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Abstract

Background

Genetic involvement of Killer Immunoglobulin-like Receptor (KIR) polymorphisms and

Human Immunodeficiency Virus (HIV)-exposed seronegative (HESN) compared to HIV-

infected (HIVI) individuals has been reported. However, inconsistency of the outcomes

reduces precision of the estimates. A meta-analysis was applied to obtain more precise esti-

mates of association.

Methods

A multi-database literature search yielded thirteen case-control studies. Risks were

expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at

a two-tailed P-value of� 0.05. We used two levels of analyses: (1) gene content that

included 13 KIR polymorphisms (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4F, 2DS4D, 2DS5,

3DL1 and 3DS1); and (2) 3DL1/S1 genotypes. Subgroup analysis was ethnicity-based

(Caucasians, Asians and Africans). Outlier treatment was applied to heterogeneous effects

which dichotomized the outcomes into pre-outlier (PRO) and post-outlier (PSO). Multiple

comparisons were addressed with the Bonferroni correction.

Results

We generated 52 and 18 comparisons from gene content and genotype analyses, respec-

tively. Of the 70 comparisons, 13 yielded significant outcomes, two (indicating reduced risk)

of which survived the Bonferroni correction (Pc). These protective effects pointed to the Cau-

casian subgroup in 2DL3 (OR 0.19, 95% CI 0.09, 0.40, Pc < 10−3) and 3DS1S1 (OR 0.37,

95% CI 0.24, 0.56, Pc < 10−3). These two PSO outcomes yielded effects of increased magni-

tude and precision, as well as raised significance and deemed robust by sensitivity analysis.

Of the two, the 2DL3 effect was improved with a test of interaction (Pc interaction < 10−4).
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Conclusion

Multiple meta-analytical treatments presented strong evidence of the protective effect (up to

81%) of the KIR polymorphisms (2DL3 and 3DS1S1) among Caucasians. The Asian and

African outcomes were inconclusive due to the low number of studies.

Introduction

Natural Killer (NK) cells are key effectors of innate immunity in response to virus-infected

and transformed cells [1, 2]. NK cell functions are regulated by the balance of signal transduc-

tion through their activating and inhibitory receptors. Effector functions of NK cells include

direct cytotoxic activity and cytokine release [3]. Killer Immunoglobulin-like receptors (KIRs)

are highly polymorphic glycoproteins expressed on NK cells. Genetic diversity of KIRs
includes variations in gene content and copy number as well as allelic polymorphisms [4–8].

KIRmembers include 15 functional genes (2DL1-4, 2DL5A, 2DL5B, 2DS1-5, 3DL1-3 and

3DS1), and 2 pseudogenes (2DP1, 3DP1). KIR ligands are human leukocyte antigen (HLA)-

class I molecules that are expressed in all nucleated cells. The interactions between KIR and

HLA class I molecules regulate NK cell function. To date, impact of KIR diversity has been

investigated in several human diseases and conditions that include infection, autoimmunity,

inflammatory disorders, hematopoietic stem transplantation and reproduction [9]. Recent

studies have shown that KIR polymorphisms are associated with susceptibility to Human

Immunodeficiency Virus (HIV)-1 infection and HIV disease progression [10–12]. In addition,

3DL1/S1 locus is unusual in that it shows allelic polymorphisms encoding inhibitory (3DL1) or

activating (3DS1) receptors [13, 14]. These 3DL1/S1 functions have been reported as protecting

against HIV-infection and progression [15–18]. Moreover, increasing numbers of association

studies of 3DL1/S1 and HIV acquisition have compared HIV-infected (HIVI) and HIV-

exposed seronegative (HESN) individuals. HESN individuals are those who resist HIV-infec-

tion despite repeated exposure to the virus. HESN individuals were found to have enriched

3DL1/S1 genotypes [19]. The mechanism by which HESN individuals are naturally protected

renders this group as more suitable than healthy controls [19, 20]. Therefore, the resistance of

such individuals to HIV has been the focus of interest in identifying the mechanisms of natural

protection. For HESN individuals with 3DS1 and/or 3DL1, it has been proposed that both KIR
polymorphisms are required for increased NK cell activity in the killing of HIV-infected cells

[21]. However, not all studies agree with KIR’s role in HIV infection [22], rendering inconsis-

tency to the cumulative outcomes of the reported studies. Their conclusions may have been

limited by inadequate statistical power because of small sample sizes and lack of proportional

controls. Given these inconsistencies, we perform a meta-analysis to obtain better estimates of

precision and statistical power to help establish associations of the KIR polymorphisms with

HIV acquisition.

Materials and methods

Search strategy

Three databases (PubMed, Google Scholar and Science Direct) were searched for association

studies as of November 28, 2018. The terms used were “Killer Immunoglobulin-like Receptor”,

‘KIR”, “HIV”, “Human Immunodeficiency Virus”, “HESN” “HIV-exposed seronegative” as
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medical subject headings and text, without language restrictions. References cited in the

retrieved articles were screened manually to identify additional eligible studies.

Inclusion and exclusion criteria

SC and NP independently decided on which articles were to be included. This was then dis-

cussed in order to reach an agreement; otherwise, NS adjudicated so that consensus was

obtained. Inclusion criteria included the following: (1) articles evaluating associations between

KIR polymorphisms and risk for HIV acquisition; (2) the studies have a case–control study

design; (3) HIVI cases; (4) controls were HESN, tested with HIV enzyme immunoassay or

reverse transcriptase-polymerase chain reaction for at least 18 months; (5) sufficient genotype

or allele frequency data to allow calculation of odds ratios (ORs) and 95% confidence intervals

(CIs). Excluded articles were those that: (1) evaluated associations between KIR polymor-

phisms and HIV progression; (2) had no controls or with healthy controls; (3) unconfirmed

HIV infection; (4); were reviews; (5) had duplicate data; (6) had incomplete or absent genotype

data.

Data extraction

Two investigators (SC and NP) independently extracted data and reached a consensus on all

the items, adjudicated by a third investigator (NS). The following information was obtained

from each publication: (i) first author’s name; (ii) published year; (iii) country of origin; (iv)

ethnicity; (v) total sample sizes; (vi) number of HIVI and HESN; (vi) genotyping platform;

(vii) KIR gene content polymorphisms: (viii) KIR3DL1/S1 genotypes and minor allele frequen-

cies. In attempts to fill missing information, we contacted the primary-study authors. None of

the included studies mentioned the influence of environment, nor were data provided.

Quality of the studies

SC and NP assessed the methodological quality of the included studies. The Clark-Baudouin

(CB) scale was used for this purpose [23] because it focuses on statistical (P-values, power and

corrections for multiplicity) and genetic (genotyping methods) features of the included stud-

ies. CB scores range from 0 (worst) to 10 (best) where quality is rated as low (< 5), moderate

(5–6) and high (7–10).

Data synthesis

Risks of HIV acquisition (using raw data for frequencies) were estimated for each study

wherein ORs were calculated for the 13 KIR genes (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4D,

2DS4F, 2DS5, 3DL1 and 3DS1) and the 3DL1/S1 genotypes. The framework and pseudogenes

were excluded for analysis (2DL4, 3DL2, 3DL3, 2DP1 and 3DP1) because of their presence in

all haplotypes. Gene content analysis (presence/absence) was based on the frequency data of

HIVI and HESN. Use of HESN as controls precluded testing for Hardy-Weinberg Equilib-

rium. The combination of gene content variation and genotype distribution precluded the use

of standard genetic modeling, but allowed application of the allele genotype model. Subgroup-

ing was ethnicity-based (Asian, Caucasian and African). Heterogeneity between studies was

estimated using the chi-square based Q-test [24], and quantified with the I2 statistic which

measures degree of inconsistency between studies [25]. An I2� 50% with P� 0.10 indicated

the presence of heterogeneity, which prompted use of the random-effects model [26], other-

wise the fixed- effects model was used [27]. Sources (outlying studies) of heterogeneity were

detected with the Galbraith plot [28]. Outlier treatment consisted of eliminating sources of
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heterogeneity followed by reanalysis. Differential outcomes between the ethnicities (Asians,

Caucasians or Africans) warranted tests of interaction [29]. Threshold for significance was set

at P� 0.05 (two-sided) except in estimations of heterogeneity [30]. Multiple comparisons

were Bonferroni-corrected. Sensitivity analysis, which involves omitting one study at a time

followed by recalculation, was used to test for robustness of the summary effects. Publication

bias assessment was contingent on two conditions: i) statistically significant associations and

ii) comparisons with� 10 studies; less than this number reduces sensitivity of the qualitative

and quantitative tests [31]. Distribution of continuous data was assessed with the Shapiro-

Wilk (SW) test [32]. Normal distribution warranted the use of mean ± standard deviation

(SD) and the parametric approach. Otherwise, non-normal data distribution was descriptively

expressed as median and interquartile range (IQR), with an inferential non-parametric

approach. Data were analyzed using Review Manager 5.3 (Cochrane Collaboration, Oxford,

England), SIGMASTAT 2.03, SIGMAPLOT 11.0 (Systat Software, San Jose, CA).

Results

Characteristics of the included studies

Fig 1 outlines the study selection process in a flowchart following PRISMA (Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses) guidelines [33]. Initial search yielded a

total of 325 citations; title and abstract screenings reduced this number to 51. Thirty four arti-

cles were excluded for not meeting our inclusion criteria; in addition, 4 articles/studies had

absent or incomplete data (S1 List).

These series of exclusions resulted in 13 articles (studies) included in the meta-analysis [34–

46]. Of the 13, three were included in the gene content analysis [35, 36, 39], five in the geno-

type analysis [34, 40–43] and five included both analyses [37, 38, 44–46]. Table 1 identifies

which (Yes) articles cover gene content and genotype analyses. A total of 2,157 HIVI cases and

1,235 HESN controls were included in the meta-analysis (S1 and S2 Tables). S1 details the KIR
polymorphisms for the gene content analysis and S2 outlines the KIR3DL1/S1 genotypes

(HIVI and HESN) for the genotype analysis. The number of articles included seven with Cau-

casian subjects (1,313 cases /485 controls)[40–44, 46, 47]; two Asians (256 cases /151 controls)

[38, 39] and four Africans (588 cases /599 controls) [34–37]. Non-normal distribution of the

CB scores (SW, P = 0.04) indicated high methodological quality of the included articles

(median: 7, IQR: 6–8). S1 and S2 Tables show the quantitative traits of the included studies.

Total sample sizes ranged from 41 to 577. Statistical power of the individual studies was low,

but high at the aggregate level (99.9%) at α = 0.01 and OR of 1.5 (G�Power program: http://

www.psycho.uni-duesseldorf.de/aap/-projects/gpower). A detailed description of our study is

summarized for PRISMA (S3 Table) and for genetic association studies (S4 Table).

Overall comparisons

Gene content analysis. Table 2 shows eight significant outcomes, the Pa values of which

ranged from high (< 10−5) to marginal (0.05). Risks were increased in five and decreased in

three outcomes. On account of two polymorphisms (2DS4F and 3DS1), risks in the overall

analysis were increased (OR 1.62, 95% CI 1.10, 2.37) and decreased (OR 0.76, 95% CI 0.57,

1.00), respectively. Subgroup-wise, Caucasians were susceptible on account of 2DL2 (OR 1.36,

95% CI 1.00, 1.84) and 2DS1 (OR 1.71, 95% CI 1.15, 2.53). Contrastingly, this subgroup was

protected because of 2DL1 (OR 0.20, 95% CI 0.05, 0.79) and 2DL3 (OR 0.29, 95% CI 0.11,

0.75). Risks were increased for Asians (2DL5B: OR 2.80, 95% CI 1.17, 6.67) and Africans

(2DS4F: OR 2.01, 95% CI 2.01, 3.18). Of note, only the 2DL3 polymorphism in Caucasians
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Fig 1. Summary flowchart of literature search.

https://doi.org/10.1371/journal.pone.0225151.g001
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(OR 0.19, 95% CI 0.09, 0.40, Pa < 10−5) survived the Bonferroni correction (Pc < 10−3) which

centralizes this finding for gene content analysis.

Genotype analysis of 3DL1/S1. Table 3 shows three significant outcomes (Pa = 0.01–0.04)

in PRO, none of which survived the Bonferroni-correction (Pc = 0.7 to> 1) except 3DS1S1 in

PSO (Pc < 10−3) and this represents the core finding in our genotype analysis (Table 4). Figs

2–4 summarize the mechanism of outlier treatment of this polymorphism. Fig 2 shows in Cau-

casians, that the PRO reduced risk effect (OR 0.45, 95% CI 0.24, 0.84, Pa = 0.01) was heteroge-

neous (Pb < 0.06, I2 = 50%). The source of this heterogeneity [44] is shown in Fig 3. Fig 4

shows the PSO outcome (OR 0.37, 95% CI 0.24, 0.56, Pa < 10−5) of intensified significance and

reduced heterogeneity (Pb = 0.38, I2 = 5%).

Tests of interaction. S5 Table shows that of the 10 comparisons subjected to these tests,

only the Caucasian effect in 2DL3 (OR 0.19, Pa < 10−5) compared with that of the African

effect (OR 1.23, Pa = 0.23) resulted in significant interaction (Pci < 10−4) suggesting improved

association. Extent of the significant Caucasian effect is thus placed in context when compared

with its non-significant African counterpart.

Sensitivity analysis. Table 5 shows all significant outcomes in the overall and subgroup

analyses were unaffected by sensitivity treatment except the 2DL2, 2DS1 and 3DS1 (gene con-

tent analysis) and 3DL1/S1 in PRO Caucasians (genotype analysis).

Publication bias. Two outcomes (3DL1L1 and 3DS1S1) in our meta-analysis had 10 stud-

ies which we subjected to the funnel plot analysis and tests for publication bias. Operating data

(ORs) for 3DL1L1 and 3DS1S1 were respectively non-normal (SW: P < 0.001) and normal

(SW: P = 0.053). Neither the 3DL1L1 (Begg Mazumdar: Kendall’s tau = 0.07, P = 0.79) and

3DS1S1 (Egger’s test: intercept: -0.40, P = 0.77) outcomes nor the funnel plot show evidence of

publication bias (Fig 5).

Discussion

Summary of findings

Lack of evidence (mainly low number of studies) precluded conclusions about Asians and

Africans. Our main findings are thus confined to Caucasians, who are afforded protection by

two KIR polymorphisms (2DL3 and 3DS1S1) on account of a number of meta-analysis

Table 1. Characteristics of the studies in the KIR polymorphisms and its associations with HIV acquisition.

K First author Year Country Ethnic Group KIR gene content polymorphisms 3DL1/S1 genotype polymorphisms [R]

1 Jennes 2006 Tanzania African No Yes [34]

2 Merino 2011 Zambia African Yes No [35]

3 Koehler 2013 Tanzania African Yes No [36]

4 Naranbhai 2016 South Africa African Yes Yes [37]

5 Chavan 2014 India Asian Yes Yes [38]

6 Mori 2015 Thailand Asian Yes No [39]

7 Boulet 2008 Canada Caucasian No Yes [40]

8 Guerin 2011 Italy Caucasian No Yes [41]

9 Habegger 2013 Argentina Caucasian No Yes [42]

10 Tallon 2014 Canada Caucasian No Yes [43]

11 Zwolinska 2016 Poland Caucasian Yes Yes [44]

12 Jackson 2017 Canada Caucasian Yes Yes [45]

13 Rallon 2017 Spain Caucasian Yes Yes [46]

K; number designation of each article, [R]; reference number

https://doi.org/10.1371/journal.pone.0225151.t001
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Table 2. Associations of KIR gene content polymorphisms with HIV acquisition.

KIR Ethnicity K HIVI (n/N) HESN (n/N) Test of association Test of

heterogeneity

AM

OR 95% CI Risk Pa Pc Pb I2 (%)

Inhibitory KIR gene
2DL1 All 4 829/869 573/588 0.62 0.32, 1.22 Decreased 0.17 >1 0.63 0 F

Caucasians 3 580/643 238/244 0.20 0.05, 0.79 Decreased 0.02 >1 0.11 54 F

Asians 2 243/256 139/151 1.20 0.52, 2.74 Increased 0.67 >1 0.15 52 F

Africans 2 392/394 473/481 2.51 0.47, 13.34 Increased 0.28 >1 0.28 15 F

2DL2 All 8 770/1,385 588/1,050 1.09 0.91, 1.29 Increased 0.35 >1 0.48 0 F

Caucasians 3 354/643 115/244 1.36 1.00, 1.84 Increased 0.05 >1 0.38 0 F

Asians 2 115/256 80/151 0.88 0.57, 1.36 Decreased 0.56 >1 1.00 0 F

Africans 3 301/486 393/655 1.00 0.79, 1.29 Null 0.97 >1 0.55 0 F

2DL3 All 5 560/656 678/799 1.11 0.82, 1.49 Increased 0.50 >1 0.76 0 F

Caucasians 3 518/643 226/244 0.29 0.11, 0.75 Decreased 0.01 0.70 0.06 65 R

Caucasians� 2 409/520 137/147 0.19 0.09, 0.40 Decreased < 10−5 < 10−3 0.46 0 F

Asians 2 238/256 128/151 2.02 0.32, 12.96 Increased 0.46 >1 0.01 85 R

Africans 3 417/486 553/655 1.23 0.88, 1.73 Increased 0.23 >1 0.97 0 F

2DL5A All 3 194/718 111/478 0.73 0.53, 1.01 Decreased 0.06 >1 0.92 0 F

Caucasian 1 147/431 42/105 0.78 0.50, 1.20 Decreased 0.26 >1 NA NA NA

Africans 1 19/240 37/326 0.67 0.38, 1.20 Decreased 0.18 >1 NA NA NA

2DL5B All� 3 268/718 228/478 1.14 0.68, 1.91 Increased 0.62 >1 0.05 67 R

All 2 233/671 204/431 0.91 0.69, 1.20 Decreased 0.51 >1 0.67 0 F

Asians 1 35/47 24/47 2.80 1.17, 6.67 Increased 0.02 >1 NA NA NA

Caucasians 1 108/431 30/105 0.84 0.52, 1.35 Decreased 0.46 >1 NA NA NA

Africans 1 125/240 174/326 0.95 0.68, 1.33 Decreased 0.76 >1 NA NA NA

3DL1 All 8 1,335/1,390 1,016/1,050 1.03 0.64, 1.64 Null 0.91 >1 0.28 20 F

Caucasians 3 607/643 229/244 0.85 0.29, 2.44 Decreased 0.76 >1 0.15 47 F

Asians 2 240/256 137/151 1.17 0.54, 2.51 Increased 0.69 >1 0.20 38 F

Africans 3 488/491 650/655 0.95 0.09, 9.87 Increased 0.97 >1 0.15 51 F

Activating KIR genes
2DS1 All 6 260/834 211/758 0.95 0.75, 1.20 Decreased 0.68 >1 0.48 0 F

Caucasians 3 267/643 88/244 1.27 0.69, 2.33 Increased 0.44 >1 0.04 68 R

Caucasians� 2 223/520 46/147 1.71 1.15, 2.53 Increased 0.007 0.49 0.90 0 F

Asians 2 120/256 79/151 0.90 0.59, 1.35 Decreased 0.60 >1 0.84 0 F

Africans 2 64/394 79/481 1.04 0.66, 1.63 Increased 0.88 >1 0.23 30 F

2DS2 All 6 428/834 386/758 1.08 0.88, 1.32 Increased 0.48 >1 0.68 0 F

Caucasians 3 355/643 112/244 1.42 0.97, 2.08 Increased 0.07 >1 0.25 28 F

Asians 2 120/256 75/151 1.27 0.59, 2.75 Increased 0.55 >1 0.15 51 F

Africans 2 211/394 249/481 1.04 0.80, 1.36 Increased 0.77 >1 0.87 0 F

2DS3 All 6 346/1,084 216/772 1.22 0.87, 1.73 Increased 0.25 >1 0.06 53 R

All� 4 168/564 186/625 0.97 0.75, 1.25 Null 0.81 >1 0.48 0 F

Caucasians 3 213/643 59/244 1.53 0.87, 2.17 Increased 0.14 >1 0.11 55 F

Africans 2 103/394 133/481 0.91 0.67, 1.23 Decreased 0.53 >1 0.47 0 F

2DS4F All 3 268/348 302/402 1.62 1.10, 2.37 Increased 0.01 0.70 0.15 47 F

Caucasians 3 243/643 75/244 1.47 0.64, 3.41 Increased 0.37 >1 0.004 82 R

Caucasians� 2 182/520 52/147 0.97 0.66, 1.42 Null 0.87 >1 0.93 0 F

Africans 1 209/240 251/326 2.01 2.01, 3.18 Increased 0.003 0.21 NA NA NA

2DS4D All 5 688/930 425/617 0.86 0.67, 1.10 Decreased 0.24 >1 1.00 0 F

(Continued)
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treatments. Between the two polymorphisms, 2DL3 presents strong evidence on account of the

magnitude of protective effect (81%), associative and interaction outcomes (Pci < 10−4). On

the other hand, 3DS1S1 is strong based on number of studies and aggregate statistical power

(Table 6). The advantage or disadvantages of using sensitivity approach versus eliminating the

outlier is contextualized in terms of the following: Sensitivity treatment evaluates robustness of

the pooled ORs while outlier elimination addresses heterogeneity. Favorable outcome of sensi-

tivity analysis is robustness, where no study contributed to instability of the results. On the

other hand, favorable outcomes of outlier treatment involve both heterogeneity and signifi-

cance. In our study, heterogeneity was either reduced or eliminated; significance was

Table 2. (Continued)

KIR Ethnicity K HIVI (n/N) HESN (n/N) Test of association Test of

heterogeneity

AM

OR 95% CI Risk Pa Pc Pb I2 (%)

Caucasians 3 522/643 199/244 0.88 0.59, 1.30 Decreased 0.51 >1 0.97 0 F

Africans 1 128/240 188/326 0.84 0.60, 1.17 Decreased 0.30 >1 NA NA NA

2DS5 All 6 400/1,084 351/772 0.89 0.73, 1.09 Decreased 0.27 >1 0.67 0 F

Caucasians 3 184/643 74/244 0.97 0.65, 1.45 Null 0.89 >1 0.27 24 F

Africans 2 181/394 241/481 0.83 0.64, 1.09 Decreased 0.19 >1 0.94 0 F

3DS1 All 5 186/773 172/729 0.76 0.57, 1.00 Decreased 0.05 >1 0.17 37 F

Caucasians 3 246/643 89/244 1.12 0.71, 1.76 Increased 0.64 >1 0.17 44 F

Africans 3 41/491 55/655 1.19 0.56, 2.56 Increased 0.65 >1 0.07 63 R

Africans� 2 22/251 17/329 1.80 0.93, 3.48 Increased 0.08 >1 0.65 0 F

K: number of studies; HIV: Human Immunodeficiency Virus; HIVI: HIV-Infected; HESN: HIV-exposed seronegative; n: number of individuals; N: total number; OR:

odds ratio; CI: confidence interval; Null: OR 0.97–1.03; Pa: P-value for test of association; Pc: Bonferroni corrected Pa; Pb: P-value for heterogeneity; I2 is a measure of

variability; Values in bold indicate significant associations; F: Fixed-effects; R: Random-effects; AM: Analysis Model; NA: Not applicable;� outlier treated

https://doi.org/10.1371/journal.pone.0225151.t002

Table 3. Summary associations of 3DL1/S1 genotypes and HIV acquisition in the pre-outlier (PRO) analysis.

KIR genotype Comparisons PRO AM

K HIVI (n/N) HESN (n/N) Test of association Test of

heterogeneity

OR 95%CI Risk Pa Pc Pb I2 (%)

3DL1L1 All 10 1,181/1,850 456/717 1.19 0.83, 1.71 Increased 0.34 >1 0.01 60 R

Caucasians 7 1,010/1,629 286/494 1.20 0.81, 1.77 Increased 0.36 >1 0.01 65 R

Asians 1 13/47 5/47 3.21 1.04, 9.90 Increased 0.04 >1 NA NA NA

Africans 2 158/174 165/176 0.67 0.30, 1.49 Decreased 0.33 >1 0.45 0 F

3DL1S1 All 10 574/1,850 201/717 1.01 0.73, 1.41 Null 0.94 >1 0.03 52 R

Caucasians 7 535/1,629 157/494 1.07 0.77, 1.47 Increased 0.70 >1 0.09 45 R

Asians 1 24/47 35/47 0.36 0.15, 0.85 Decreased 0.02 >1 NA NA NA

Africans 2 15/174 9/176 1.73 0.73, 4.09 Increased 0.21 >1 0.52 0 F

3DS1S1 All 8 94/1,850 58/717 0.54 0.29, 1.01 Decreased 0.06 >1 0.02 59 R

Caucasians 7 84/1,629 51/494 0.45 0.24, 0.84 Decreased 0.01 0.70 0.06 50 R

Asians 1 10/47 7/47 1.54 0.53, 4.48 Increased 0.42 >1 NA NA NA

PRO: pre-outlier; K: number of studies; HIV: Human Immunodeficiency Virus; HIVI: HIV-Infected; HESN: HIV-exposed seronegative; n: number of individuals; N:

total number; OR: odds ratio; CI: confidence interval; Null: OR 0.97–1.03; Pa: P-value for test of association; Pc: Bonferroni corrected Pa; Pb: P-value for heterogeneity; I2

is a measure of variability; F: Fixed-effects; R: Random-effects; AM: Analysis Model; NA: Not applicable; Values in bold indicate significant associations.

https://doi.org/10.1371/journal.pone.0225151.t003
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intensified. These effects from outlier treatment and those from sensitivity analysis, contribute

to strengthening the evidence that we present.

Functional correlates

Between our two main findings, 3DS1S1 appears to have stronger support from functional

studies than 2DL3. Because 3DS1 is more prominent in the HIV literature [48] than 2DL3,

functional correlate narrative here refer to 3DS1. In the proposed model explaining results

based on the concept of “NK licensing”, individuals carrying 3DS1 would lead to stronger NK

cell activation by degranulation and cytokine release to control early HIV-1 infection [49, 50].

Essentially, functional studies support the protective effect of 3DS1 [51–53]. An increase IFN-γ
and CD107a expressions of NK cells were observed in 3DS1 individuals with early HIV-1

infection [52].

The roles of 3DS1+NK cells in HIV infection are two-fold, one, is expansion in acute HIVI

individuals [15] and the other is increased antiviral activity in HIV-infected cells [49]. The

nature of KIR influence on HIV-infection is admittedly more complex than the sum of the

meta-analytical evidence and functional support for our findings. The complexity is made

Table 4. Summary associations of 3DL1/S1 genotypes and HIV acquisition in the post-outlier (PSO) analysis.

KIR genotype Ethnicity K HIVI (n/N) HESN (n/N) PSO AM Effects of outlier treatment

Test of association Test of

heterogeneity

OR 95%CI Risk Pa Pc Pb I2 (%)

3DL1L1 All 6 796/1,183 349/500 1.19 0.92, 1.53 Increased 0.18 >1 0.47 0 F EH, NC

Caucasians 4 638/1,009 184/324 1.27 0.98, 1.66 Increased 0.08 >1 0.62 0 F EH, NC

Africans 2 158/174 165/176 0.66 0.30, 1.46 Decreased 0.30 >1 0.45 0 F NC, NC

3DL1S1 All 8 508/1,703 149/647 1.21 0.97, 1.51 Increased 0.10 >1 0.8 0 F EH, NC

Caucasians 6 493/1,529 140/471 1.17 0.93, 1.48 Increased 0.18 >1 0.75 0 F EH, NC

Africans 2 15/174 9/176 1.75 0.75, 4.12 Increased 0.20 >1 0.52 0 F NC, NC

3DS1S1 Caucasians 6 62/1170 48/376 0.37 0.24, 0.56 Decreased < 10−5 < 10−3 0.38 5 F RH, IS

PSO: post-outlier; K: number of studies; HIV: Human Immunodeficiency Virus; HIVI: HIV-Infected; HESN: HIV-exposed seronegative; n: number of individuals; N:

total number; OR: odds ratio; CI: confidence interval; Pa: P-value for test of association; Pc: Bonferroni correction for Pa; Pb: P-value for heterogeneity; I2 is a measure of

variability; F: Fixed-effects; AM: Analysis Model; EH: eliminated heterogeneity; RH: reduced heterogeneity; IS: intensified significance; NC: no change; Values in bold

indicate significant associations

https://doi.org/10.1371/journal.pone.0225151.t004

Fig 2. Pre-outlier (PRO) summary effects of 3DS1S1 on HIV acquisition in Caucasians. Diamond denotes the

pooled odds ratio (OR) indicating reduced risk (OR 0.45). Squares show the OR of each study. Horizontal lines on

either side of each square represent 95% confidence intervals (CIs). Significance from the Z test for overall effect is

moderate (Pa = 0.01). The χ2 test shows the presence of heterogeneity (Pb = 0.06, I2 = 50%); I2: a measure of variability

expressed in %.

https://doi.org/10.1371/journal.pone.0225151.g002

Meta-analysis of KIR polymorphism and HIV acquisition

PLOS ONE | https://doi.org/10.1371/journal.pone.0225151 December 2, 2019 9 / 17

https://doi.org/10.1371/journal.pone.0225151.t004
https://doi.org/10.1371/journal.pone.0225151.g002
https://doi.org/10.1371/journal.pone.0225151


Fig 3. Galbraith plot analysis to detect the source of heterogeneity among Caucasian studies; the study above the +2 confidence limit is the outlier,

Zwolinska et al [44]; whose presence in the PRO forest plot (Fig 2) accounts for 50% of the heterogeneity. Removal of this study [44] from the PSO forest plot

(Fig 4) reduced the heterogeneity to 5%. OR: odds ratio; SE: standard error.

https://doi.org/10.1371/journal.pone.0225151.g003

Fig 4. Post-outlier (PSO) summary effects of 3DS1S1 on HIV acquisition in Caucasians. Diamond denotes the

pooled odds ratio (OR) indicating reduced risk (OR 0.37). Squares show the OR of each study. Horizontal lines on

either side of each square represent 95% confidence intervals (CIs). Significance from the Z test for overall effect is high

(Pa < 0.00001). The χ2 test shows reduced heterogeneity (Pb = 0.38, I2 = 5%); I2: a measure of variability expressed

in %.

https://doi.org/10.1371/journal.pone.0225151.g004
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more elaborate from three viewpoints: (i) in vivo/in vitro effects of KIR on HIVI; (ii) extensive

genetic diversity of KIR among populations; and (iii) influence of linkage disequilibrium, rais-

ing the possibility that the observed effect maybe mediated by 3DS1 or other KIRs.

KIR polymorphisms in meta-analysis

To our knowledge, this is the first meta-analysis that examines KIR effects on HIV acquisition.

By extension, associations of the KIR polymorphisms have been reported in a number of

meta-analyses that included disease endpoints such as systemic lupus erythematosus, rheuma-

toid arthritis, type 1 diabetes mellitus and multiple sclerosis [54–57]. The only other meta-

analysis for KIR polymorphisms with another infectious disease is that of Gauthiez et al’s

Table 5. Sensitivity analysis outcomes.

KIR genes content

polymorphism Population Genetic effects

2DL1 Caucasians Robust

2DL2 Caucasians [44, 46]

2DL3 Caucasians Robust

2DS1 Caucasians [44]

2DS4F All Robust

3DS1 All [35, 38, 45]

3DL1/S1 genotype

polymorphism PRO PSO

3DS1S1 All None Robust

3DS1S1 Caucasians [40, 41, 45] Robust

PRO: pre–outlier; PSO: post-outlier; the value in brackets indicate the reference articles that contributed to instability

of associations.

https://doi.org/10.1371/journal.pone.0225151.t005

Fig 5. Funnel plot analysis of 3DL1/S1 genotype for publication bias. OR: odds ratio; SE: standard error.

https://doi.org/10.1371/journal.pone.0225151.g005
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examination of the Hepatitis C Virus (HCV) infection with HCV clearance [58]. Owing to the

incompatibility of results, we compare the two meta-analyses based on methodology. S6 Table

summarizes the comparative features of the two meta-analyses. In common between the two

studies are the uses of I2 to evaluate heterogeneity and Mantel-Haenszel and DerSimonian-

Laird for fixed and random-effects, respectively. Meta-analysis features covered in this study

but not in Gauthiez et al [58] were assessment of study quality, interaction test, outlier treat-

ment and correction for multiplicity.

KIR and GWAS

Genome-wide association studies (GWAS) is a powerful approach to unravel the genetics

behind complex diseases [59]. In HIV research, GWAS has identified a number of SNPs associ-

ated with different forms of HIV progression [60]. The first GWAS in the HIV context was in

the HLA class I locus that confirmed a major effect ofHLA-B�57 in reducing viral load [61].

Containment of viral load in the early stages of HIV infection is facilitated by the HLA-B/KIR

genotype which enhances activation of NK cells [62]. Evidence for KIR-HLA suggests complex

interactions but GWAS appears to be problematic in examining the role of this locus in the

genome context [63]. The reason for this problematic approach relates to the following: One,

HLA-KIR molecules are encoded by two of the most diverse gene families in the human

genome [64]. Diversity of the HLA and KIR loci impacts viral pathogenesis differentially across

individuals [64]. Two, the KIR locus contains variations of the KIR genes. This variation is func-

tionally relevant only in the presence of alleles encoding their specific HLA ligands [63]. For

example, disabled protectivity of the HLA-B allele without 3DS1 contrasts with 3DS1-related

AIDS progression in the absence of specific HLA-B alleles [65]. Thus, variation in the genes

encoding KIR proteins, particularly 3DL1 and 3DS1, has been associated with HIV-1 outcomes

in many genetic and functional studies [66], but these have not been identified by GWAS,

almost certainly because of the extreme inter- and intragenic variability of the KIR haplotypes

[67]. Three, on the fundamental level, the agnostic approach of GWAS in analyzing SNPs limits

the assessment of functionally dependent variants such as that shown by HLA-KIR [63].

Strengths and limitations

Our results are better contextualized with awareness of their strengths and limitations. The

strengths include: (i) impact of outlier treatment on associative significance and heterogeneity;

Table 6. Comparative summary effects between 2DL3 and 3DS1S1 on HIV acquisition in Caucasians in PSO.

Parameter 2DL3 3DS1S1
N 2 6

n 677 1,546

Aggregate statistical power 57% 92%

OR 0.19 0.37

Magnitude of protective effect 81% 63%

95% CI 0.09, 0.40 0.24, 0.56

CI difference (upper CI-lower CI) 0.31 0.32

Direction of risk effects Decreased Decreased

Pc < 10−3 < 10−3

Pci < 10−4 0.14

Sensitivity analysis outcomes Robust Robust

PSO: post-outlier; N: number of included studies; n: sample size; Pc: Bonferroni-corrected P-value; Pci: Bonferroni-

corrected P-value for interaction; OR: odd ratio; CI: confidence interval

https://doi.org/10.1371/journal.pone.0225151.t006
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(ii) added evidence of the high methodological quality of all 13 articles with CBS scores of� 5;

(iii) of the 70 comparisons, 53 (81%) were non-heterogeneous (fixed-effects); of the 53, 31

(58%) had zero heterogeneity (I2 = 0%); (v) one core finding (3DS1S1) in the genotype analysis

had high statistical power (92%); (vi) sensitivity treatment confirmed robustness of our core

findings. On the other hand, limitations comprise of the following: (i) effects of gene-gene and

gene-environment interactions were not addressed due to the lack of adequate data; (ii) few

studies for Africans and Asians resulted in under-representation of these ethnic groups; (iii)

the linkage disequilibrium effect may involve other proximal KIR polymorphisms that might

account for the associations; (iv) 10 comparisons had only one study (four Asians, four Afri-

cans and two Caucasians) and (v) one core finding (2DL3) in the gene content analysis were

statistically underpowered (57%).

Conclusion

This study hopes to contribute to the genetic knowledge of this epidemiologically important

infectious disease. Although our findings are admittedly modest, they profile the role of the

two polymorphisms (2DL3 and 3DS1S1) in HIV acquisition. Considered individually, other

KIR polymorphisms may have influence and would probably require analyses of haplotypes

and HLA ligands to distinguish combined effects. These approaches may elaborate on how

genetic variation cooperates in NK-mediated protection against HIV infection. Such analyses

may shed light on the complexities of KIR’s involvement in the innate immune responses of

HIV acquisition.
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