled (n)/
CAR-T infused (n)

Median age for

patients receiving

CAR-T (range)

CR/ORR

rate (%)

Grade≥ 3

CRS/ICANS (%)

Mantle cell lymphoma

ZUMA-2 [22] Brexu-cel/CD28

costimulatory

domain

74/68 65 (38–79) years 59/85a 15/31

TRANSCEND-

NHL-001-MCL

cohort [23]

Liso-cel/4-1BB

costimulatory

domain

40b/32 67 (30–80) years 59/84 3/9

Follicular lymphoma

ZUMA-5 [36] Axi-cel/CD28

costimulatory

domain

124 infused (data

reported for 84)

61 (34–79) years 80/94 6/15

ELARA [39] Tisa-cel/4-1BB

costimulatory

domain

98/97 57 (29–73) 65/83c 0/2

Abbreviations: CAR-T, chimeric antigen receptor T cell; Brexu-cel, brexucabtagene, Liso-cel, lisocabtagenemaraleucel; Axi-cel, Axicabtagene ciloleucel; Tisa-

cel, tisagenlecleucel; CR, complete remission; ORR, overall response rate; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neuro-

toxicity syndrome.
aFor all enrolled patients.
bUnderwent leukapheresis.
cReported for 52 patients evaluable for efficacy.

indolent clinical course [8–10]. Younger symptomatic, advanced dis-

ease patients are typically offered upfront intensive systemic CIT [6].

This is followedby a consolidative autologous hematopoietic cell trans-

plant (auto-HCT) and rituximab maintenance, although intensive CIT

regimenswithout an auto-HCT have also shown comparable outcomes

[11–13]. Despite intensive upfront treatment, long-term follow-up

confirms a continuous pattern of relapse with outcomes particularly

poor for patients relapsing early after auto-HCT [14, 15].

Significant progress has beenmade inMCL relapsing after front line

CITwith the approval ofmultiple novel chemotherapy free treatments.

Most notable are the Bruton’s tyrosine kinase inhibitor inhibitors

(BTKi) [16–18]. Despite initial high responses with BTKi the dis-

ease remains incurable with median progression-free survival (PFS)

of around 1 year [19]. Outcomes are particularly poor for patients

relapsing after BTKi with a median overall survival (OS) of under

6 months, representing a strong clinical need for new treatments

[20, 21].

ZUMA-2 trial led to the approval of brexu-cel, the first and currently

the only approvedCAR-T for patientswith R/RMCL. Brexu-cel is a CD-

19-directed auto-CAR-Twith aCD3ζ signaling domain and aCD28 cos-

timulatory domain [22]. In the pivotal trial 74 patients were enrolled,

brexu-cel was manufactured successfully for 71 (96%) and adminis-

tered to 68 (92%) [22]. Included patients had previously received an

anthracycline or bendamustine containing chemotherapy in combina-

tionwith an anti-CD20monoclonal antibody (mAb) and aBTKi.Median

age was 68 (range: 38–79), high-risk prognostic features were com-

mon including blastoid morphology (n = 21, 31%), Ki67 ≥30% (n =

40, 82%) and TP53 mutation (n = 6, 17%). Bridging therapy (BT) was

administered to25patients (37%) [22]. Among theenrolledpopulation,

85%had anORwith 59%achievingCR [22]. Notably, a positive correla-

tion between expansion of CAR-T and disease response was observed,

consistent with prior studies [1]. The estimated PFS and OS at 12

months was at 61% and 83%, respectively [22]. Most common grade

≥3 adverse events (AEs) were cytopenias (94%) followed by infections

(32%) [22]. CRS was reported in 91% with grade ≥3 CRS in 15% (Lee

criteria) and NAEs were reported in 63% with grade ≥3 NAE in 31%

(Table 1).

Liso-cel is another CD19-directed CAR-T with a CD3ζ signaling
domain and a 4-1BB costimulatory domain [5]. During manufactur-

ing of liso-cel, CD4+ and CD8+ T cells are separated from the leuka-

pheresis product and thereafter individually activated, expanded, and

administered as two separate sequential infusions of equal doses [5].

Preliminary results on the safety and efficacy of liso-cel in R/R MCL

were reported at the American Society of Hematology (ASH) annual

meeting, 2020 [23]. Forty patients underwent leukapheresis and liso-

cel was administered at dose level (DL) of 50 × 106 CAR T cells (n = 6)

or 100 × 106 CAR T cells (n = 26) to 32 patients [23]. Median patient

age was 67 years (range: 36–80) [23]. High-risk disease features such

as blastoid morphology, high Ki67 index, TP53 mutation and complex

karyotype were reported in 37.5%, 72%, 22%, and 34% of patients,

respectively [23]. Twenty-eight (87.5%) had received prior BTKi and

11 (34%) were assessed to be refractory to BTKi [23]. BT was admin-

istered to 17 patients (53%) [23]. Twenty-seven (84%) had grade

≥ 3 AEs, most common being neutropenia followed by anemia and

thrombocytopenia [23]. CRS was observed in 16 (50%) with grade ≥3

CRS in only one patient. NAEs were observed in 9 (28%); 3 patients
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experienced grade≥3NAE [23]. ORwas observed in 27 patients (84%)

with CR in 19 (59%) (Table 1).

It is important to note that in ZUMA-2 all enrolled patients had

prior BTKi therapy; however, the FDA approval is broad and allows

any patient with R/R MCL to be eligible for CAR-T, regardless of prior

receipt of BTKi. This is different from the regulatory approval from

the EMA, which is restricted to patients who have had prior BTKi.

How to best sequence the currently available treatment options in

patients with R/R MCL is largely unknown. In spite of outstanding

responses with CAR-T in patients with R/R MCL, long-term follow-up

is much awaited, and the toxicities and costs associated with CAR-T

are not negligible [24]. The recently published guidelines from Amer-

ican Society of Transplantation and Cellular Therapy, Center of Inter-

national Blood and Marrow Transplant Research, and European Soci-

ety for Blood and Marrow Transplantation recommend CAR-T in MCL

for patients who are intolerant to or relapse after at least one BTKi

[25].Notable exception is onlyTP53mutatedR/RMCLwhereanearlier

receipt of CAR-T, prior to BTK exposuremay be reasonable [19, 25].

3 FOLLICULAR LYMPHOMA

FL is themost common indolentNHL comprising about 35%of all adult

NHL [26]. The rituximab era has seen significant improvement in long-

term outcomes for patients with FL with 10-year OS of ∼80% [27].

Despite excellent long-term outcomes, FL remains a remarkably het-

erogenous histology. Various clinical, biological, and genetic prognostic

models have been proposed to understand the inherent heterogene-

ity of FL such as FL international prognostic index (FLIPI), m7-FLIPI,

and progression within 2 years of front line CIT (POD24) [28–30]. The

treatment options in R/R FL are fairly diverse with no single treatment

modality shown to be superior and range from CIT, radioimmunother-

apy, immunomodulators, and most recently, novel agents such as the

PI3K inhibitors and tazemetostat, an EZH2 inhibitor [7, 31–33]. Auto-

HCT and allogeneic (allo) HCT have been both investigated in R/R FL;

however, the exact role of each remains largely controversial [34, 35].

Axi-cel was approved in theUnited States in 2021 for the treatment

of patients with R/R FL after at least two lines of systemic therapy. The

approval was based on the primary analysis of ZUMA-5 trial [36]. One

hundred and twenty-four patients with grade 1 to 3a FL or marginal

zone lymphoma (MZL) (n = 22) who had previously received two lines

of therapy received axi-cel [36]. Axi-cel was infused at a dose of 2 ×

106 cells.Median agewas61 years (range: 34–79)with 57%beingmale

[36]. All patients were heavily pretreated; adverse prognostic features

were reported in nearly half of the patients with ECOG>1, stage III/IV

disease, ≥3 FLIPI, high tumor bulk and POD24 in 62%, 86%, 47%, 49%,

and 55%, respectively [36]. Safety and efficacy data were reported for

84 FL patients with at least 12 months follow-up. OR was 94% with a

CR in 80%. For patients with MZL, OR was 85% with CR in 60%. Most

common grade≥3AEwas neutropenia followed by anemia [36]. Grade

≥3 CRS and NAE were reported in 6% and 15% of patients with FL.

A higher incidence of Grade ≥3 NAE was reported in patients MZL at

41% [36]. Outcomeswere also reported for nine patientswho received

retreatment with axi-cel upon disease relapse [37]. These patients had

disease relapse at 3-month post infusion after initially achieving a OR

and maintained CD19 expression at relapse [37]. All patients showed

evidence of OR to retreatment, and safety profile was not different

from first infusion [37]. Updated outcomes for these patients and two

additional patients with FL were recently reported and median DOR

remains not reached at 11.4months [38] (Table 1).

Tisa-cel has also shown efficacy and safety in R/R FL based on the

planned interim analysis of ELARA trial [39]. Patients with grade 1 to

3a FL who had disease relapse within 6 months of second line or later

CIT or had disease relapse post auto-HCT were included. Tisa-cel was

infused at a dose of 0.6–6 × 108 CAR-T to 97 patients. Median age was

57 years (range: 29–73); 66%were male, 84% had advanced stage dis-

ease, and 60% had FLIPI score ≥3. Thirty-six percent had prior auto-

HCT, 77% had refractory disease to last therapy, and 60% had POD24.

Forty-three percent received BT and 18% received tisa-cel in the out-

patient setting. Fifty-two patients were assessed for efficacy and had a

median follow-up of 9.9months. Forty-three patients (83%) had anOR

with 34 (65%) achieving a CR. Responses were seen across all disease

prognostic subgroups. Median DOR, PFS, and OS were not reached at

last follow-up. Most common grade ≥3 AE was neutropenia. CRS was

reported in 48%; maximum CRS grade was 2. NAEs were reported in

10%; 2% experienced grade ≥3 NAE. No treatment related death was

reported (Table 1).

As noted, there are multiple treatment options available today for

patients with R/R FL; however, short of an allo-HCT, none of the

treatment options are curative [40]. Despite the increase in treat-

ment options, long-term outcomes for patients decline sharply after

second line of therapy with continued decrease in PFS and OS with

each subsequent line [41, 42]. Recently, a comparison of ZUMA-5 with

SCHOLAR-5 was presented at the European Hematology Association

Meeting [43]. SCHOLAR-5 is a retrospective external control cohort of

R/R FL patients who had initiated 3rd or higher line of therapy after

July, 2014. Eighty-six patients from ZUMA-5 and 85 from SCHOLAR-

5 were included with median follow-up of 23.3 and 26.2 months,

respectively; both cohorts were balanced through propensity scoring.

Baseline characteristics were similar between the two cohorts except

performance status; ZUMA-5 had a higher number of patients with

poor performance scores [43]. OR, CR, PFS, and OS favored ZUMA-5

over SCHOLAR-5. Similar trend was observed when patients who had

received four or more lines of therapy were compared [43]. These data

support the use of axi-cel in patients who have received at least two

lines of prior systemic therapy, consistent with the current regulatory

approval.

4 EXPERIMENTAL AUTOLOGOUS CAR-T
PLATFORMS

CD-19-directed auto-CAR-T represents a significant milestone in

the treatment of patients with R/R NHL. However, disease relapse

remains a significant hurdle with long-term durable responses seen in

only about 40–50% of patients [44]. Various mechanisms have been
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elucidated regarding failure of CAR-T including antigen loss, host

immune dysregulation, and exhausted T-cell repertoire [1, 45, 46].

Here we discuss targets beyond CD19 and new auto-CAR-T plat-

forms that are being investigated in lymphomas with promising early

results.

4.1 CD30-directed CAR-T

CD30 represents a viable target for CAR-T in Hodgkin lymphoma (HL)

as it is uniformly expressed onmalignant Hodgkin and Reed-Sternberg

cells and has limited expression on normal tissue. CD30 is a mem-

ber of the tumor necrosis factor superfamily; signal transduction via

CD30 activates NF-kB, enhancing apoptosis of malignant cells [47,

48]. Recently the results of two parallel conducted Phase I/II trials

of CAR-T targeting CD30 in R/R HL were published [49]. Outcomes

were reported for 42 adult patients who had progressed after at least

two lines of therapy. Median age of treated patients was 35 years

(range: 17–69) with 7 median prior lines of therapy (range: 2–23)

[49]. Safety profile was excellent with no NAE reported and a max-

imum of grade 1 CRS in 10 patients (24%) [49]. Thirty-seven were

evaluable for response; OR was achieved in 23 (62%) with CR in 19

(51%). Threedifferent LDregimenswereemployed, namelybendamus-

tine alone, fludarabine in combination with bendamustine, and flu-

darabine in combination with cyclophosphamide. Fludarabine-based

LDchemotherapy regimenswereassociatedwith thehighest response.

At a median follow-up of 533 days, 1-year PFS and OS was at 36%

and 94%, respectively [49], raising concerns about durable disease

control.

CD30 targeting CAR-T holds promise for lymphomas beyond HL.

Early trials have shown safety and encouraging responses in patients

with CD30 expressing R/R anaplastic large cell lymphomas [50,51]

(Table 2).

4.2 CD22-directed CAR-T

CD22 represents another target for CAR-T in patients with B-cell

malignancies as it is expressed exclusively on malignant B cells [52].

The results of a Phase I dose escalation study of anti-CD22 CAR-T

in R/R CD22+ B-cell malignancies were recently reported [53]. Fifty-

eight patients received anti-CD22 CAR-T; 51 (87.9%) had prior anti-

CD19 CAR-T [53]. Among treated patients, one had diffuse large B-

cell lymphoma. CAR-T cell dose level (DL) ranged from 3 × 105/kg to 3

× 106/kg [53]. Increased toxicity, specifically hemophagocytic lympho-

histiocytosis was observed in 19 (32.8%) after CD4/CD8 T-cell selec-

tion was incorporated [53]. A lower dose of 3 × 105/kg was selected

for dose expansion thereafter. CRS was overall reported in 50 patients

(86.2%) and ranged fromgrade1 to2 in45 (90%).NAEwere reported in

19 (32.8%) with severe NAE in only 1. Forty patients (70.2%) achieved

CR [53] (Table 2).

4.3 Dual antigen targeting in lymphoma

Traditional CARs are directed against a single tumor antigen (e.g.,

CD19) and their use has been associated with antigen negative (e.g.,

CD19–) relapses. CARs targeting more than one tumor antigen theo-

retically may have improved efficacy and/or lower probability of anti-

gen negative disease at release. Investigators at the Medical College

of Wisconsin conducted a first-in-human trial of bispecific anti-CD20,

anti-CD19 CAR-T for adult patients with B-cell NHL or chronic lym-

phocytic leukemia (CLL) [54]. The study used on-site manufacturing

using the CliniMACS Prodigy system. CAR-T cell dose ranged from 2.5

× 105 to 2.5× 106 cells/kg. Grade≥3CRS occurred in one (5%) patient,

and grade ≥3 NAEs occurred in three (14%) patients. Eighteen (82%)

patients achieved an OR at day 28, including 14 (64%) CR. Notably,

loss of the CD19 antigen was not seen in patients who relapsed [54]

(Table 2).

Early results from two Phase I trials with bispecific anti-CD22, anti-

19 CAR-T in LBCL have also been encouraging [55, 56]. Patients with

CD19+ LBCL who had at least two lines of prior therapy received bis-

pecific anti-CD19, anti-CD22 CAR-T (n = 21); no patient had prior

receipt of CD19 CAR-T. CAR T-cell DL ranged from 1 × 106/kg to 3 ×

106 cells/kg [55]. Grade≥3CRS andNAE occurred in one patient each.

Best OR at any time was 62% (n = 13) with CR in 29% (n = 6) [55].

Interestingly, 29% (n = 4) patients relapsed with CD19 negative dis-

ease but retained expression of CD22 [55]. Sequential infusion of anti-

CD22 and anti-CD19 CAR-T is another strategy for dual antigen tar-

geting that has shown encouraging responses. Of note no patient had

antigen negative disease relapse in this study (Table 2) [57].

4.4 Targeting T-cell antigens

T-cell lymphomas (TCL) represent a biologically heterogeneous group

of lymphomas, typically having an aggressive disease presentation.

However, development of CAR-T in TCL in comparison to their B-cell

counterparts is challenging due to antigen sharing between malignant

T cells and CAR-T; this can lead to a higher risk of antigen masking,

fratricide, and T-cell aplasia [58, 59]. Targeting CD5 as it is a pan T-

cell marker has been evaluated with modest results and other strate-

gies are underway[60]. CD4 is uniformly expressed on most T-cell

lymphomas and represents a target for CAR-T in TCL. LB1901 is an

anti-CD4 targeting CAR-T construct that has shown strong antitu-

mor effects in in vivo and in vitro models with no evidence of anti-

gen masking [61]. A Phase I, first-in-human trial of LB1901 in adult

patients with R/R CD4+ TCL is registered and is about to start recruit-

ment (NCT04712864). T-cell aplasia can be limited by targeting T-cell

receptor (TCR) β-chain constant domain 1 and 2 (TRBC1 and TRBC2)

as malignant T-cell express TRBC1 or TRBC2 exclusively unlike their

normal counterparts [62]. In preclinical models, anti-TRBC1 CAR-T

showed antitumor efficacy while sparing normal T cells expressing

TRBC2 [62]. A Phase I trial of anti-TRBC1 CAR-T in patients with



IQBAL ET AL. 15

TABLE 2 Experimental Autologous CAR-T platforms in clinical trials

CAR-T Trial (ref no)

Target antigen/

construct

Histology/CAR-T

infused (N)

Median age of

patients

receiving CAR-T

(range)

Median

number of

prior therapies

(range)

CR/ORR

rate (%)

Grade≥ 3

CRS/

ICANS (%)

Single antigen targeting CAR-T

Baylor College of

Medicine and

University of North

Carolina [49]

CD30/ Retroviral vector;

CD28 costimulatory

domain

HL/42 35 (17–69) years 7 (2–23) 51/62a 0/0

National institute of

Health/Stanford

University [53]

CD22/4-1BB

costimulatory domain

B-cell ALL, LBCL/58 17.5 (4.4–30.6)

years

N/A 70 10/2

Legend Biotech

LB1901/ Shanghai

Jiao Tong University

School ofMedicine

Anti-TRBC1 [61, 62]

CD4/ Lentiviral vector;

4-1BB costimulatory

domain/ TRBC1

LB1901: PTCL/AITL/

CTCL

Anti TRBC1: PTCL/

AITL/T-cell

ALL/ALCL

N/A N/A N/A N/A

Baylor College of

Medicine; Houston

Methodist Hospital

[60]

CD5/ Retroviral vector;

CD28 costimulatory

domain

T-cell ALL, T-cell

NHL/9

62 (16–71) years 5 (2–18) 33/44 0

Dual antigen targeting CAR-T

Medical College of

Wisconsin [54]

CD19 and CD 20/4-1BB

costimulatory domain

B-cell NHL, CLL/22 57 (38–72) years 4 (2–12) 64/82 5/14

Stanford University [55] CD19 and CD22/

Lentiviral vector;

4-1BB costimulatory

domain

B-cell ALL, LBCL/ 21b 70 (25–78)b years 3 (2–7)b 29/62b 5/5b

Alexander Study of

AUTO3 [56]

CD19 and CD22/

Retroviral vector;

4-1BB costimulatory

domain

LBCL/33 59 (28–83) 3 (1–10) 52/69c 0/9

Abbreviations: CAR-T, chimeric antigen receptor T-cell; HL, Hodgkin lymphoma; NHL, non-Hodgkin lymphoma; CLL, chronic lymphocytic leukemia; B-cell

ALL, acute lymphoblastic leukemia; LBCL, large B-cell lymphoma; PTCL, peripheral T-cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; CTCL, cuta-

neous T-cell lymphoma; ALCL, anaplastic large-cell lymphoma; CR, complete remission; ORR, overall response rate CRS, cytokine release syndrome; ICANS,

immune effector cell-associated neurotoxicity syndrome
aEvaluable patients (n= 37).
bLBCL patients only.
cEvaluable patients (n= 29).

R/R TRBC1 expressing TCL is currently recruiting (NCT04828174)

(Table 2).

5 LIMITATIONS OF AUTOLOGOUS CARS

Despite impressive activity in B-cell lymphomas and commercial avail-

ability, the auto-CAR-T construct suffers from several practical limita-

tions (Table 3). First, reliable manufacturing and rapid access are key

requirements for the broader application of cellular therapies. Unfor-

tunately, auto-CAR-T treatments require a time intensive bespoke

manufacturing process. In the pivotal B-cell lymphoma CAR-T trials

the median turnaround time from apheresis to infusion of CAR prod-

uct ranged from 15 to 54 days and CAR-T manufacturing failure was

reported in 1–8% of the intended recipients [1, 63–65]. Second, the

product T-cell composition, fitness, and expansion kinetics are impor-

tant determinants of anti-CAR responses [67–69]. For example, CAR-T

expansion duringmanufacturing [69] and enrichment of the final prod-

uct with central or stem cell memory phenotype have been shown to

correlate with efficacy outcomes [68]. These factors in turn are partly

dependent of patient factors and prior treatments, leading to signifi-

cant variability in the infused product characteristics across patients.

Third, disease relapse remains a significant clinical problem. Among

patients with DLBCL,>50% of patients relapse within a year of receiv-

ing CAR-T [1, 2, 22]. Finally, the cost of commercially available prod-

ucts is high and poses a significant barrier to their widespread [70].

Cost-effectiveness analyses suggest that compared to chemotherapy,

the incremental cost-effectiveness ratio (ICER) of CAR-T therapies for

DLBCL is a modest $136,000 per quality-adjusted life year (QALY)
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TABLE 3 Potential advantages and disadvantages of autologous and allogeneic CAR platforms

Autologous CAR-T Allogeneic CAR-T

Advantages Advantages

1. Commercially available for some lymphoma sub

types (e.g., aggressive B-cell lymphoma, mantle cell

lymphoma, follicular lymphoma)

2. Toxicity profile known

3. No risk of GVHD or immunologically mediated

rejection

1. Off-the-self (potential to treat all eligible patients)

2. Repeated dosingmaybe feasible

3. No need for apheresis and associated logistical delays

4. Standardization of T-cell phenotype and fitness maybe

possible with less product variability (e.g., CAR-T

phenotype, exhaustion)

Disadvantages Disadvantages

1. High cost

2. Logistical challenges (for collection/shipping; interval

between leukapheresis to CAR-T administration)

3. Manufacturing failure

4. Variable T-cell fitness and composition

5. Retreatment typically not feasible

1. Risk of GVHD

2. Rejection risk

3. Unknown persistence potential

4. Insertional mutagenesis

5. Profound immunosuppression and risk of infections

(with some platforms)

6. Maybe limited by healthy donor pool availability

7. Commercial scalability and production remain to be

proven

8. Unknown long-term safety

Abbreviations: CAR, chimeric antigen receptor; GVHD, Graft-versus-Host Disease.

gained [71]. Modifications in the manufacturing technology, for exam-

ples, decentralized model of CAR-T production [72] or use of off-the-

shelf CAR-T products may mitigate the costs compared to the current

model.

6 PROMISE OF ALLOGENEIC CAR CONSTRUCTS

Allo-CARs (derived from healthy donors or stored cellular products) as

a potential “off-the-shelf” treatment may circumvent some of limita-

tions associated with auto-CARs (Table 3). If allo-CARs live up to their

potential of being readily available cellular therapy products, they may

obviate the need for bridging treatments and address manufacturing

failure occasionally seen with autologous platforms. Whether donor

pool, scaling, and manufacturing process would be efficient enough

to meet demand remains to be seen. Theoretically allo products can

have less variability in terms of T-cell composition and fitness, but

available data to confirm this are not available. These products are

also touted as cost friendly options, but this remains unknown at this

point.

7 ALLOGENEIC CARS’ POSSIBLE PITFALLS

Before the potential benefits of allo-CAR-T therapies are clinically

realized, potential pitfalls associated with approach need close atten-

tion. The main barrier for universal CAR-T products is alloreactiv-

ity, which results from the donor–recipient human leukocyte antigen

(HLA) disparity imparting a bidirectional risk, that is, to the cellular

product (from the recipient immune system) and to the recipient in vivo

(from the CAR-T). This alloreactivity when mediated by the recipient

T and NK cells can lead to the rejection of allo-CARs, thereby limit-

ing the anticancer efficacy. As with conventional unrelated donor allo-

HCT, preexisting antibodies, called donor-specific anti-HLA antibodies

(DSA), can also mediate immune rejection if the host has been previ-

ously sensitized against HLA antigens (e.g., by multiple transfusions,

pregnancies) [73] and therefore, screening forDSA in the recipientmay

be a necessary step before allo-CAR administration. Several strate-

gies are under investigation to minimize the risk of allo-CAR rejection.

Suppression of HLA class I expression by disrupting the HLA-A or β2-
microglobulin (B2M; nonpolymorphic subunit of HLA-I complex) genes

in allo-CAR-T via gene editing would allow T cells to evade elimination

by the host immune system [75–79]. Knocking out B2M reduces sur-

face expression of HLA class I; however, these HLA-I negative univer-

sal T cells could still be rejected by recipient NK cells [79]. Employing

an anti-NK-cell depleting antibody or engineering T cells with HLA-E

expression are possible solutions to evade NK-mediated rejection [80,

81].

In the other direction, the allo-CAR-T reactivity directed against the

host can lead to the development of lethal graft-versus-host disease

(GVHD) [82]. One strategy to reduce the risk of GVHD is the use of

allo-virus-specific T cells (VST) CARs. The administration of such allo-T

cells with a narrow TCR repertoire may have a lower risk of initiating

GVHD [83–86]. Another approach is to disrupt the native TCR through

deletion of TCR α constant (TCRAC) or TCRBC genes in the allo-T cells,

using gene-editing technologies [74–76]. CAR-T lacking surface TCR

expression are incapable of mounting an alloreactive response against

the recipient. However, depending on the gene editing method used,

some unedited, TCR-bearing T cells may remain and can potentially

cause GVHD.

Expansion and persistence of CAR cells are vital to achieve short-

term control and may be important for long-term efficacy in certain
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TABLE 4 Experimental allogeneic CAR-T platforms in clinical trials

CAR-T trial (ref no) Platform Histology;N
CR/ORR

rate (%)

Grade≥ 3

CRS/ICANS (%) Comments

NK cells

MDAnderson

Cancer Center

[98]

Cord blood antiCD19NK-cell CAR,

with IL-15 gene to enhance

persistence and inducible caspase

9 kill switch

NHL;N= 11 63/72 0/0 No cases of GVHD

FT516 (Fate

Therapeutics) [99]

Clonal master iPSC line engineered

with NKCAR that targets CD19; a

novel high-affinity 158V,

noncleavable CD16 Fc receptor,

and an IL-15 receptor fusion

NHL;N= 11 73/55 NA

Alpha-beta T cells

Allogene 501 [101,

102]

TALEN-mediated CD52& TRAC

knock out; rituximab recognition

domain as kill switch, CD19 CAR

DLBCL or FL;

N= 32

50/75 0/2 No reports of GVHD.

Better CAR persistence in

patients achieving CR

PBCAR0191

(Precision

Biosciences) [106]

Propriety gene-editing platform

disrupting TCR by CD19CAR

insertion into the TRAC locus

NHL;N= 16 38/69 at

day 28

0/0 Higher responses and toxicity

with escalated doses of

lymphodepletion

CARBON (CTX110)

[112]

CRISPR/Cas9-editing to disrupt

endogenous TCR and

β2-microglobulin to eliminates

HLA class I expression

DLBCL or FL-3b;

N= 0

NA NA Trial actively enrolling

TT11X (EBVSTs)

[113]

CD30CAR in EBV specific T cells CD30+ lymphoma;

N= 6

60% NA Trial actively enrolling

Gamma-delta T cells

Adicet Bio Gamma-delta T-cell-derived

CD20CAR

NHL;N= 0 N/A N/A Trial starting enrollment

Abbreviations: CAR, chimeric antigen receptor; CR, complete remission; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; FL, follic-

ular lymphoma; GVHD, Graft-versus-Host Disease; NHL, non-Hodgkin lymphoma; NK, natural killer; ICANS, immune effector cell-associated neurotoxicity

syndrome; ORR, overall response rate.

diseases [87]. The risk of alloimmunization is also a concern, where

newCAR-specific antibody generation in the recipientmay limit redos-

ing of the allo-CAR-T [88]. Disrupting HLA expression alone may not

be sufficient for CAR-T long-term persistence and efficacy. Further

manipulations of the T cells may be needed, for example, knocking

out T-cell inhibitory receptors such as PD-1, TIM-3, LAG-3, and CTLA-

4 can enable CAR-T to avoid exhaustion, improve persistence, and

evade immunologic response [79, 89, 90]. Allo-CAR-NK are limited by

their short lifespan of a fewweeks without cytokine support; however,

recent advances such as incorporation of cytokine transgenes (e.g.,

interleukin [IL]-2 or IL-15) can enhance NK-cell proliferation and sur-

vival [91].

With genomic editing technologies, oncogenesis via oncogene acti-

vation or disruption of tumor suppressor genes is potential concerns

[92]. It is critical to avoid insertional oncogenesis by using approaches

such as optimized sgRNA design and Cas9 activity, prior off-target

detection assays, and careful selection of target loci [93, 94]. Bishop

et al. generated anti-CD19CAR-T fromHLA-identical sibling donors of

allo-transplant recipients with relapsed B-cell acute leukemia or high-

grade NHL, using the high-capacity piggyBac transposon, instead of a

viral vector [95]. Two patients in the cohort of 10 developed CD19+

T-cell malignancies, raising questions about the oncogenic potential of

the piggyBac system.

8 EXPERIMENTAL ALLOGENEIC CAR-T
PLATFORMS

Several allo-cellular therapy platforms are being actively investigated

in lymphoidmalignancies (Table 4).Most allo-T-cell therapies haveused

αβ T cells with knocked out TCR to eliminate alloreactivity. Other plat-

forms have restricted or invariant TCRs, like γδ T cells, VSTs, or natural
killer (NK) cells.

8.1 Allogeneic NK-cell CARs

NK cells play a pivotal role in immune surveillance by targeting can-

cer or virally infected cells that down regulate HLA class I molecules

[96]. Allo-NK cells have been used for adoptive immunotherapy for
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cancer patients with excellent safety profile [97], and now NK-cell-

derived CARs are being investigated in B-cell lymphomas and other

malignancies. The group at MD Anderson Cancer Center pioneered

the use of CD19-directed NK-CARs derived from umbilical cord blood

(UCB) units [98]. The study used a retroviral vector carrying genes that

encoded CD19-directed CAR, IL-15 to enhance the in vivo expansion

and persistence of the transduced NK cells (“Armored CAR”), and an

inducible caspase 9 to trigger apoptosis of the CAR-NK (as a safety

switch). The results showed a promising safety and efficacy profile in

11 NHL and CLL patients with clinical responses observed in 73% of

patients [98] (Table 4).

Other NK-cell source beyond UCB includes induced pluripotent

stem cells (iPSCs) and NK-cell lines. FT516 is a CD19-specific NK-CAR

in development against relapsed, refractory B-cell NHL, and is engi-

neered from a clonal master iPSC line, with clustered regularly inter-

spaced short palindromic repeats (CRISPR)-mediated insertion of the

CAR at the TRAC locus (Table 4). The key attributes include a pro-

prietary CAR optimized for NK-cell biology that targets the antigen

of interest, a novel high-affinity 158V, noncleavable CD16 (hnCD16)

Fc receptor, which has been modified to prevent its downregulation

and to enhance its binding to tumor-targeting antibodies, and an IL-

15 receptor fusion (IL-15RF) that promotes enhanced NK-cell activity

[99]. CAR-NK might represent a promising therapeutic option with all

the benefits inherent to “off-the-shelf” therapies pending the clinical

trial results.

8.2 Allogeneic alpha-beta CAR-T

Several allo-CAR-T clinical trials are employing conventional αβ T cells

from healthy donors (Table 4). The following gene-editing technologies

have been used in generating allo-CAR-T.

8.2.1 Transcription activator-like effector
nucleases

Transcription activator-like effector nucleases (TALEN) technology is

arguably the first gene editing technology used in the generation of

universal allo-CAR-T for lymphoma patients in clinical trials. TALENs

are transcription factors (hybrid molecules) linked to an endonuclease

that can be engineered to cut specific DNA sequences [100]. Knock-

ing out the TRAC gene locus is an attractive approach to disrupt the

expression αβ TCR, thereby limiting the GVHD initiating potential of

allo-CAR-T. By simultaneously electroporating TALENs that disrupted

TCR and CD52 expression in the T cells, in the preclinical model,

this methodology produced allo-CAR-T that did not induce GVHD

and were resistant to anti-CD52 monoclonal antibody used to elim-

inate host T cells [77]. The latter was employed as an immunosup-

pressive strategy to prevent recipient immune cell-mediated rejection

of CAR-T. As shown in Table 4, Allogene 501 trial using this platform

produced CR rates of 50% in patients DLBCL and FL with to date

no reports of GVHD or frequent CRS or ICANS. These preliminary

finds need confirmation with longer follow-up and a larger sample size

[101, 102].

8.2.2 Meganuclease-edited CARs

Meganucleases are a group of naturally occurring and highly spe-

cific restriction enzymes with gene-editing potential. Precision Bio-

Sciences has developed a next-generation meganuclease platform

called “ARCUS” that can produce nucleases with customized activ-

ity and specificity [103, 104]. PBCAR0191 is an anti-CD19 allo-CAR-

T that disrupts TCR expression via CAR gene insertion in the TRAC

locus [105] (Table 4), and is being tested in a Phase I/II study. At

last follow-up, 16 patients with aggressive NHL were treated [106].

The trial employed either standard or escalated doses (higher fludara-

bine and cyclophosphamide doses) of LD regimens. Overall, the study

demonstrated a CR rate of 38%, but among four patients getting esca-

lated LD, three achieved a CR. No episodes of grade ≥ 3 CRS or NAE

were noted, but severe infections were more frequently seen with

escalated LD.

8.2.3 CRSIPR

CRISPR system is a simple, versatile, and precise gene-editing tool with

highly efficiency multiplex genomic-editing capability [74, 79, 107–

109]. Multiplex genome-editing allows sequence-specific gene deliv-

ery, resulting in a highly efficient 2-in-1 TCR knockout and CAR knock

in for universal allo-CAR-T, with the advantages of significantly lower

risks of insertional oncogenesis and TCR-induced alloreactivity [103,

110]. Replacing the endogenous TCR with a CAR not only disrupts

the TCR but also brings CAR under the regulatory control of the

endogenous TCR promoter, leading to improved T-cell function and

potency [110]. Multiplex CRISPR/Cas9 has been used to generate allo-

universal CAR-T deficient in TCR β chain, B2M, PD-1, and CTLA-4,

which have been shown to maintain function in vitro and in vivo [74,

109, 111]. The CRISPR Therapeutics’ CRISPR-edited anti-CD19 CAR-

T cell trial (CTX110) is ongoing and enrolling patients with B-cell NHL

(Table 4) [112].

8.2.4 Epstein–Barr virus-specific T cells

Epstein–Barr VSTs (EBVSTs) are virus-specific and hence have lim-

ited TCR repertoire and therefore are less likely to mediate GVHD

[113]. To prevent rejection, CD30 CAR can be introduced into “off-

the-shelf” EBVSTs. CD30 CAR allows targeting CD30+ lymphomas

and has proved safe and effective in clinical trials of auto-CAR-T [49].

A Phase I trial evaluating allo-CD30 CAR EBVSTs (TT11X) therapy

in patients with heavily pretreated CD30+ HL and NHL is ongoing

(Table 4) [113].
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8.3 Allogeneic gamma-delta CAR-T

Conventionally αβ T cells have been used for production of CAR-T,

however, γδ T cells may offer unique advantages over αβ T cells [114].

Despite the small number of γδ T cells present in peripheral blood,

these cells can be expanded ex vivo to produce clinically significant

yield for therapeutic effect [115]. Preclinical data have demonstrated

γδ T-cell expressing anti-CD19 CAR have potent cytotoxicity toward

CD19+ leukemia cell lines in vitro and in vivo [116]. γδ T cells can

also recognize pathogen (including viral) stressed and transformed tar-

get cells in an HLA-independent fashion and are activated in an allo-

settingwithout the concernofGVHD. γδ1CART-cell product targeting

CD20 is nowentering clinical trials for treatment ofB-cellmalignancies

(NCT04735471). The study is using selectively expanded γδ1 T cells

from healthy donors that are engineered with a second-generation

CAR construct (4-1BBz).

9 FUTURE DIRECTIONS

CAR-T therapy is a revolutionary treatment for patientswithR/RB-cell

lymphomas.Although theplatformcurrently hasmultiple limitations as

discussed, the future forCAR-Tappears promisingwithmultiple strate-

gies underway to increase efficacy and limit toxicity. The approval of

CAR-T inMCL and FL represents a significant advancement in the field,

as these histologies have traditionally been considered incurable unlike

LBCL. Whether CAR-T can lead to a cure in these lymphomas remains

to be proven, pending long-term follow-up data. Combining novel tar-

geted agents with CAR-T is another promising strategy. In preclinical

MCL models, concurrent treatment with ibrutinib and CAR-T resulted

in improved responses and decreased toxicity [117]. This combination

is rational as ibrutinib blocks inducible T-cell kinase in addition to BTK

and with resultant enhanced Th1-type cellular immunity [118]; ongo-

ing TRANSCEND-004 clinical trial is evaluating this combination in

patients with CLL (NCT03331198).

Expansion of CAR-T to additional lymphoma histologies such as HL

and TCL is expected, pending the results of ongoing trials; primary

and secondary central nervous system lymphoma (PCNSL/SCNSL) rep-

resent orphan diseases with particularly poor outcomes for patients

with R/R disease. ZUMA-1 and JULIET excluded patients with CNSL;

however, patients with SCNSL were allowed in TRANSCEND-NHL-

001(5). Safety and efficacy were not significantly different from

patients without CNS involvement; additional experience from the

real-world setting is also consistent with that of TRANSCEND-NHL-

001(5) [119]. The three currently approved CD-19-directed CAR-T in

LBCL (i.e., axi-cel, tisa-cel, and liso-cel) are being actively investigated

in patients with PCNSL and SCNSL (NCT04608487) (NCT04134117)

(NCT03484702); results are currently awaited. A recently published

report from an ongoing Phase I trial (NCT02153580) has shown

encouraging responses with manageable toxicities in a small subset of

patients (n= 5) with PCNSL receiving CD19-directed CAR-T [120].

Current experiencewith CAR-T therapy has clearly established that

CAR-T in lymphoma is here to stay. However, with the various plat-

forms of CAR-T therapy that are currently in development, there are

multiple questions that emerge.Most importantly,whether aparticular

CAR design or cell type will be superior in terms of efficacy and safety.

Allo-CARs can potentially be the answer to the limitations currently

experienced with auto-CARs; however, the platform is associated with

notable risks such as that of bidirectional alloreactivity and insertional

oncogenesis among others. Second, how can these various therapeu-

tic cell products be sequenced to allow for best long-term outcomes in

patientswith lymphoma. Lastly, if the safety profile of a particular prod-

uct would allow for widespread CAR-T expansion in the community,

particularly outpatient (OP) administration, 10% and 18% of patients

received CAR-T as an OP in TRANSCEND-NHL-001 and the ELARA

trial, respectively. TRANSCEND-OUTREACH-007 (NCT03744676) is

currently ongoing and is exploring the safety and efficacy of liso-cel in

the outpatient setting.
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