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Langerhans cell histiocytosis (LCH) is the most common histiocytosis with constitutive activation of the RAS–RAF–MEK–ERK

(MAPKinase) cell signaling pathway. We analyzed 89 cases of BRAF and MAP2K1 mutations by Sanger sequencing, of which

18 cases showed that these two gene mutations are negative. Whole genome sequencing of suitable specimens in these

negative cases revealed a translocation from the 3 intron of PLEKHA6 to the 13 intron of NTRK3 in one case. We identified that

this translocation could cause a novel fusion mutation, PLEKHA6-NTRK3. Overexpression of the PLEKHA6-NTRK3 mutant in NIH

3T3 cells enhanced MAPKinase pathway activation, promote cell growth. Our result suggested that a new mutation need be

included in LCH molecular screening panel to better define its prevalence in LCH.

Introduction
Langerhans cell histiocytosis (LCH) is the most common his-
tiocytosis and is characterized by inflammatory lesions with
abundant CD1a+CD207+ histiocytes, which lead to the
destruction of affected tissues.1–3

In 2010, high prevalence of oncogenic V-Raf murine sar-
coma viral homolog B1 (BRAFV600E) mutations (about 55% of
LCH), which is responsible for activation of the MAPKinase
RAS–RAF–MEK–ERK cell signaling pathway in pathologic
histiocytes, was firstly discovered in LCH cells.4 Responses to
BRAF inhibitors in patients with BRAF V600E-mutated LCH
confirmed that BRAF V600E is a driver mutation in LCH.5–7

But it was found that LCH patients do not have BRAF V600E
mutation, the ERK pathway was also reported to be activated
in pathologic histiocytes.4,8–10 Then the mutations in

MAPkinase pathway relate genes were further identified,
including MAP2K1 mutations (10–20% of LCH),11–13 β3-αC
loop deletion in the kinase domain of BRAF (6% of LCH),14

and case reports about ARAF and MAP3K1 mutation.8,15 In
addition, recurrent kinase fusions involving BRAF, ALK, and
NTRK1 were found to be activated the MAPkinase pathway
in LCH.14,16

To analyze the mechanism of pathologic ERK activation in
LCH, we performed Sanger sequencing across 89 pediatric
LCH patients diagnosed in our hospital to specifically detect
the BRAF V600E and MAP2K1 mutations. The double-
negative cases were performed by the whole-genome sequenc-
ing to further reveal the underlying pathogenesis of LCH, and
a novel translocation involving PLEKHA6 and NTRK3 was
identified in one case.
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Material and Methods
Patients and samples
The 89 pediatric patients were histologically confirmed LCH
in Shanghai Children’s Medical Center (SCMC) between
September 2008 and March 2015, and the age of onset ranged
from 2 month to 13 years old. The ratio of males and females
were 2:1 which was consistent with previous reports.17 The
bone was involved in about 91% of pediatric patients with
LCH, followed by soft tissue (8%), liver (8%), skin (6%) and
lymph node (6%), and other organs. Clinical staging data were
available for all patients, most patients were SS-LCH (85%)
(Table 1).

Sanger sequencing
Sanger sequencing was performed for assessment of mutations
in exons 2 and exons 3 of the MAP2K1 gene and the hotspot
mutation BRAF V600E in exon 15 of the BRAF. DNA was
extracted from primary paraffin-embedded tissues. The sam-
ple was dewaxed in xylene and rehydrated in a series of etha-
nol washes and then placed in proteinase K buffer overnight
at 37�C, DNA was extracted using phenol-chloroform, air-
dried, and reconstituted in water. Then the DNA was sub-
jected to conventional Polymerase chain reaction (PCR). A
forward primer, 50- GCTCTGATAGGAAAATGAGATC-30,
and a reverse primer 50- ACTGATGGGACCCACTCCATC

Figure 1. Specific sequencing data of the 89 patients with LCH. (a) The statistical charts of the sequencing information. (b) The mutation site
of BRAF in exon 15. (c) The mutation site of MAP2K1 in exon 2 and 3. (d) New fusion gene PLEKHA6-NTRK3. (e) PCR identifies the mRNA
expression of the new fusion gene PLEKHA6-NTRK3.

What’s new?
Langerhans cell histiocytosis (LCH) is a rare immune and neoplastic disorder. While it is known as the most common

histiocytosis with constitutive activation of the RAS-RAF-MEK-ERK (MAPKinase) cell signaling pathway, its pathogenesis

remains obscure. Here, whole-genome sequencing of BRAF V600E-negative and MAP2K1-negative LCH cases revealed a

translocation from the intron 3 of PLEKHA6 to the intron 13 of NTRK3 in one patient, identifying a novel fusion mutation.

Overexpression of PLEKHA6-NTRK3 in vitro enhanced MAPKinase pathway activation, promoting cell growth. The results

support the inclusion of the fusion mutation in LCH molecular screening panel to better define its prevalence in patients.
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-30, were used to amplify a 139–base pair (bp) amplicon of
BRAF exon 15. For MAP2K1 gene, A forward primer, 50-
CTCTAGCCTCCCACTTTGAT-30, and a reverse primer 50-
CTCACCTTTCTGGCCATGAC-30, were used to amplify a
342 bp amplicon of exon 2; and a forward primer, 50-
CTCCCTCTACCTTAAAGAGC-30, and a reverse primer 50-
TGTCACATACCATGTGCTCC-30, were used to amplify a
260 bp amplicon of exon 3.

PCR amplification was performed using Taq Hot Start
Version Polymerase (TaKaRa Bio, Osaka, Japan) under the

following conditions: 94�C for 2 min followed by 35 cycles of
94�C for 30 sec, 59�C for 30 sec, 72�C for 30 sec, and then
final extension at 72�C for 5 min. The PCR products were
sequenced using the same primer sets as shown above.

Whole-genome sequencing
Library preparation. DNA concentrations were measured with
the NanoDrop 2000 (Thermo Fisher Scientific, USA), and
sheared with Covaris S220 Sonicator (Covaris) to target of
350 bp average size. Fragmented DNA was purified using

Figure 2. Clinical information of the patient with the fusion gene PLEKHA6-NTRK3. (a) Left: Whole-body magnetic resonance imaging (MRI)
revealed T12 vertebral wedges with soft tissue mass during diagnosis. Right: After 1 year of treatment, MRI showed that the lesions
disppered. (b) Morphology of typical abnormal histiocytic cells. (H&E) (c) Expression of CD1a+, S100+, Langerin+ on abnormal histiocytic
cells of the patient. (d) The therapeutic regimen of the patient.
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Sample Purification Beads (Illumina, USA). Adapter-ligated
libraries were prepared with the TruSeq Nano DNA Sample Prep
Kits (Illumina, USA) according to Illumina-provided protocol.

Illumina sequencing and analysis
DNA concentration of the enriched sequencing libraries was
measured with the Qubit 2.0 fluorometer dsDNA HS Assay
(Thermo Fisher Scientific, USA). Size distribution of the
resulting sequencing libraries was analyzed using Agilent
BioAnalyzer 2100 (Agilent). The libraries were used in cluster
formation on an Illumina cBOT cluster generation system
with HiSeq PE Cluster Kits (illumina, USA). Paired-end
sequencing is performed using an Illumina HiSeq system fol-
lowing Illumina-provided protocols for 2 × 150 paired-end
sequencing.

Somatic SNVs, indels, and structural variants were ana-
lyzed by comparing paired tumor and normal genomes using
ANNOVAR and Manta software.

Gene expression of the fusion gene
To assess the mRNA expression of the fusion gene
PLEKHA6-NTRK3, we extracted total RNA from the primary
paraffin-embedded tissues using RNeasy FFPE kit (Qiagen,
Germany). Polymerase chain reaction amplification was per-
formed using Taq Hot Start Version Polymerase (TaKaRa Bio,

Osaka, Japan) under the following conditions: 94�C for 2 min
followed by 35 cycles of 94�C for 30 sec, 59�C for 30 sec,
72�C for 30 sec, and then final extension at 72�C for 5 min.
PCR was performed using with primers as follows.
PLEKHA6-NTRK3 primers: a forward primer, 5’-ACCAC-
CAACAGTGACATACC-30, and a reverse primer 50-
AGTCCTCCTCACCACTGAT-30.

Immunohistochemical
All the work related to human tissues were performed under
the Institutional Review Board approved protocols approved
at Shanghai Jiao Tong University, according to the Declara-
tion of Helsinki, and the investigators obtained informed writ-
ten consent from the subjects (wherever necessary). Human
tissues specimens were collected from Shanghai Children’s
Medical Center, School of Medicine, Shanghai Jiao Tong Uni-
versity (Shanghai, China). The tissue sections from paraffin-
embedded deidentified human LCH specimens were stained
with antibodies against CD1a (Abcam, ab201337), CD207
(EPR15863), S100 (ab868). IHC staining was scored as 0–3
according to the percentage of positive cells.

Cell culture
HEK293T cells and murine fibroblast NIH 3T3 cells were cul-
tured in DMEM supplemented with 10% FBS, 100 U/ml

Figure 3. Plasmid design of the fusion gene PLEKHA6-NTRK3. (a,b) Plasmid design of the fusion gene PLEKHA6-NTRK3 and the gene
sequence of it.
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penicillin G and 100 g/ml streptomycin. The cells were incu-
bated at 37�C in 5% CO2.

Constructs and infection
We utilized a real-time polymerase chain reaction (RT-PCR)
approach to cloning the entire coding sequence of the
PLEKHA6-NTRK3 fusion transcript using RNA isolated from pri-
mary paraffin-embedded tissues into LVX-puro Vector (Shanghai
GeneChem, Shanghai, China) and confirmed by DNA sequencing.
And we also cloned NTRK3 domain, PLEKHA6 domain and
entire NTRK3 from human CDNA library into the same vector.

We transfected the lentiviral constructs with packaging
plasmids PSPAX2 and PMD2G into HEK293T cells using the
lipofection transfection method to produce replication-
defective virus. Supernatant was harvested 48 hr later and
concentrated by 100 kd column (Amicon purification system,
Millipore, USA), and the virus were transduced into NIH 3T3
cells supplemented with 8 μg/ml polybrene (Sigma). The
medium was changed 24 hr after infection, and puro-positive
cells were selected using 1 μg/ml puromycin.

Western blot
Cells were harvested using lysis buffer. Cell lysates were sub-
jected to SDS-PAGE, transferred to nitrocellulose membranes
and immunoblotted with the following antibodies: Erk (Cell
Signaling#4695), phospho-Erk (Cell Signaling#4370), Actin
(HuaAn M1210–2). Immunoblots were analyzed using the
Odyssey system (LI-COR Biosciences).

Growth curve
Cell growth curves were compared among the cell lines with
PLEKHA6-NTRK3, NTRK3 domain, PLEKHA6 domain,
entire NTRK3, and transduced puro-expressing control cells
according to the method. Briefly, 5E4 cells were seeded in
each well of a 12-well plate, and the growth curves were plot-
ted by counting cells every 24 hr over a 6 day period with
excel software.

Statistical analyses
Data are expressed as mean�SD. All analyses were two-tailed
and considered statistically significant when p values were less
than 0.05.

Results
A novel fusion gene PLEKHA6-NTRK3 was detected in a
pediatric LCH patient
We performed Sanger sequencing for specifically assessment of
the mutations BRAF V600E and MAP2K1 genes in the 89 pedi-
atric LCH patients. Among them, 37 of 89 cases (41.6%) har-
bored the BRAF V600E mutations, and MAP2K1 mutations
that were mutually exclusive with BRAF mutations were
detected in 34 of 89 cases (38.2%) (Figs. 1a–1c). The remaining
18 pediatric LCH patients were BRAF V600E-negative and
MAP2K1-negative, we performed Whole-Genome sequencing

(WGS) of which had both blood samples and paraffin-
embedded tissues to search additional abnormal genomic alter-
ations. A novel fusion gene PLEKHA6-NTRK3 (1 of 89 cases,
1.1%) was identified in a pediatric patient (Figs. 1d, and 1e).

Clinical presentation
The patient with the fusion gene PLEKHA6-NTRK3 was a
33-month-old male patient with a history of intermittent
lower back pain more than 1 month, the physical examination
showed spine appearance without deformity, and normal
activity of the spine with no obvious limitation, while thoraco-
lumbar local spinous process mild tenderness. The child had
no other congenital anomalies and the family history was
unremarkable. Whole-body magnetic resonance imaging
(MRI) revealed T12 vertebral wedges with soft tissue mass

Figure 4. The fusion gene PLEKHA6-NTRK3 activate the ERK pathway
and promote the cell growth. (a) The fusion gene PLEKHA6-NTRK3
activates the RAS–RAF–MEK–ERK pathway in NIH 3 T3 cells. (b) The
fusion gene PLEKHA6-NTRK3 promotes the cell growth. (c) Pattern
diagram of the activition of the RAS–RAF–MEK–ERK pathway.
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(Fig. 2a), abdominal B-ultra showed hepatic portal pancreatic
lymph nodes were 1.5 × 0.7 cm, 1.7 × 0.11 cm.

The patient underwent a surgical meanwhile process the
biopsy of the soft tissue mass. Morphologically, the biopsy spec-
imens were composed of abnormal histiocytic cells which were
small oval cells with slight eosinophilic cytoplasm and grooved
folded nuclei with minimal atypia, and the eosinophils infiltrat-
ing can be observed (Fig. 2b). The patient was confirmed SS-
LCH for the histiocytes were positive for CD1a, langerin
(CD207), and S100 on immunohistochemistry (Fig. 2b).

The therapeutic regimen of the patient was chemotherapy
of SCMC-LCH-2011-risk group that adapted from the LCH-II
(arm B) study.18 He received an initial therapy of continuous
prednisone (40 mg/m2 daily for 4 weeks, tapering over
2 weeks), vincristine (1.5 mg/m2 weekly for 7 weeks), and eto-
poside (100 mg/m2 daily, days 1–3, every 2 for 8 weeks). Con-
tinuation therapy was 6-Thioguanine (40 mg /m2 daily) and a
pulse of prednisone (40 mg /m2 daily, days 1–5, every 3 weeks)
and vincristine (1.5 mg /m2/d, once every 3 weeks) (Fig. 2d).
After 1 year of treatment, reexamination of MRI showed the
patient is disease free.

The functional analysis of the fusion gene PLEKHA6-NTRK3
To further assess the effects of PLEKHA6-NTRK3 expression,
we cloned the sequence of PLEKHA6-NTRK3, C-terminal
NTRK3 domain, N-terminal PLEKHA6 domain and the entire
NTRK3 from patient, and cDNA bank according to the WGS
results and bind to the LVX-puro plasmid vector, respectively
(Fig. 3a and 3b). Murine fibroblast NIH 3T3 cells were trans-
duced with packaged lentivirus encoding PLEKHA6-NTRK3,
NTRK3 domain, PLEKHA6 domain, entire NTRK3, and
empty vector separately.

Compared to control NIH 3T3 cells, and the cell lines with
empty vector, NTRK3 domain, PLEKHA6 domain and entire
NTRK3, the p-ERK of cell line with PLEKHA6-NTRK3 was
higher, it illustrated that MAPkinase pathway was specifically
activated by fusion gene (Fig. 4a). Activating of this pathway
is related to many cellular functions, such as cell growth, pro-
liferation.19,20Indeed, our results showed that the ability of
NIH 3T3 cells transduced with PLEKHA6-NTRK3 to signifi-
cantly promote the growth (Fig. 4b). This result suggested that
abnormal expression of NTRK3 can activate MAPkinase path-
way to induce LCH (Fig. 4c).

Table 1. Clinical features of patients with LCH

Total BRAF mutated MAP2K1 mutated PLEKHA6-NTRK3

n 89 37/89(41.6%) 34/89(38.2%) 1/89(1%)

Age(y)* 2(0.2–13) 2(0.3–11) 2(0.2–11) 2

Gender, n(%)

Male 59(66.3%) 24 24 1

Female 30(33.7%) 13 10 0

Disease site, n (%)

Bone 81(91%) 33(89%) 32(94%) 1(100%)

Skin 5(6%) 3(8%) 2(6%) 0

Soft tissue 7(8%) 3(8%) 2(6%) 0

Lymph node 5(6%) 2(5%) 2(6%) 0

Liver 7(8%) 3(8%) 2(6%) 0

Spleen 3(2%) 3(8%) 0 0

Lung 4(4%) 1(3%) 3(9%) 0

Pancreas 1(1%) 0 1(3%) 0

Pituitarium 1(1%) 0 0 0

GI tract 1(1%) 0 0 0

HS classification, n (%)

SS LCH 76(85%) 31(84%) 29(85%) 1(100%)

MS R0– LCH 6(7%) 2(5%) 3(9%) 0

MS R0+ LCH 7(8%) 4(11%) 2(6%) 0

Outcome, n (%)

Alive 76(87%) 32(86%) 29(85%) 1(100%)

Died 0 0 0 0

Unknown 13(13%) 5(14%) 5(15%) 0

*Median age at diagnosis, years
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Discussion
We reported here a new fusion gene PLEKHA6-NTRK3 in
LCH, this mutation constitutively activated the the MAPKi-
nase RAS–RAF–MEK–ERK cell signaling pathway, to pro-
mote the cell growth. So it shrinked the unknown part of the
molecular spectrum of LCH and needed be included in LCH
molecular screening panel to better define its prevalence
in LCH.

In our study, the BRAF V600E and MAP2K1 mutation
rates were 41.6% and 38.2% (Fig. 1a and 1c), respectively,
which were higher than the previous reported in Asian
patients.13,21 BRAF V600E mutations were the most important
and highest frequency genomic alterations in LCH, followed
by MAP2K1 mutations.4,10,11 Both mutations can constitutive
activated of the MAPKinase cell signaling pathway, which is a
key regulator of many cellular functions involving cell growth,
proliferation, and differentiation. Except LCH, these two
mutations have been implicated in several human cancers
including melanomas,22,23 hairy cell leukemia24,25 and precan-
cerous lesions26 as well as some non-cancerous lesions such as
benign nevus cell nevi,27–29 hyperplastic polyp of the colon,30

and so on. BRAF inhibitor Vemurafenib has been used for the
treatment of the LCH, and some research showed that combi-
nation of Vemurafenib and MEK kinase inhibitors is effective
in the treatment of melanomas.5,31 All these manifested that
RAS–RAF–MEK–ERK pathway play an important role in can-
cer generation.

The new fusion gene PLEKHA6-NTRK3 which was
detected in a BRAF V600E-negative and MAP2K1-negative
patient is associated with RAS–RAF–MEK–ERK pathway, for
it specifically activates it (Fig. 4a). Recurrent kinase fusion
involving BRAF, ALK, and NTRK1 has been found to be asso-
ciated with the pathogenesis of LCH,14 and the fusion genes
that involve NTRK3 have been detected in many other
tumors. For example, fusion gene ETV6-NTRK3 was associ-
ated with congenital mesoblastic nephroma, and reported as a
primary event in human secretory breast carcinoma,32–34 and
multiple fusion partners targeting NTRK3 such as
EML4-NTRK3 could contribute to the development of con-
genital fibrosarcoma.35 We predict that this translocation may
cause a novel fusion mutation PLEKHA6-NTRK3, which
might be a driving event of LCH.

LCH has been known as a neoplastic disorder, it is also
considered as an immune disorder, while the pathogenesis of
it remains obscure.36,37 Discovery of new pathogenic genes are
conducive to elucidate the pathogenesis of this disease.
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