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Abstract

We introduce a fast error-free tracking method applicable to sequences of two and three
dimensional images. The core idea is to use Quadtree (resp. Octree) data structures for rep-
resenting the spatial discretization of an image in two (resp. three) spatial dimensions. This
representation enables one to merge into large computational cells the regions that can be
faithfully described with such a coarse representation, thus significantly reducing the total
number of degrees of freedom that are processed, without compromising accuracy. This
encoding is particularly effective in the case of algorithms based on moving fronts, since the
adaptive refinement provides a natural means to focus the processing resources on informa-
tion near the moving front. In this paper, we use an existing contour based tracker and refor-
mulate it to the case of Quad-/Oc-tree data structures. Relevant mathematical assumptions
and derivations are presented for this purpose. We then demonstrate that, on standard bio-
medical image sequences, a speed up of 5X is easily achieved in 2D and about 10X in 3D.

1 Introduction

Tracking objects in image sequences is a fundamental problem in computer vision. Error-free
tracking is essential for various vision applications such as surveillance, security systems, and
medical/biological image analysis. However, data uncertainty presents significant challenges
for reliable object tracking. This includes, for example, illumination changes across consecutive
frames, rigid/nonrigid deformation of the object of interest, partial occlusion, or data
corruption.

Numerous frameworks have been proposed in recent years to address the above-mentioned
problems. For example, a class of methods includes deformable shape models [1], active shape
models (ASMs) [2] and active appearance models (AAMs) [3], which capture the statistics of
shape and appearance variations using training examples. By combining ASM and AAM in a
multiscale fashion, Mitchell et al. [4] achieved robustness against noise and clutter. Tsai et al.
[5] applied principal component analysis (PCA) to model the variability in the training shapes
represented by signed distance functions (SDFs). Zhu et al. [6] proposed a subject-specific
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dynamic model designed for medical application using multilinear PCA. A potential drawback
of these methods is that their performance depends on the training data, which may not
encompass all possible scenarios.

Recently, graph-based algorithms have been proposed for tracking deformable objects. For
example, Ishikawa and Jermyn [7] developed a polynomial time algorithm to extract similar
objects from a set of time sequence images. Schoenemann and Cremers [8] proposed a real-
time solution for tracking, implemented on GPUs, that is based on finding a minimum cost
cyclic path in the product space spanned by the template shape and the given image. The cost
function is derived from both the image data and the shape prior. They then extended their
previous approach [9] by incorporating the edge information, which provides robustness
against illumination changes. In another work [10], they also introduced a motion layer
decomposition framework, which is solved using both discrete and continuous optimization.
Although this method has been shown to be robust against occlusion, it is unclear how this
algorithm may be adapted for tracking objects with unknown shape statistics. Discriminative
methods [11, 12], which cast visual tracking as a two-class classification problem, dynamically
update the classifiers in order to account for appearance changes and partial occlusion of the
object-of-interest. Approaches such as [13] select the target as the one which minimizes the
projection error in the space spanned by observed (tracked results from previous frames) and
trivial templates (with one nonzero element).

Rich, dense flow information between consecutive frames in time sequence images can also
be incorporated as a means to improve effectiveness. One way to include this information is to
first compute a correspondence map (registration) between successive frames before computing
the correlated segmentation of the video frames to solve the tracking problem. In recent works
[14, 15], it has been shown that tracking performance can be further improved by solving the
registration and the segmentation problems simultaneously (SRS for simultaneous registration
and segmentation) thanks to a function that establishes the correspondence between the target
and the reference level-set functions. The performance is improved in [16] with the help of a
dynamical prior term (SRS+DP). The same authors recently generalized the SRS+DP frame-
work (GSRS for generalized SRS), which can handle shading, reflections, and illumination
changes. In [17], Ghosh et al. extend GSRS [18] for fast and efficient implementation. Modifica-
tions include the reconstruction of the sparse-error (due to partial occlusion, shading and reflec-
tions) between consecutive frames using a regularized variant of the L' norm, a new
formulation of the dynamical shape prior term and the incorporation of a combination term,
which modifies the update rule for the estimated functions. Through examples with natural and
biological images sequences, the authors have illustrated the robustness of their formulation.

However, another fundamental problem in computer vision is the efficiency of the underly-
ing strategy, in terms of CPU and memory requirement. A fast error-free tracking can be deter-
mining in some applications such as medical analysis or security systems. Medical analysis,
with the ever increasing amount of data generated by modern acquisition systems, is in particu-
lar an area where large data sets need to be processed efficiently. The effectiveness of the
approach of Ghosh et al. [17] is in large part due to the use of rich dense flow information
between consecutive frames, a computationally expensive feature. However, dense flow infor-
mation is mainly useful in the region near the evolving front so that the use of adaptive grid
techniques that automatically coarsen away from the moving front have a distinct advantage.
The key contribution of this paper is the use of Quad-/Oc-tree Cartesian grids for efficient pro-
cessing of an algorithm that is robust against partial occlusion, drastic illumination changes,
and data corruption.

The outline of this paper is as follows: we first briefly introduce the level-set formalism in
section 2 and the SRS method with sparse error reconstruction in section 3. In section 4, we
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develop the algorithm on Quad-/Oc-tree Cartesian grids. We finally compare the results
obtained with the present method and that of [17] in section 5.

2 Level-Set Formalism

The level-set method, introduced by Osher and Sethian [19], is a general numerical technique
for capturing the evolution of a moving front. Specifically, the front is represented as the zero
level set of Lipschitz continuous function ¢. We will denote the moving front as I" and thus
define I' = {x : ¢(x) = 0}. The interior and exterior regions delimited by I" are described by {x: ¢
(x) > 0} and {x: ¢(x) < 0}, respectively. The implicit level-set representation is particularly
convenient in the case of topological changes. Given a velocity field u, the motion of the front
is given by the equation:

¢, +u-Vo=0.

Finally, while any Lipschitz continuous function can define I, it is advantageous to use the
signed distance function to the front. For a general front described by an arbitrary level-set
function ¢,y the signed distance function is obtained by solving, in pseudo time 7, the equa-
tion:

¢, +51gn(e,,)(IVel - 1) =0,

where Sign refers to the signum function. This is the so-called reinitialization equation, intro-
duced for uniform grids by Sussman et al. [20], improved by Russo and Smereka [21] and
extended to unstructured grids in Min and Gibou [22].

3 Simultaneous Registration and Segmentation

Consider two consecutive images I(t — 1) : Q(C R") — R, withn =2, 3 and

I(t) : Q(C R") — R, in an image sequence at two consecutive time instances, t — 1 and ¢.
Assuming that the initial contour of the object of interest is known a priori, we consider that
the shape of the tracked object of interest at any arbitrary time ¢ is embedded in the level-set
function ®°(x,t) : Q — R".

3.1 Registration Model

The aim of registration is to find a displacement vector field u : & — R" that establishes the
dense correspondence between two consecutive image frames. We denote the components of u
as (u(x), v(x)) and (u(x), v(x), w(x)) in two and three spatial dimensions, respectively. This vec-
tor field is traditionally obtained by maximizing the posterior distribution P(u|I(¢), I(t — 1))
(see for example [1, 23] and references therein):

u* = argmax P(ull(t),I(t — 1))

(1)
~ arg‘rlnaxP(I(t),I(t — 1)|u) P(u).

In the present work, based on [17], we simultaneously estimate both misalignment (dense
correspondence map) and corruption in the image sequence by assuming that the corruption
due to partial occlusion, shading, reflections, etc., is sparse in nature. Consider that the map-
ping G : Q — R models the sparse corruptions between successive time frames. We can
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rewrite Eq (1) by incorporating G as follows:

<u,G > = argmaxP(u,G|I(t),I(t —1))
~ argn;axP(I(t), I(t — 1)|u, G)P(u, G) 2)
= arg;gaxP(I(t),I(t — 1)|u, G)P(u)P(G),

where we assumed in the last step that u and G are independent of each other. Maximizing the
expression in Eq (2) is equivalent to minimizing the following energy functional under certain
simplifying assumptions:

min Ey(u, G:1(t — 1), 1(1)) = / puI(T(),1) — I(x,t~1) — G*)dx
_— / pu([Vuf’ + [ Vv)dx 3)

T / PGP )dx + o, / pu(IVG)dx,

where, T(x) = x + u(x), , controls the smoothness of the derived vector field, while o, and o,
control the sparsity and the smoothness in the estimated corruption. It has been demonstrated
in [3] that L'-minimization is more suitable than the quadratic penalizer, p(x*) = x*; hence we
use p, = V/x2 + €%, the most robust convex penalizer known in the optical flow community.
Due to the small positive constant e, p,, is still convex, which offers advantages for the minimi-
zation process. The constant € is chosen in our experiments to be 0.001.

Since the energy Erg is highly nonlinear, the minimization process is not trivial. A mini-
mizer for u must satisfy the Euler-Lagrange equations:

C, = pBLL -,V (p(|Vul*+ [Vv[')Vu) =0,
(4)
C, = p (I, —a,V - (p,(|Vul’ +|Vv[)Vv) =0,
where
I, = I(Tx),t)—I(x,t—1)—G
Ix = axI<T(X)’ t)’
I, = 9I(T(x)t)

Similarly, the Euler-Lagrange equation that needs to be satisfied by G is:
—P I LL +a, p(IG]) G = 2, V- (0, (IVG])VG) = 0.

To solve these equations, we adapted the approach from [24, 25]: w and G are both solved
iteratively in multiple scales using fixed point schemes. We implement a fully implicit scheme
for the smoothing terms (e.g., the term associated with «,, and a,,) and a semi-implicit scheme
for the data terms (e.g., the first term in Eq (3) and the term associated with ;). The term cor-
responding to warping, I(T(x), ), is obtained using linear interpolation.
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3.2 Segmentation Model

It is standard to segment the ¢-frame using the dynamic prior term, given the observed contour
¢°(t). However, there are a few drawbacks with this approach. Examples include the absence of
an energy minimizer or the dependence on the choice of the domain. These can be avoided
with the formulation of Ghosh et al. [17], which is based on the dual formulation of the total
variation (TV) norm, by including the shape prior term to define a new dynamic shape prior
term, d’ : Q — R":

& (¢ (x); 67 (x)) = /QPP(I&(X)IQ)IVH(Qﬁ")Idxv (5)

where p,(.) is a robust estimator; here we assume p,(y°) = y*. One then considers the following
constrained minimization problem:

min Ep(6'(x); (1), d7) = / 196" (x)dx + / 00
0<p"<1 Q o p(I0,) ¢’ (x)dx. (6)
TVdg (¢9) n(x,01,02)

The solution is constrained to lie between 0 and 1 since the unconstrained problem does not
have a stationary solution. The first term in Eq (6) measures the weighted total variation norm
of the function ¢°. It can be rigorously demonstrated (see [26, 27] and references therein) that
Eq (6) is equivalent to solving the following unconstrained problem:

min EDS(¢[J(X)§I(t), dﬁ) = Tvdg (¢0) + /[“sl’?(xv 0,, 92)(150 + &C(Qﬁo)]dx, (7)

0<¢'<1 Q

where {(y) := max{0,2]y — ;| — 1} and & > %' |[n(x)|| ). We can also rewrite {(y) as:
—2y if y<o,
) =q20-1) if y>1,

0 otherwise.

Since the two energies in Eqs (6) and (7) agree for {¢0 eL>®Q):0< ¢0(x) <1,Vx} it is suffi-
cient to prove that any minimizer of Eq (7) satisfies the constraint 0 < ¢°(x) < 1. The varia-
tional formulation (7) can now be solved using a convex regularization [28] term:

min Eps(¢°, 3 1(2), d;)
[

1 )
=TV, (&) + 55 19" ~ gl

+ /[%ﬂ(x» 0,,0,)¢ + ocC(q))]dx,

Q

where 8 > 0 is a small constant, so that ¢ is a close approximation of ¢°.

3.3 Simultaneous Registration and Segmentation

A commonly used objective function in this regard is the one which establishes the correspon-
dence between the target (¢°(¢)) and the reference (¢°(¢ — 1)) level-set functions using a map-
ping function u(x, ¢ — 1, f). The functional combination term seeks to register the isocontours
of the source and target shapes within a narrow band of the zero level sets. The width of the
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narrow band is chosen by a parameter €. The choice of € is crucial since it determines the scale
at which objects are registered (see [29] for a detailed discussion). In contrast, Ghosh et al. [17]
proposed a functional that does not require the scale information a priori. In this case, the com-
bination term is (similar to Eq (5)) defined as:

min Ec(u ,¢"(t);¢°(t — 1)) = di = /PC(W(T(X), t=D)IVH(@' (x,1))|dx,
u,¢ Q

where p.(y*) = y*. Finally, the method simultaneously estimates u, G, and ¢°(t) for the current
frame at time t. This combination term modifies the update rule for the estimated functions.
Recalling Eq (4), the new Euler-Lagrange equations that need to be satisfied for u can be writ-
ten as:

PL()8,0./VH(' (1) + C,

0,

P(62)8,9,|VH( (1) + C, 0,

where
¢, =" (T(x),t—1), ¢, =06, and ¢, =0,9,.

The update rule for the sparse error, G(x, y), remains the same since it is independent of the
combination term Eyc. For the segmentation problem, we use:

1 2
min{ TV, (6") + 52 116" — oI} ©)

This formulation has been shown to be robust against partial occlusion, drastic illumination
changes, and data corruption. A drawback of the existing approach is the computational cost
associated with solving the partial differential equations of the model on a grid with as many
degree of freedom as the number of pixels/voxels. However, the region of interest for process-
ing the data at every step is located in only a small band around the moving front. It is therefore
desirable to adopt a strategy that can leverage the locality of information. Next, we describe an
algorithm based on Quad-/Oc-tree data structure, which enables to significantly decrease the
number of degrees of freedom, while conserving the accuracy of the method of [17].

4 Algorithm on Quad/Oc-tree Data Structures

In this section, we describe how the level-set method on Quad-/Oc-tree introduced by Min and
Gibou [22] can be combined with the methodology of [17] to produce an efficient algorithm
for object tracking and segmentation.

4.1 Quad/Oc-tree Data Structures

Quadtree (resp. Octree) data structures can be used to represent the spatial discretization of a
geometrical domain in two (resp. three) spatial dimensions as depicted in Fig 1: initially the
root of the tree is associated with the entire domain cell. Further refinement is obtained by
recursively splitting each cell into four (resp. eight) children until the desired level of detail is
achieved. We call ‘level of the tree’ its depth. We refer the reader to the books of Samet [30, 31]
for more details on the definition of these data structures and the standard algorithms associ-
ated with them.

In this work, the maximum level of the tree is that corresponding to the pixel size, i.e. a
1024 x 1024 image will be associated with a quadtree with a maximum level of 10 (as in 210y,
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Fig 1. Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire domain corresponds to the root of the tree
(level 0). Each cell can then be recursively subdivided further into four children. In this example, the tree is non-graded, since the difference of level between
some adjacent cells exceeds one. (Color online.)

doi:10.1371/journal.pone.0150889.g001

Also, in the case where a tree cell is associated to a subset of an image, the cell’s value is defined
as the average pixels’ value.

4.2 Constructing Quad-/Oc-tree

Since the accuracy of the method depends on the size of the cells adjacent to the moving front,
we impose that the finest cells lie on the interface. This can be achieved by using the signed dis-
tance function to the interface along with the Whitney decomposition, as first proposed by
Strain in [32]. For a general function ¢ : R" — R with Lipschitz constant Lip(¢), the Whitney
decomposition is extended in Min [22] as: starting from a root cell, split any cell C if

1_. . .
_max 10| < ;Tip(9) x diag - size(C),
where diag-size(C) refers to the length of the diagonal of the current cell C and Nodes(C)
refers to the set of four (resp. eight) nodes of the current cell. This condition enforces the split-
ting of any cell whose edge length exceeds its distance to the interface, hence producing a
computational grid where the smallest cells capture the interface location. Larger and larger
cells are located as the distance from the interface increases (see [22] for details).

Fig 2 depicts an example of an image (left) and its quadtree representation (right). Note that
far from the simulated moving front (depicted by a red interface), the image is blurred due to
averaging of pixels’ value, while the original image resolution is kept near the interface. In the
work of [16], the image was filtered by a gaussian filter to avoid spurious noise. In the case of
Quad-/Oc-tree representation, the coarsening away from the front acts as a filter so we do not
apply a Gaussian filter.

4 3 Finite Difference Discretizations

In the case of nonregular Cartesian grids, the main difficulty is to derive discretizations at T-
junction nodes, i.e. nodes for which there is a missing neighboring node in one of the Cartesian
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Fig 2. Quadtree refinement of an image.

doi:10.1371/journal.pone.0150889.g002

directions. For example, Fig 3 depicts a T-junction node, v,, with three neighboring nodes v,
v, and vs aligned in three Cartesian directions and one ghost neighboring node, v,, replacing
the missing grid node in the x-direction. Referring to Fig 3, the value, u{, of the node-sampled

function u : {v,} — R at the ghost node v, is given by the third-order interpolation:

46 — Ussy Sy 838, (”1 Uy + U, — “o>
» .
S5+ s, 5+ S, S S

In three spatial dimensions, there are two ghost values (see Fig 4) that are defined as [22]:

ue = st TSy S8 (”2 — U n U — ”0)
6 - )
Sy + 8, Syt 5 Sy S
U = S11S1oUyy Sy Solhyy T S8 19Uy T+ SypSylhyg
A

($19 4 511) (89 +512)
S0 <u2 — Uy n U — ”o)
Sy + 5 Sy S
548 u, —u, ul—u,
_ SoS1n ( 1 0, % 0)
sty Sy Sy

The third-order interpolations defined above allow us to define finite difference formulas for

the first- and second-order derivatives at every node using standard formulas in a dimension-
by-dimension framework. For example, referring to Fig 5, we use the central difference formu-
las for u, and u,:

Uy — Uy S Uy— U S
b)
Sy s+, Sy s t+s,
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Fig 3. Local grid configuration near a node v0. The schematic on the right describes a T-junction where a node is missing in the x-direction.

doi:10.1371/journal.pone.0150889.9003

Dy Tt 2 Uy — Uy 2
xx 70 T )
Sy s+ s, Sy s+,

the forward and backward first-order accurate approximations of the first-order derivatives:

N B _
Dx MO - ’

and the second-order accurate approximations of the first-order derivatives:

Uy — Uy S, .
Difu, =-—"—2minmod (D! u,, D’ u,),
)
. U — Uy S
D u, = Us— + Emlnmod(DgxuO, D u,),
1

where the minmod slope limiter [33, 34], defined as:

' x if]x| > |yl
minmod(x, y) = }
y  otherwise,
is used to avoid differencing across regions where gradients are large (i.e. near kinks). Similarly,
approximations for first-order and second-order derivatives are obtained in the y- and z- direc-
tions. These numerical approximations are sufficient to discretize all of the equations described
in section 3.
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Fig 4. Neighboring vertices of a node v in three spatial dimensions.

doi:10.1371/journal.pone.0150889.9004

5 Experimental Results

In this section, we first present results on two and three dimensional image sequences. When
available, we compare our results to those obtained in Ghosh et al. [16], which allows us to com-
pare the effectiveness of both methods in term of robustness as well as in terms of computational
efficiency. These numerical examples illustrate that the present method is robust even in the
presence of severe occlusions and provides a speed up over the approach of Ghosh et al. [16].
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Fig 5. A one-dimensional adaptive grid.
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The advantage of the present method is that it significantly reduces the number of degrees of
freedom processed at each iteration. In fact, since most degrees of freedom are those adjacent to
the interface, this approach lowers the dimension of the problem. On the other hand, there are
additional costs associated to the handling of the data structure, especially the O(log(#)) cost to
access data stored in the leaves of the tree and the remeshing procedure. Despite this additional
cost, the performance of the current approach is superior than that on uniform grids.

5.1 Parameter Setting

We keep all the parameters constant throughout our experiments. The parameters a,, o, and
o, are empirically set to 8 x 10,9 x 107, and 3 x 10, respectively. The weight for the
dynamical prior term d; and the combination term d? are both approximately set to 2 x 107>,

The coefficient o corresponding to Eq (8) is selected randomly in the range [0.02, 0.05].

We first extract a simple gray scale histogram (for both natural and synthetic images) of the
foreground and background from a few frames. These are then used to obtain the likelihood
values 7(x) for the rest of the frames. In the current implementation, we also use the edge infor-
mation of the image. The edge information is easily incorporated by minimizing TV, , 2ra?

» in Eq (9). Here, g =

i is the inverse of the smoothed gradient magni-

s 1
instead of TVd;_; Vi
tude function. In our experiments, we keep y = 600.

The proposed tracking framework is implemented in C++ on a 2.3 GHz Intel Core i5 CPU.

In our implementation we update u, ¢°, and G twice for each time frame.

5.2 Two Dimensional Data

We consider a medical data sequence where the objects of interest are vessels. In the first slice,
the objects of interest are four cross-sections of vessels, which merge into two larger vessels and
then into one large vessel in subsequent slices. This example illustrates the error-free tracking
effectiveness. Fig 6 compares the results obtained with the approach of Ghosh et al. [16] (top
subfigures) with the results of the current approach (bottom subfigures). These results demon-
strate that the four initial vessels are indeed properly detected and that the algorithm enables
changes in topology (here merging). Fig 7 depicts the three-dimensional segmentation
obtained from the series of two-dimensional segmentations.

The use of the adaptive grid significantly reduces the number of pixels processed. Specifi-
cally, the uniform grid contains 201 x 201 = 40, 401 cells, whereas the adaptive grid processes
about 1000 cells at each iteration. Therefore, even though the adaptive approach requires the
data structure’s management, the remeshing at each step and the O(log(n)) complexity for

PLOS ONE | DOI:10.1371/journal.pone.0150889 March 17,2016 11/20
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Fig 6. Medical data processed on uniform grids (top row) and on adaptive grids (bottom row) illustrating the similarity in results. In both cases, 268
frames with size 202 x 201 are processed. Timing is 25 minutes (1500 seconds) in the case of uniform grids and about 3.5 minutes (216 seconds) in the case
of the current approach on adaptive grids.

doi:10.1371/journal.pone.0150889.g006

accessing data (n being the number of cells processed), the adaptive approach increases the
speed in a meaningful way: on this example, the process time is more than 25 minutes on the
uniformly sampled image, compared to less than 5 minutes with the same parameters and the
same number of frames in the case of adaptive grids. We note that no attempts has been made
to optimize the implementation, for which, in average, the overhead time for considering the
adaptive grid is about 0.03 second per slice. This amounts to 7.71 seconds over the course of
the total segmentation that takes a total computational time of 201.66 seconds. For this exam-
ple, the overhead for using adaptive grids is thus about 4%.

5.3 Three Dimensional Data

We consider three different sequences of three dimensional medical data consisting of snap-
shots of a beating heart, available from the BIRN data base [35]. Each frame has dimensions
100 x 100 x 34. The sequences, corresponding to patient 12, 13 and 15 consist of 20, 21 and 12
frames, respectively.

Figs 8,9 and 10 depict the results of the segmentation process using the current approach.
In each case, three different cross sections (corresponding to a top, medium and bottom cross-

PLOS ONE | DOI:10.1371/journal.pone.0150889 March 17,2016 12/20
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Fig 7. Three dimensional representation of the segmentation of Fig 6, which illustrates the changes in topology.

doi:10.1371/journal.pone.0150889.g007
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Fig 8. Image sequence for a half period (T/2) for patient 12. The top row gives the segmentation in 3D, while the remaining rows give the top, middle and
bottom cross-sections of the segmentation on top of the data for t = 0, t = T/4 and t = T/2, respectively.

doi:10.1371/journal.pone.0150889.9008
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Fig 9. Image sequence for a half period (T/2) for patient 13. The top row gives the segmentation in 3D, while the remaining rows give cross-sections of the
segmentation on top of the data.

doi:10.1371/journal.pone.0150889.g009
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Fig 10. Image sequence for a half period (T/2) for patient 15. The top row gives the segmentation in 3D, while the remaining rows give cross-sections of
the segmentation on top of the data.

doi:10.1371/journal.pone.0150889.9010
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Fig 11. Two vortex in 2D: 500 frames with size 100 x 100, performed in 637.65 seconds.

doi:10.1371/journal.pone.0150889.g011

section) are depicted at three different time in the image sequence. In all cases, the segmenta-
tion results are satisfactory. We note that since the algorithm requires an initial segmentation,
we used one 2D cross-section of the first frame and applied the 2D algorithm to construct the
initial 3D segmentation. Therefore, overall, only an initial 2D segmentation is needed to pro-
cess the time sequence of three dimensional data. The algorithm takes about 55 seconds to pro-
cess one 3D frame with the Octree representation and about 560 seconds for the uniform one.

5.4 Large Deformation and Disconnected Sets

We consider a synthetic example to demonstrate that the method is applicable to the case
where the shape of interest undergoes large deformations. It also demonstrates that discon-
nected sets can be readily considered. We first built an image sequence consisting of two disks
deforming under a given velocity field: in a domain Q = [0, 1] we construct a disk of radius.15
and center (.5,.75) and a second disk with a radius of.1 and center (.2,.2). These two disks define
the initial zero level set contour. The image intensity values are then randomly set to be
between [200, 255] inside the zero level set with a value of 200 near the level set contour and
between [50, 155] outside the zero level-set with a value of 50 near the contour. The image is
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then deformed under the divergence free velocity field u = (u, v) given by:
u(x,y) = —sin’(nx)sin(2my),
v(x,y) =  sin’(my)sin(2nx),

and the algorithm on quadtree is used to segment the image sequence. Fig 11 illustrates that
the algorithm on adaptive grids enables the segmentation of a disconnected shape that under-
goes large deformations. The computational time on this 100 x 100 image is slightly more than
a second per frame.

6 Conclusion

We have extended the approach of [17] to the case of adaptive Cartesian grids using Quad-/
Oc-tree data structures. This approach is based on a robust variational framework for level-set-
based simultaneous registration and segmentation procedures that can be applied to natural
and biological image sequences. In addition, the use of adaptive grids produces results that can
be processed much faster than [17] while retaining its accuracy and robustness. Using numeri-
cal results on image sequences in two and three spatial dimensions as well as timings, we have
illustrated the computational efficiency of the approach. While we have presented the use of
adaptive grids using a particular functional, the advantages of adaptive grids (reduction in the
number of processed data and the ability to focus on processing data near the moving front)
could be used with other functionals used in level-set formulations. The strategy presented in
this paper could be use to the segmentation of large data sets, such as those generated by new
generation CT acquisition scanners or by structural MRI scans.
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