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ABSTRACT Karst caves have recently been demonstrated to act as a sink for atmos-
pheric methane, due in part to consumption by microbes residing in caves that can
oxidize methane at atmospheric levels. However, our knowledge about the responsi-
ble atmospheric methane-oxidizing bacteria (atmMOB) in this vast habitat remains
limited to date. To address this issue, weathered rock samples from three karst caves
were collected in Guilin City and subjected to high-throughput sequencing of pmoA
and 16S rRNA genes. The results showed that members of the high-affinity upland
soil cluster (USC), especially upland soil cluster gamma (USCg), with absolute abun-
dances of 104 to 109 copies � g21 dry sample, dominated the atmMOB communities,
while Proteobacteria and Actinobacteria dominated the overall bacterial communities.
Moreover, USCg was a keystone taxon in cooccurrence networks of both the atmMOB
and the total bacterial community, whereas keystone taxa in the bacterial network also
included Gaiella and Aciditerrimonas. Positive links overwhelmingly dominated the cooc-
currence networks of both atmMOB and the total bacterial community, indicating a con-
sistent response to environmental disturbances. Our study shed new insights on the di-
versity and abundances underlining atmMOB and total bacterial communities and on
microbial interactions in subterranean karst caves, which increased our understanding
about USC and supported karst caves as a methane sink.

IMPORTANCE Karst caves have recently been demonstrated to be a potential atmospheric
methane sink, presumably due to consumption by methane-oxidizing bacteria. However,
the sparse knowledge about the diversity, distribution, and community interactions of
methanotrophs requires us to seek further understanding of the ecological significance of
methane oxidation in these ecosystems. Our pmoA high-throughput results from weath-
ered rock samples from three karst caves in Guilin City confirm the wide occurrence of
atmospheric methane-oxidizing bacteria in this habitat, especially those affiliated with the
upland soil cluster, with a gene copy number of 104 to 109 copies per gram dry sample.
Methanotrophs and the total bacterial communities had more positive than negative
interactions with each other as indicated by the cooccurrence network, suggesting their
consistent response to environmental disturbance. Our results solidly support caves as an
atmospheric methane sink, and they contribute to a comprehensive understanding of the
diversity, distribution, and interactions of microbial communities in subsurface karst caves.
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Karst caves are characterized by permanent darkness, stable temperature, high hu-
midity, oligotrophic conditions, and geographical isolation (1, 2) and are consid-

ered extreme environments. Recently, they have been demonstrated to be potential
sinks for atmospheric methane (CH4), similar to upland soils (3, 4), mainly due to the
widespread phenomenon that CH4 concentrations in caves are consistently below the
contemporary atmospheric level (1.8 to 2.0 ppm) (3, 5, 6). Moreover, these subatmo-
spheric CH4 concentrations in caves are attributed to the consumption of methane-oxi-
dizing bacteria (MOB), as indicated by stable isotope analysis of methane (4, 7, 8).
Known atmospheric methane-oxidizing bacteria (atmMOB) have the capacity of oxidiz-
ing subatmospheric levels of CH4 due to their high affinities for CH4 and are phyloge-
netically affiliated with upland soil cluster gamma (USCg) and alpha (USCa) (9), which
are widely distributed in various upland soil environments (9 to 11). Members of the
upland soil cluster (USC) have been confirmed to be actively involved in CH4 oxidation
under atmospheric and low CH4 concentrations (2 ppm and 20 ppm) (12) and have
been demonstrated to be responsible for the oxidation of atmospheric CH4 (13–15).

Members of the atmMOB are resistant to cultivation, which gives rise to great diffi-
culty in studying their physiology. To date, USCg has no cultured representatives, and a
single draft genome from it has been reported, which showed a close relationship with
Methylocaldum (16). Methylocapsa gorgona MG08, affiliated with USCa Jasper Ridge 1
in a phylogenetic analysis of PmoA (amino acid sequence of the pmoA gene) and
closely clustered with “Candidatus Methyloaffinis” via the analysis of the 16S rRNA
gene, was isolated from the cover soil of a retired subarctic landfill (17). Fortunately,
the functional gene encoding the beta subunit of particulate methane monooxygen-
ase (pMMO), pmoA, is conserved in most MOB, except that Methylocella, Methyloferula,
and Methyloceanibacter solely use the soluble methane monooxygenase (sMMO)
(18–20). Therefore, pmoA can serve as an excellent phylogenetic marker to study the
diversity of MOB (10, 21), and specific primers targeting pmoA of atmMOB have also
been designed to detect their occurrence in natural ecosystems (21). Sequences of this
gene have also been retrieved from the Heshang Cave in central China, showing that
USCg dominated the MOB communities in the weathered rocks (22). Therefore,
sequencing and quantification of the pmoA gene exclusive to atmMOB are reliable
approaches to characterize the overall diversity and abundance of atmMOB in subsur-
face karst caves.

The community structure of atmMOB in soil was demonstrated to be significantly
controlled by pH: USCa generally dominates under acidic conditions, while USCg pre-
fers to live in neutral and alkaline habitats (9, 10, 23). Despite the role of pH in the dis-
tribution of atmMOB, pH does not affect the methane oxidation rate directly but,
rather, acts on the abundance of MOB (24). Due to the alkaline conditions in karst
caves (25), we assume that USCgwould dominate atmMOB communities. The CH4 con-
centration can also affect the capacity for atmospheric CH4 oxidation by atmMOB.
Exposure to an increased CH4 concentration (;10 ppm) increased the atmospheric CH4

oxidation rates in forest soils, where the MOB communities are mainly dominated by
USCg and USCa (26). Concentration gradients of CH4, as the direct substrate of micro-
bial CH4 oxidation, are known to exist in numerous caves (3, 4). However, how the
CH4 concentration impacts atmMOB communities in subsurface caves has remained
mysterious.

To address these issues, we collected weathered rock samples and weathered crust
samples from three different caves across Guilin City, Guangxi Province, southwestern
China (Fig. 1). The samples were subsequently sequenced for pmoA and 16S rRNA
genes via high-throughput sequencing. The aims of this study were to (i) investigate
the abundance and distribution of atmMOB and other bacteria, (ii) explore the correla-
tions between environmental factors and the total bacterial and atmMOB commun-
ities, and (iii) understand the cooccurrence patterns among bacterial taxa and MOB
clades in weathered rock samples from subterranean caves. Our results will expand our
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understanding of the diversity and distribution of atmMOB in subsurface karst caves
and the interactions between MOB/bacteria and environmental variables.

RESULTS
Physicochemical properties of weathered rock and crust samples. Samples col-

lected from the three karst caves in Guilin City (Panlong Cave [PLD], Luohandu Cave

FIG 1 Geographic locations and atmospheric gas concentrations of the three karst caves investigated in Guilin City, southwest China. (A) The geographic
locations of Panlong Cave, Luohandu Cave, and Xincuntun Cave on the map of China and Guilin City. The Chinese map was modified after http://bzdt.ch.mnr
.gov.cn/. (B) Schematic diagram of weathered rocks. Spatial variability of the concentrations (ppm) of CH4 (C) and CO2 (D) in the cave atmosphere. Sampling sites
within the caves are shown by blue dots, and air sampling sites are marked with triangles. P, Panlong Cave; X, Xincuntun Cave; L, Luohandu Cave; 1, sampling
site at the middle of the cave; 2, sampling site far from the entrance of the cave; W, weathered rock; C, weathered crust.
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[LHD], and Xincuntun Cave [XCT]) (Fig. 1) were slightly alkaline or alkaline, with pH
varying in the range of 7.78 to 9.56 (Table 1). The physicochemical properties varied
with sample type (i.e., weathered rock versus crust), as well as the distance to the cave
entrance. Specifically, the SO4

22 concentration varied with the distance to the cave en-
trance (Table 1). The pH and the concentrations of Cl2, K1, and Na1 varied with sample
types in PLD and XCT, whereas these physicochemical parameters varied with sam-
pling locations in LHD (Table 1). The weathering indices, such as the Ca/Si and Mg/Si
ratios, of PLD were significantly different with the distance to the cave entrance. In
contrast, the weathering indices in LHD and XCT were linked to niches (Table 1).

Climate factors, such as the CH4 concentrations and air temperatures, showed simi-
lar spatial variation patterns across the three caves (Fig. 1C, Table S1 in the supplemen-
tal material). The CH4 concentrations decreased from the entrance inward to the caves
(Fig. 1C), whereas temperatures showed a reverse pattern (Table S1). PLD had the low-
est CH4 concentration (1.036 0.02 ppm [mean 6 standard deviation]) at the end of the
cave (Fig. 1C, Table S1). However, the variations of atmospheric CO2 concentrations did
not show a consistent pattern among the three caves (Fig. 1D).

Diversity indices and microbial communities among the three karst caves.
Totals of 936,000 reads and 1,103,688 reads were obtained from pmoA gene and 16S
rRNA gene amplicon sequencing, respectively, after quality control. The pmoA gene
reads were clustered into 891 operational taxonomic units (OTUs) based on 95% simi-
larity, whereas the 16S rRNA gene reads were grouped into 29,705 amplicon sequence
variants (ASVs) with a 100% similarity cutoff.

Significant differences in alpha diversity indices in atmMOB and bacteria were
observed in different cave samples (P, 0.05) (Fig. 2A to D). The highest Shannon indi-
ces of both atmMOB and bacteria were observed in site L1 (at the middle of Luohandu
Cave) samples, whereas the Shannon indices of site L2 (at the end of Luohandu Cave)
samples were the lowest (Fig. 2B and D). The community structures of atmMOB and
bacteria in XCT were significantly different from those in the other two caves (Fig. 2E
and F). In the principal coordinate analysis (PCoA), the PCo1 and the PCo2 axis
explained 27.36% and 19.63% of the variance in the atmMOB communities of all sam-
ples (Fig. 2E) and 22.17% and 16.34% of the variance in the total bacterial communities
(Fig. 2F), respectively.

USCg dominated the atmMOB communities (.60%) in all caves, except for samples
from P1C (weathered crust sampling point at the middle of Panlong Cave) (Fig. 3A).
The USCa and Deep-sea 2 clades were the second and third most abundant groups of
atmMOBs in all samples (Fig. 3A). Members of the rice paddy cluster (RPC) were rela-
tively abundant in L2W (weathered rock sampling point at the end of Luohandu Cave),
whereas members of the Deep-sea 2 clade and tropical upland soil cluster (TUSC) (27)
were relatively abundant in P1C (Fig. 3A).

Quantification of USCa and USCg using group-specific primers targeting the pmoA
gene showed that USCg, ranging from 105 copies � g21 dry weight to 109 copies �
g21 dry weight, was more abundant than USCa (;104 to 107 copies � g21 dry weight) in
all samples (Table 1). The USCg abundances in XCT were higher than those in LHD and
PLD, whereas the highest abundance of USCa was observed in P2C (weathered crust
sampling point at the end of Panlong Cave) (1.44� 1086 1.24 copies g21 dry weight)
(Table 1).

For the total bacterial communities, Actinobacteria and Proteobacteria dominated in
all samples at the phylum level (Table S2). Bacterial communities in XCT clustered to-
gether well, whereas bacterial communities in the PLD and LHD samples clustered
according to sampling site (i.e., the middle or the end of the caves) (Fig. 3B). High pro-
portions of unclassified bacterial taxa were observed in LHD (15.67%6 5.31%), higher
than those in PLD (9.07%6 4.24%) and XCT (8.336 0.60%) (Table S2). Actinomycetales,
Chromatiales, and Acidimicrobiales were the most abundant orders in most weathered
rock samples, except for P2W, in which Bdellovibrionales dominated (Fig. 3B). Within
the phyla Actinobacteria and Proteobacteria, Actinobacteria and Gammaproteobacteria
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classes dominated in all weathered samples (Table S2). Among the three caves, USC
accounted for 5.72% to 20.27% of the MOB communities, especially in XCT, accounting
for 20.27%6 2.19% (Fig. 3C, Table S2). XCT was also revealed to harbor the highest rel-
ative abundances of MOB, especially USCg, as annotated from the known USCg draft
genome (ranging from 17% to 22%) (Fig. 3C). Moreover, Methyloceanibacter and USCa
were also detected in some weathered rock samples (e.g., P1C and P2C) (Fig. 3C).

Correlations between environmental parameters and microbial communities.
CO2 and CH4 concentrations, with high increases of mean square error (MSE) values,
were the most important predictors in the total environmental parameters (P, 0.001)
as indicated by the random forest algorithm analysis (Fig. 3D). CH4 and CO2 concentra-
tions were tightly linked with the community diversity and composition of atmMOB
and bacteria in the karst caves (Fig. 3E). As shown by the result of structural equation
model analysis, CO2 concentrations negatively affected the community structures of
atmMOB (path coefficient = 0.73) and bacteria (path coefficient = 0.38). CH4 concentra-
tions solely negatively influenced the community structures of bacterial communities
(path coefficient = 0.28) (Fig. 3F). The diversity indices and community structures of
atmMOB also had positive influences on those of bacteria (Fig. 3F). Moreover, the rela-
tive abundances of USCg in atmMOB and bacterial communities connected positively
with CH4 concentrations, whereas the relative abundances of USCa were negatively

FIG 2 Alpha diversity and beta diversity indices of microbial communities in the three karst caves
investigated in Guilin City, southwest China. (A to D) Chao1 and Shannon indices of atmMOB
(atmospheric methane-oxidizing bacteria) (A, B) and the total bacterial communities (C, D) in
weathered rock samples. Statistical significance, shown by different italic lowercase letters (a to e),
was assessed by the Kruskal-Wallis H test (P, 0.05). Principal coordinate analysis (PCoA) plots of the
atmMOB (E) and bacterial (F) community structures. P, Panlong Cave; X, Xincuntun Cave; L, Luohandu
Cave; 1, sample site at the middle of the cave; P2, sample site at the end of the cave.
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FIG 3 Microbial community structures and their correlation with environmental variables in the three karst caves in Guilin City, southwest China. Cluster
analysis of the atmMOB (A) and total bacterial (B) community compositions in different niches of the three karst caves based on the Bray-Curtis distance
and UPGMA method. The relative abundances of atmMOB clades (A) and bacterial orders (B) are shown using bar charts. USC, upland soil cluster; TUSC,
tropical upland soil cluster; RPC, rice paddy cluster; LWs, Lake Washington sediments; JRC, Jasper Ridge cluster; FWs, freshwater sediment of Lake
Wintergreen (27). (C) Genera of MOB as annotated based on 16S rRNA gene analysis from 36 samples. (D) Importance ranking (percentage of increase of
mean square error [MSE]) of environmental variables as indicated by random forest machine learning. High MSE values mean more important predictors
compared with low MSE values. (E) Correlation heatmap between important environmental variables and diversity indices in the three caves. The results of
correlation analysis: *, 0.01 , P, 0.05; **, 0.001, P, 0.01; ***, P, 0.001. MOB_alpha and Bac_alpha represent the Shannon indexes of atmMOB and
bacteria, respectively. (F) Structural equation model of atmospheric CH4 and CO2 interactions with atmMOB and total bacterial communities in the three

(Continued on next page)
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connected with CH4 concentrations across the three caves (Table S3). The atmMOB and
total bacterial community compositions also correlated with other environmental pa-
rameters, such as pH and the concentrations of SO4

22 and Cl2 (Table 2). The pmoA-
based relative abundances of USCa and Deep-sea 2 correlated positively with Cl2 and
negatively with pH in all samples, whereas USCg correlated negatively with the content
of Cl2 and positively with pH (Table S3). The 16S rRNA-based relative abundances of
Methyloceanibacter related negatively to pH, whereas Methylomirabilis related posi-
tively to pH (Table S3). The relative abundances of USCg correlated negatively with Cl2

concentrations and positively with concentrations of CO2 and CH4 (Table S3).
Methyloceanibacter relative abundances showed a positive correlation with Cl2 (Table S3).

Microbial cooccurrence networks. The network of the atmMOB communities in all
samples consisted of 200 nodes and 1,861 edges, and the network of bacteria was
composed of 924 nodes and 58,418 edges (Table 3). The proportions of positive inter-
actions were much higher (96.51% for atmMOB and 99.46% for bacteria) than those of
negative interactions in both atmMOB and bacterial networks (Fig. 4). The modularity
values of the two networks were slightly higher than 0.4 (Table 3), and there were 11
modules in the atmMOB network and 11 modules in the bacterial network (Fig. 4).
Lower average path length (APL), higher average clustering coefficient (ACC), higher
density, higher average degree (AD), and higher average weighted degree values were
observed in the bacterial network than in the atmMOB network (Table 3).

USCg dominated in the atmMOB networks, accounting for 85.50% of the total nodes.
The relative abundances of Deep-sea 2, JRC-3, USCa, JRC-1, and Deep-sea 4 in the
atmMOB network were 8.00%, 3.00%, 2.50%, 0.50%, and 0.50%, respectively (Fig. 4A). In
the bacterial network, Proteobacteria and Actinobacteria were the main phyla (Fig. 4C).
Large modules (defined as modules with over 5% of the total nodes) in the network were
associated with different caves (Table S4). Latescibacteria and NC10 (Methylomirabilis) were
solely found in the LHD subnetwork, and Bacteroidetes was only found in the PLD subnet-
work (Table S5).

The results for the within-module connectivity (Zi)–among-module connectivity (Pi)
relationships among OTUs and ASVs showed that in the atmMOB network most nodes
(78.50%) were peripheral atmMOB, whereas 21.00% and 0.50% of the total OTU nodes
were connectors and module hubs, respectively (Fig. 5A). In the bacterial network,
6.24% of the nodes were connectors and 0.52% were module hubs (Fig. 5B). No net-
work hubs were found in the atmMOB or bacterial networks (Fig. 5). Connectors and

TABLE 2Mantel test results for the relationships between microbial communities and environmental factors in weathered rocks in karst caves
in Guilin City, southwest China

Microbial communitya Caveb

Mantel test value (9,999 permutations)c:

All physicochemical
parameters Cl2 SO4

22 K+ Na+ pH Ca/Si Mg/Si CH4 CO2

AtmMOB PLD 0.43** 0.43** 0.80*** 20.02 20.12 0.53** 0.29* 0.24 0.38** 0.38**
LHD 0.71*** 0.67*** 0.69*** 0.38* 0.31 0.004 20.20 0.59** 0.46** 0.46**
XCT 0.37** 0.60*** 20.07 0.62*** 0.42** 0.37* 20.04 0.10 0.02 0.02
All caves 0.47*** 0.51*** 0.24* 0.24* 0.11 0.20** 0.27** 0.39*** 0.35*** 20.06

Total bacteria PLD 0.45** 0.05 0.71*** 0.18 0.04 0.16 0.001 0.23 0.71** 0.71**
LHD 0.79*** 0.71*** 0.74*** 0.50** 0.29* 0.06 0.003 0.57*** 0.86** 0.86**
XCT 0.28* 0.43* 0.06 0.56** 0.28* 0.17 0.20 0.16 0.18 0.18
All caves 0.15* 0.17* 0.36*** 0.15 0.13 0.14* 0.14 0.17 0.27*** 0.04

aAtmMOB, atmospheric methane-oxidizing bacteria.
bPLD, Panlong Cave; LHD, Luohandu Cave; XCT, Xincuntun Cave.
cPhysicochemical parameters included all parameters in Table 1. Statistically significant results are in bold face: *, 0.01, P, 0.05; **, 0.001, P, 0.01; ***, P, 0.001.

FIG 3 Legend (Continued)
karst caves. Solid arrows indicate significant effect sizes (P, 0.05), the thickness of arrows indicates the strength of the relationship, and red and blue
indicate positive and negative relationships, respectively. P, Panlong Cave; X, Xincuntun Cave; L, Luohandu Cave; 1, sample site at the middle of the cave;
2, sample site far from the entrance of the cave; W, weathered rock; C, weathered crust.
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module hubs were defined as keystone taxa (28, 29). USCg was the major keystone
taxon (accounting for 74.42%) in the atmMOB network (Fig. 5A, Table S6). In the bacte-
rial network, 65 keystone taxa were observed, and the most abundant ones were affili-
ated with the phyla Proteobacteria (Gammaproteobacteria class and USCg group) and
Actinobacteria (Gaiella and Aciditerrimonas) (Fig. 5B, Table S7). In both atmMOB and
bacterial networks, the relative abundances of keystone taxa all correlated positively
with the CH4 and CO2 concentrations (Fig. S1). In the bacterial network, the MOB key-
stone taxon Methyloceanibacter solely accounted for 1.12% of all nodes, connected
with a large number of other nodes (Fig. S2). USCg was tightly connected with
other bacterial nodes, including Gaiella, Povalibacter, Bacillus, and many other
unclassified genera (Fig. S2).

DISCUSSION
The dominance of USC in the atmMOB communities in subterranean karst

caves. AtmMOB affiliated with USC were previously reported in various soils and were
proposed to live by consumption of atmospheric CH4 (10, 14, 15). Therefore, soil has
been considered the only biological sink of atmospheric CH4 in terrestrial ecosystems.
Later, USCa was detected in biofilms of lava caves (12). Here, we revealed the domi-
nance of USC in limestone and dolomite karst caves, which greatly expanded our
understanding of the ecological distribution of USC in these ecosystems. Moreover,
the high-throughput sequencing technique used in this study allows us to characterize
the biodiversity of atmMOB in more detail. USCa, a lineage within the family
Beijerinckiaceae (12, 17, 30), was mostly detected in cave ecosystems in biofilms and
microbial mats from volcanic, limestone, and marble caves (12) and on weathered
rocks in dolomite caves (Fig. 3A). It is worth noting that the relative abundances of
USCg assessed by pmoA gene sequencing were much higher than those of USCa in our
samples (Fig. 3A), which was echoed by the results of 16S rRNA sequencing, especially
in XCT (Fig. 3C). The results of the USC pmoA gene quantification showed intercave
heterogeneity among the three karst caves, ranging from 104 to 109 copies � g21 dry
weight (Table 1). The USCa abundances in these karst caves were between those of
forest soil and grassland soil, whereas cave USCg abundances were higher than those
in forest and grassland soils (24). The dominance of USCgmay relate closely to alkaline
conditions in our karst caves (Table 1) (16), conforming to our previous assumption. In
addition to USC, we also observed additional minor MOB groups in the three karst
caves investigated in this study, including Deep-sea 2, as suggested by pmoA gene
sequencing (Fig. 3A), and Methyloceanibacter and Methylomirabilis, based on 16S rRNA
sequencing (Fig. 3C). Of note, both Deep-sea 2 and Methyloceanibacter have been
reported in anoxic sediments (18, 31), which were enriched in P1C samples in this
study (Fig. 3A and C). Their occurrence may be highly related to the cave temperature
(18.6°C) and pH (7.78 to 9.19), which might be favorable for these groups (18, 31).
Methyloceanibacter has been isolated under conditions of 18 to 27°C and pH 6.3 to 9,
with ammonium as the inorganic nitrogen source (18). Another anaerobic methanotro-
phic group detected was Methylomirabilis (i.e., NC10), which performs methane oxida-
tion peculiarly coupled to denitrification. Site L1 harbored abundant Methylomirabilis

TABLE 3 Topological properties of microbial cooccurrence networks in karst weathered rock,
southwest China

Microbial networka

Value forb:

Nodes Edges APL ACC Diam Modularity Density AD AWD
AtmMOB 200 1,861 3.32 0.62 10 0.47 0.094 18.61 14.61
Total bacteria 924 58,418 3.28 0.73 9 0.49 0.14 126.45 101.94
aAtmMOB, atmospheric methane-oxidizing bacteria.
bAPL, average path length; ACC, average clustering coefficient; Diam, diameter; AD, average degree; AWD,
average weighted degree.
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(Fig. 3C), possibly due to the thick layer of weathered rock at this site, which may result
in an anaerobic microenvironment.

Environmental factors shape atmMOB and bacterial communities in karst caves.
pH and water gradients were the primary variables to shape MOB communities across
large soil regions, whereas multiple variables, including the total nitrogen, aridity
index, and mean annual temperature, affected the MOB community in small regions
(11, 32). Correlations between environmental factors and MOB and total bacterial com-
munities have been investigated in soils (11, 33), whereas such knowledge of karst
caves is still scarce.

Our results showed that the pH and the CH4 concentration correlated significantly
with atmMOB and other MOBs. Specifically, the relative abundances of USCg and USCa

FIG 4 Cooccurrence networks of the atmMOB (A, B) and total bacterial (C, D) communities across three karst caves are colored to show taxonomy (A, C)
and modules (B, D). Each node represents an OTU (atmMOB) or an ASV (total bacteria) in the network, and the node size is proportional to the degree
(connected with other nodes). Nodes with positive interactions are linked with pink edges, whereas negative interactions are linked in blue.
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had opposite associations with these environmental factors in the weathered rocks.
The relative abundances of USCg correlated positively but those of USCa correlated
negatively with the CH4 concentration and pH (Table S3). The niche differentiation
between USCg and USCa according to pH has been well documented previously,
showing that an alkaline pH favors USCg, whereas neutral to slightly acidic conditions
favor USCa (11, 24). The alkaline conditions observed in the cave samples may have
resulted in the dominance of USCg. The correlation between the relative abundance of
USC and the pH further confirmed the different pH preferences of USCa and USCg.
Besides pH, we also found significant correlations between the relative abundance of
USC and the CH4 concentration, as confirmed by the results of both pmoA sequencing
and 16S rRNA sequencing in this study. Many studies have revealed that CH4 concen-
trations in karst caves are lower than in the outside atmosphere (3, 4). High CH4 con-
centrations were associated with increases in the USCg relative abundances (Table S3),
which might indicate that relatively high CH4 concentrations of close to 2 ppm are
favorable for the growth of USCg, especially in the X1 sampling site (Fig. 3A, Table S1).
High relative abundances of USCa were observed under the low CH4 concentrations
and neutral pHs at the P1C and P2C sites (Fig. 3A, Table S1), which provided suitable
niches for USCa. These phenomena suggest that in addition to pH, the CH4 concentra-
tion may also drive the niche differentiation between USCg and USCa. Excluding the
CH4 concentration and pH, the CO2 concentration might also correlate positively with
USCg and negatively with USCa (Table S3). Type II MOB can fix CH4 and CO2 in the serine
cycle (34). Recently, USCg and USCa were both reported to contain genes for the serine
cycle (16, 17), but USCgmight be more competitive with USCa in the cave environment
of high CO2 concentrations and low [d 13C]CO2 value, especially in XCT (Table S1).

In addition to atmMOB, pH also affected the relative abundances of other MOBs,
such as Methyloceanibacter and Methylomirabilis, based on the analysis of 16S rRNA
sequencing (Table S3). The relative abundance of Methyloceanibacter linked negatively
with pH, especially in P1C, which had the lowest pH (7.786 0.01), whereas the relative
abundance of Methylomirabilis correlated positively with pH and was rich in site L1
samples (pHs of 8.72 and 8.97). Methylomirabilis was mainly detected in the P2 and L1
sites, which had low CO2 concentrations, and the relative abundance of Methylomirabilis
was revealed to be negatively correlated with CO2 (Table S3), suggesting that low CO2 con-
centrations were conducive to the subsistence of Methylomirabilis. Anaerobic MOB affili-
ated with Methylomirabilis have been reported to produce CO2 in the process of CH4 oxidi-
zation and to utilize CO2 in the Calvin-Benson-Bassham (CBB) cycle (35). This result
suggested that anaerobic CH4 oxidization might decrease the CO2 concentration in anaer-
obic microenvironments of karst caves.

FIG 5 Zi-Pi plots showing the distribution of OTUs and ASVs with their topological roles in atmMOB (A) and
bacterial (B) networks of three karst caves in Guilin City, southwest China. Each dot represents an OTU in the
atmMOB network or an ASV in the bacterial network. Zi, within-module connectivity; Pi, among-module
connectivity.
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Cooccurrence networks are dominated by positive links and USCc. Cooccurrence
networks can serve as a powerful tool to investigate potential ecological interactions
between microbial groups in natural environments, and network analysis may help to
understand meaningful structural information of complex microbial taxa (36, 37). The
cooccurrence network of atmMOB and bacteria showed mostly positive correlations
(96.51% in the atmMOB network and 99.46% in the bacterial network) (Fig. 4), which
indicated that members of the networks would respond simultaneously to environ-
mental fluctuations, resulting in positive feedback and cooscillation (29, 38, 39). These
phenomena suggested that MOB and bacteria were all susceptible to environmental
changes.

The keystone taxa in the atmMOB and bacterial networks all belonged to module
hubs and connectors (Fig. 5). USCg, accounting for 85.50% of the total keystone taxa,
predominated in the atmMOB network. It is worth noting that USCgwas also identified
as a keystone taxon in the bacterial network (Table S7). USCg is recalcitrant to culture
and has no isolate to date, but a draft genome of the USCg group has been obtained
from alkaline mineral cryosols (16). The draft genome demonstrated that USCg has all
of the essential genes for the complete serine biosynthesis pathway (high-affinity type
II MOB) for formaldehyde assimilation and genes involving nitrogen metabolism (16).
Besides USCg, USCa is the second keystone taxon in the atmMOB network. USCa may
also be capable of nitrogen fixation, and it expresses the genes for hydrogenase and
carbon monoxide dehydrogenase (17). Besides USCg, the keystone taxa in the bacterial
network also included Gaiella and Aciditerrimonas (Table S7). Gaiella, within the order
Gaiellales in the phylum Actinobacteria, was first reported in a deep mineral aquifer
(40). Functionally, Gaiella may be involved in the reduction of nitrate to nitrite (41, 42).
Aciditerrimonas can live as both a heterotroph and an autotroph. Members of this ge-
nus are capable of ferric ion reduction to facilitate autotrophic growth under anaerobic
conditions (43). Notably, Aciditerrimonas was reported in neutral soil (pH of 7.45 to
7.89), which correlated positively with total nitrogen (44). A subnetwork of keystone
MOB nodes also showed that USCgmight connect with other bacteria, such as Gaiella
and Aciditerrimonas (Fig. S2), which may be involved in the carbon and nitrogen cycles.
In addition to USCg, Methyloceanibacter connected with many nodes, especially USCg
and many unclassified nodes (Fig. S2). This result suggested that there might be a syn-
ergistic effect among MOBs to regulate the cave CH4 cycle. Collectively, these observa-
tions indicated that the keystone taxa in the atmMOB and bacterial occurrence net-
work, especially USC, may be not only involved in the carbon cycle but also involved in
or linked with the nitrogen cycle and other metabolic pathways. These findings offer
us valuable information about the ecological relevance between elemental cycles in
the caves.

Conclusion. In summary, wide distribution and dominance of high-affinity USCg
were observed for the MOB communities in subterranean karst caves, and caves
offered more suitable habitats for USCg than for USCa. Partially anoxic microniches in
caves were also suitable for the growth of anaerobic MOB, especially Methylomirabilis.
CH4 and CO2 concentrations, as the substrate and product of CH4 oxidation, respec-
tively, and pH are key environmental factors affecting MOB community structure in
caves. USCg served as the keystone taxon both in the atmMOB and the overall bacterial
cooccurrence networks, indicating the significance of this group in the total bacterial
communities. The overwhelming dominance of positive links in the networks indicated
a consistent response to environmental changes by different microbial groups and,
thus, would have positive feedback in the cave ecosystem. In addition to participating
in CH4 oxidation, USC in the weathered rock may also connect with multiple metabolic
pathways, especially the nitrogen cycle. Our results greatly expand our knowledge
about the ecological distribution of USC in natural environments and underline their
significance in the consumption of atmospheric methane, supporting karst caves as
another atmospheric methane sink besides soil in the terrestrial ecosystem.
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MATERIALS ANDMETHODS
Study site description and sampling. Guilin City in Guangxi Province is characterized by a well-

developed and extensive distribution of karst physiognomy. The climate of this area is greatly influenced
by subtropical monsoons, with a mean annual temperature of about 20°C and mean annual precipita-
tion of around 1,887mm (45, 46). Three distinct karst caves in Guilin City were selected for this study,
which included Panlong Cave (PLD; 24°57939.20N, 110°21917.40E, with dripping water inside), Luohandu
Cave (LHD; 25°0955.80N, 110°54914.20E, with subsurface stream and dripping water), and Xincuntun Cave
(XCT; 24°58938.50N, 109°44915.70E, a dry cave without any water present during sampling) (Fig. 1A). The
overlying vegetation varied from cave to cave. PLD was covered with shrubs, and the vegetation overly-
ing LHD was dominated by arbors. In contrast, widely spaced orange trees were planted over XCT. The
overlying strata of XCT were thinner (0.8 to 23 m) than those of the other two caves (PLD, 60 to 150 m;
LHD, 3 to 136 m), and the well-developed cracks in the overlying rocks led to good ventilation at several
sites inside the cave. The lengths of the three caves were 251 m for PLD, 356 m for LHD, and 100 m for
XCT (Fig. 1C). PLD and XCT are limestone caves that developed in the Rongxian Formation of the Upper
Devonian, and LHD is a dolomite cave developed in the Donggangling Formation of the Middle
Devonian.

Samples were collected on 13 to 21 January 2019. At the approximate middle and the end of each
cave, we sampled the weathered crust and the underlying weathered rocks on the cave wall using sterile
spades. Triplicate samples of crust (C) and weathered rocks (W) were collected for each site (n= 36, con-
tains 3 replicates). Air samples were collected with 1-liter gas sampling bags (MBT41; Dalian Hede
Technologies Corporation, China). The air temperature was measured by an electronic thermometer
(905-T1; Testo, Germany) while sampling. All solid samples were transported on ice to the geomi-
crobiology laboratory at China University of Geosciences (Wuhan) and stored at 280°C on arrival for
further use.

Physiochemical analysis. All solid samples (n= 36, contains 3 replicates) were freeze-dried (Alpha 1-
2 LD freeze-dryer; Martin Christ, Osterode am Harz, Germany) and passed through a sterile 2-mm sieve.
The sieved samples were mixed with ultrapure water (1:5, wt/vol) to get a suspension. The supernatant
pH of the suspension was determined using a multiparameter water quality detector (Hach, Loveland,
CO, USA) (25). Dissolved anions and cations were measured with anionic chromatography (ICS-600;
Thermo Scientific, USA) and inductively coupled plasma-optical emission spectrometry (ICP-OES) (iCAP
76001; Thermo, USA), respectively, after filtration with 0.22-mm filters (47). The concentrations of CH4

and CO2 gases and the carbon isotope of CO2 ([d
13C]CO2) of cave air samples were measured by a high-

precision carbon isotope analyzer (G2201-I; Picarro, USA) using cavity decay spectroscopy (cavity ring-
down spectroscopy [CRDS]) (5) at the Institute of Karst Geology, Chinese Academy of Geological
Sciences.

DNA extraction, gene amplification, and sequencing. An aliquot of 0.5 g of freeze-dried solid sam-
ples was used for DNA extraction with a DNeasy PowerSoil kit (12888-100; Qiagen, Germany) according
to the manufacturer’s instructions. The concentration and quality of DNA were measured by a Nanodrop
2000 spectrophotometer (ND2000; Thermo Scientific, USA) and visualized by 2% agarose gel electropho-
resis. Due to the dominance of USCg in MOB via clone library construction with the primer set A189/
mb661 in the Heshang Cave (22), the specific primer set A189f/A650r for the pmoA gene of atmMOB
(21) and the 338F/806R primer set (48, 49) for bacterial V3-V4 16S rRNA were used, respectively. The
resulting amplicons were sequenced on the Illumina MiSeq platform with a paired-end 250-bp (PE250)
(for bacteria) and a PE300 (for pmoA gene) strategy at Shanghai Personal Biotechnology, Co., Ltd.,
Shanghai, China. All raw sequence reads were deposited in the National Omics Data Encyclopedia
(NODE; https://www.biosino.org/node) with the project numbers OER094486 (for bacteria) and
OER094488 (for MOB).

pmoA gene quantification. The absolute abundance of atmospheric methane-oxidizing bacteria
(atmMOB) was measured by quantitative PCR (qPCR) to estimate the potency of atmMOB. The gene
abundances of USCg and USCa were determined using primer sets A189/gam634r (50) and A189/for-
est675r (51) and the TB Green system (RR820A; TaKaRa, Japan) with a real-time PCR detection system
(CFX96; Bio-Rad, USA). All reactions were performed in triplicate in 20-ml volumes containing 1ml tem-
plate DNA, 10ml 2� TB Green master mixture (RR820A; TaKaRa, Japan), 0.5ml forward primer (10mM),
0.5ml reverse primer (10mM), 3.2ml 25mM MgCl2, and 4.8ml RNase-free water (H9012; TaKaRa, Japan).
Standard curves were constructed with plasmid containing the target gene fragment, diluted to 109 to
103 gene copies �ml21. The thermal cycling steps to determine USC gene abundance followed the proto-
cols described previously in references 50 and 51, except that the annealing temperatures were 64°C for
USCa and 64.5°C for USCg. Triplicate PCRs were done for each of the triplicate environmental samples to
quantify the pmoA gene abundances of the USC clades (n= 108, contains 9 replicates). The results of
qPCR were expressed as gene copy numbers per gram dry weight (copies � g21 dry weight). The average
R2 of the standard curve was 0.997, and the amplification efficiency was within the range of 95% to
105%.

Sequencing data processing. For the pmoA and 16S rRNA genes, raw sequencing data were proc-
essed via the bcl2fastq software (version 1.8.4, Illumina) for primer cutting and barcode removal. The
processed sequences were subsequently filtered and analyzed by QIIME 2 (Quantitative Insight Into
Microbial Ecology; version 2019.7) (52). The sequence processing and removal of chimeric sequences of
the pmoA gene were performed by VSEARCH (version 2.8.1) (53). The unique sequences were clustered
at 95% sequence similarity to generate representative OTU sequences and an OTU table, and then all these
95%-level sequences were translated to amino acid sequences. The pmoA amino acid annotation was per-
formed in BLAST 2.10.01 (54) with an in-house-built database based on published data (11, 55, 56). 16S rRNA
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sequences were quality filtered with Q30, and chimeras were removed with the DADA2 plugin. Subsequently,
representative amplicon sequence variant (ASV) sequences and a feature table were generated. Feature taxon-
omy of the 16S rRNA gene was assigned against a published database containing the sequences of atmMOB
(10). All samples were resampled to the same level of sequencing to avoid the impact of sequencing depth on
identifying microbial communities. Diversity indices included alpha diversity and beta diversity, and phylogenic
trees (unrooted and rooted trees) were constructed in QIIME 2.

Statistical analysis. Spearman’s rho correlation, Pearson correlation, the Kruskal-Wallis H test, and
analysis of variance (ANOVA) in SPSS Statistics (version 26.0) were used to investigate the correlations
between environmental variables and communities and distinguish the differences in physicochemical
parameters among different caves. Principal coordinate analysis (PCoA) and the Mantel test, both based
on Bray-Curtis dissimilarities, were conducted with the vegan (57) package. The box plots of alpha diver-
sity, linear relationship, and differential analysis of 16S rRNA and pmoA genes were analyzed and visual-
ized with the ggpubr (58) and ggplot2 (59) packages of R software (version 3.6.1). Structural equation
modeling was conducted with the AMOS (analysis of moment structures) software (version 25.0).
Correlation heatmaps were analyzed and visualized with the corrplot package (60). The combination
chart of stacked-bar and clustering tree-based unweighted pair group method using arithmetic average
(UPGMA) was analyzed and visualized in R software. Random forest machine learning was performed
with randomForest (61), A3 (62), and rfPermute (63) packages in R to explore the impacts of environ-
mental variables in different caves.

Cooccurrence networks were constructed with Hmisc (64) and igraph (65) packages in R. To reduce
the complexity, OTUs and ASVs that had relative abundances above 0.1% and more than 20% occur-
rence in all samples were selected for network analysis. Spearman’s correlation was calculated to explore
the correlations among bacterial ASVs and atmMOB pmoA OTUs, with a correlation coefficient r of $0.7
and P value of ,0.05 (Benjamini and Hochberg method adjusted). Networks were visualized with the
Fruchterman-Reingold layout in Gephi (version 0.9.2) software (66). Within-module connectivity (Zi) and
among-module connectivity (Pi) thresholds were used to classify the ecological roles of individual nodes
in the network (67). Briefly, all nodes were classified into four groups: peripherals (Zi# 2.5 and Pi# 0.62),
connectors (Zi# 2.5 and Pi. 0.62), module hubs (Zi. 2.5 and Pi# 0.62), and network hubs (Zi. 2.5 and
Pi. 0.62) (68). Theoretically, connectors, module hubs, and network hubs were considered keystone taxa
in the network (28, 69).
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