
Covering Chemical Diversity of Genetically-Modified
Tomatoes Using Metabolomics for Objective Substantial
Equivalence Assessment
Miyako Kusano1., Henning Redestig1., Tadayoshi Hirai2, Akira Oikawa1, Fumio Matsuda1¤, Atsushi

Fukushima1, Masanori Arita1,3, Shin Watanabe2, Megumu Yano2, Kyoko Hiwasa-Tanase2, Hiroshi Ezura2,

Kazuki Saito1,4*

1 RIKEN Plant Science Center, Yokohama, Japan, 2 Graduate School of Life and Environmental Sciences, Gene Research Center, University of Tsukuba, Tsukuba, Japan,

3 Department of Biophysics and Biochemistry, The University of Tokyo, Tokyo, Japan, 4 Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

Abstract

As metabolomics can provide a biochemical snapshot of an organism’s phenotype it is a promising approach for charting
the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic
coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an
interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform
approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In
combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the
metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that w92% had an acceptable
range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude
that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting
point for characterizing genetically modified organisms.
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Introduction

The internationally accepted substantial equivalence (SE)

framework [1,2] proposes to begin risk assessment of genetically-

modified (GM) organisms by comparing them with traditional

varieties. Only compounds not present in similar amounts in

already accepted traditional varieties need to be subjected to

toxicological testing [3]. The goal of SE evaluation is not to draw a

conclusion about the novel organism’s safety status because that

would require the impossible testing of all compounds. Instead, by

examining a broad set of traits, SE evaluations aim at obtaining a

picture of the magnitude and nature of incurred changes to use as

a screen for potentially problematic changes and a starting point

for further investigations [3].

As omics strategies are applied to measure as many features of

the target system as possible, they are a natural choice for

evaluating SE. Reported applications include transcriptomics

[4,5], proteomics [6], and metabolomics [7–10]. Of these,

metabolomics is of particular interest because the composition of

low-molecular-weight molecules is closely related to the organism’s

phenotype and includes important nutritional and toxicological

characteristics [2,11].

An often undervalued issue in applications of metabolomics for

SE is that the set of profiled metabolites must be sufficiently diverse

and representative to permit a general conclusion about the SE

status. However, currently there is no technique that can achieve

the complete separation of all types of molecules [12]. A

combination of separation-free fingerprinting [13,14] followed by

focused profiling of regions with strong differences has been

proposed to address this question [8,9,15]. However, a conceptual

problem with fingerprinting is that although the profiles are

derived from the whole sample, no metabolites are identified.

Consequently, the detection performance cannot be evaluated

empirically and an objective estimate of the SE status becomes

difficult to obtain. Here we propose to reduce the chemical bias by

acquiring data from a combination of untargeted gas chromatog-

raphy- (GC), liquid chromatography-quadrupole (LC-q), and

capillary electrophoresis (CE)-time-of-flight (TOF) mass spectrom-

etry (MS). All the chosen platforms allow for metabolite

identification using standard libraries and the resulting data can

therefore be directly interpreted and evaluated in terms of the

performance in detecting chemically diverse metabolites. In order

to facilitate analysis and interpretation we combine the data to a

single consensus data set. Briefly, this is achieved by performing
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automated data format and metabolite identifier unification [16],

followed by summarization of multiple measurements of the same

metabolites using principal component analysis (PCA).

Another point of underestimated value in omics-based SE

assessments is the question of how to quantify the evidence for

similarities between the novel and the control organism. The

central strategy in previously reported studies (e.g. [10,17,18]) has

been to perform ordinary ANOVA to identify differences; lack

thereof has been interpreted as evidence for sufficient similarity.

However, lack of an effect can not be shown in this manner since

‘‘absence of evidence is not evidence of absence’’ [19]. Instead, it is

necessary to use a proof-of-safety approach where non-similarity is

used as the null-hypothesis, and similarity the alternative [20,21].

In quantitative targeted settings, this may be achieved by using

dual ANOVA to test for levels exceeding externally defined

acceptable upper and lower limits. In untargeted semi-quantitative

assays such as metabolomics, such limits are not available. In order

to quantify the similarities also in this scenario, we propose to use a

panel of traditional cultivars to dynamically define the borders of

the null-hypothesis as the estimated levels of the cultivar farthest

away from the control line. Rejection of the proof-of-safety null-

hypothesis may then be interpreted as an indication of acceptable

metabolite levels. Still, metabolomics measurements are inevitably

affected by technical factors such as matrix effects and ion

suppression; this weakens the chain of evidence. To avoid this

problem we furthermore propose the testing of only peaks that

respond to the experimental design in a predictable manner. In

this way we obtain evidence that the biological variance is well-

detected, thereby arriving at an objective SE assessment.

Hand in hand with the efforts to narrow down the list of

potentially problematic metabolites, it is important to identify

those that are differentially abundant — whether within

acceptable limits or not — as these may provide insight in the

physiological status of the novel organism. Depending on its

nature, such information may serve as a guide for the development

of future similar lines, cultivation and product usage.

Interpreting a large number of hypothesis tests when the

magnitude of the expected changes is small is difficult due to an

unavoidable large proportion of false positives. Complementary to

ANOVA, we therefore use orthogonal projections to latent

structures discriminant analysis (OPLS-DA) models [22] to obtain

lists of the most influential metabolites that also can be compared

across different experiments.

The goals of this study can be summarized as i) establishment of

a multi-platform metabolomics approach for SE evaluations

including an assessment of the achieved coverage of the chemical

diversity; ii) development of a data analysis strategy to both screen

for potentially problematic metabolites (using the proof-of-safety

approach) and to detect transformation related changes; iii) to

provide a case-study of the proposed work-flow. To meet the last

goal, we evaluated the metabolomic SE status of tomatoes that

over-express miraculin [23], a glycoprotein with the remarkable

ability to change a sour- into a sweet taste. This makes it a

potential low caloric natural sweetener and flavor enhancer. The

source of the miraculin gene, Richadella dulcifica, is a tropical plant

that is difficult to grow outside its natural habitat. Therefore,

efforts have been made to express miraculin in other organisms

[24,25].

Defining non-similarity as a greater deviation from the control

cultivar (Moneymaker) than a threshold decided by the traditional

reference cultivars, we found evidence of acceptable metabolite

levels for w92% of the evaluated peaks and list the remaining

peaks as potential subjects for further inspection. OPLS-DA

models of data from two independent experiments revealed a

slight reduction in asparagine levels and an increase in proline and

spermidine levels as potential unintended effects of genetic

modification.

Results

Multi-platform metabolomics work-flow for evaluating SE
We assessed the metabolomic SE status of the genetically-

modified organisms from two perspectives. First we aimed at

establishing the ratio of all metabolites that objectively can be

considered to be within acceptable ranges of variation (Figure 1a).

Next we attempted to characterize the nature of GM related

incurred changes and to obtain a picture of their physiological

consequences (Figure 1b). With the workflow outlined in Figure 1c

we analyzed the metabolomic profiles of the transgenic- and the

control lines and of a panel of traditional cultivars.

The magnitude of the required experiments and our demand

for wide metabolomic coverage placed high demands on the

analytical platforms in terms of robustness and metabolite

identification capabilities. Among current analytical techniques,

time-of-flight (TOF)/MS is a particularly suitable detection system

as it combines high sensitivity and spectral resolution with a broad

mass range and high throughput. For the detection of primary-

and polar secondary metabolites and of ionic compounds we

proposed to use three untargeted TOF/MS-based platforms, i.e.

GC-TOF/MS (GC-MS), LC-q-TOF/MS (LC-MS), and CE-

TOF/MS (CE-MS), respectively. These three platforms generated

separate data sets that we fused using a novel data summarization

strategy [16] (Figure 1c, middle). The achieved coverage can then

be evaluated by comparison with a reference metabolic pathway

database.

The analysis of the obtained data is divided into two related but

from a statisticians point of view distinctly different concepts. In

the first step, we employ the proof-of-safety approach [21] to test

for acceptable deviation(s) from the control using the panel of

traditional cultivars to define acceptable ranges of variation. Here,

we screen for conspicuous metabolites that may require further

evaluation but do not address the existence of significant

differences per se; this is addressed in the following step. Using

OPLS-DA [22] we construct models of the differences between the

transgenic- and the control lines. The goal here is to obtain an

understanding of the consequences of the genetic modification.

OPLS-DA was chosen as it permits direct extraction of genotype-

related variances even in the presence of uncontrolled co-variates

or factors whose exact definition may be difficult, for example, the

ripening stage.

In the following sections we describe an application of this

strategy; we report an SE evaluation of two independent lines of

miraculin over-expressing tomato (Solanum lycopersicum, L. cv.

Moneymaker), 56B and 7C.

The use of multiple platforms improves coverage of the
tomato metabolome

The physiological status of plants is highly dependent on their

developmental stage and on nutritional and environmental

conditions. The two most common methods of tomato production

are cultivation on hydroponic culture (HC) solution and on soil;

we performed a pilot experiment to estimate the differences in the

metabolism and miraculin production under the two growth

conditions. The effect of varying these conditions on metabolite

levels was small but significant (Figure S1 in File S1). Miraculin

levels indicated higher protein accumulation on HC solution

(Figure S2 in File S1). We posited that the magnitude of

unintended effects attributable to the expression of miraculin

Metabolomics for Objective SE Assessment
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Figure 1. A multi-platform metabolomics approach for evaluating SE. (a) The first task is to quantify the evidence for a safe molecular
composition. This is done by testing the null-hypothesis (H0), which states that the genetically modified organism (GMO) deviates more from the
control line than a panel of traditional cultivars, against the alternative hypothesis of SE (HA). (b) The second task is to look for discriminative features
[e.g. metabolite (met) A, met B and met C] between the transgenic line and the control to obtain an understanding of the consequences of the
incurred effects. (c) The proposed work-flow. Samples are analyzed on three analytical platforms. The resulting data sets are summarized to
consensus, non-redundant data sets with the help of the MetMask metabolite identifier management tool [16]. The achieved coverage is evaluated
by comparing the chemical properties of the detected metabolites with a reference metabolome in the literature. A proof-of-safety approach is used
to quantify the evidence for safe metabolite levels; multivariate discrimination analysis is used to characterize the unintended effects.
doi:10.1371/journal.pone.0016989.g001
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increases with the amount of accumulated miraculin. Therefore,

we performed a large-scale experiment on HC solution in which

we compared two transgenic- with the control line and five

reference cultivars; harvesting was done in their green and red

ripening stages. The phenotype of the transgenic fruits exhibited

no visible differences compared to the control line (Figure 2a).

Miraculin accumulation was confirmed to be high and stable in

both ripening stages in the two transgenic lines (Figure 2b).

The summarized data from all three platforms include 175

unique identified metabolites and 1460 peaks with no or imprecise

metabolite annotation. Of the identified metabolites, 56 were

detected on more than one platform and these showed an average

pair-wise cross-platform correlation of 0.50 (Figure S3 in File S1).

To evaluate the detection performance, we extracted 816

metabolites from the tomato metabolism database LycoCyc

(http://solgenomics.net/tools/solcyc/) [26] to use as a reference.

Only 55 of the detected metabolites overlapped with LycoCyc,

indicating incompleteness of the LycoCyc database, difficulties

arising from the high number of similar but not identical

metabolites in plant metabolism, and the tissue dependency of

metabolite occurrences. Therefore, instead of carrying out direct

comparisons we used physicochemical properties of the two sets of

metabolites as a proxy to compare their chemical diversities. We

used 18 features that could be obtained for 160 of the detected

annotated metabolites and for 658 of the 816 LycoCyc

metabolites. Principal component analysis (PCA) of the combined

data showed good overlapping of the distribution of the detected-

and the LycoCyc metabolites (Figure 3a-b). As expected, GC-MS

mainly detected low molecular weight compounds including

carbohydrates and amino- and organic acids whereas LC-MS

excelled in the detection of heavier molecules with a larger polar

surface area (e.g. flavonoids). Compounds detected by CE-MS

were distributed among LC-MS and GC-MS compounds. Areas

that were not covered are exemplified by the cluster of large CoA-

ligates and the small, volatile molecules hydrogen cyanide and

ethyl aldehyde.

Using separate PCA models for the metabolites in the

summarized data set and those from the individual platforms

respectively, we calculated how well the different subsets of

metabolites approximate the total chemical diversity (variance in

the physicochemical properties) of LycoCyc (see Materials and

methods). The PCA model of all detected metabolites accounted

for 86% of the chemical diversity which represents a wider

coverage than was achieved with any of the platforms individually,

indicating that they are complementary (inset barplot in Figure 3b).

Miraculin over-expressors are remarkably similar to the
control line

We performed PCA to obtain an overview of the annotated

summarized data set (Figure 4a; loadings are listed in Data S1 in

File S2 and PCA of the complete data set is shown in Figure S4a in

File S1). The score scatter plot indicates that the main sources of

variance were related to the ripening stages (PC1) and the cultivars

(PC2) rather than the transgenic status of the plants. The same

conclusion can be drawn from ANOVA results (see the overview

of variance contribution in Figure 4b). Note that this result does

not preclude differences between the transgenic lines and

Moneymaker, but rather indicates that if they exist, then they

are smaller than the differences between ripening stages and

different traditional cultivars.

In the complete data set, 1376 of the total 1461 peaks (84%)

showed a significant correlation with the experimental factors

genotype and ripening stage. The source of variation among the

remaining 261 peaks could not be reliably determined. As this

rendered their analytical accuracy unclear we excluded them from

subsequent proof-of-safety analysis. The remaining data contained

166 identified metabolites with 85% coverage of the chemical

diversity of LycoCyc.

Defining acceptable deviation as being within the symmetric

boundary decided by the traditional cultivar furthest away from

the control line, we performed a proof-of-safety analysis for the

metabolite levels of the transgenic lines. The null hypothesis that

the transgenic lines are outside this boundary could be rejected for

w92% of the 1376 tested peaks for both transgenic lines 56B and

7C (Figure 4c). The proof-of-safety test was inconclusive (p§0:05)

for 310 of the tested peaks in at least one transgenic lines and

ripening stage and these peaks are listed Data S2 in File S2. The

average fold-change over the control line was lower or similar to

the accepted upper limit for all of these peaks. This indicates that

the majority of them receive high p-values due to strong variance

rather than clearly being outside the accepted thresholds. As a

comparison, we performed the same analysis for the traditional

cultivars by treating them as hypothetical transgenics with

unknown safety status (Figure 4c). The ratio of peaks that passed

Figure 2. Tomatoes grown on hydroponic culture (HC) solution. (a) Visible phenotypes of the transgenic lines (56B and 7C), the control line
Moneymaker, and five reference cultivars. The scale-bar represents 5 cm. (b) Miraculin protein accumulation in the two transgenic lines harvested in
green and red stages. The protein levels were determined by enzyme-linked immunosorbent assay (ELISA). The horizontal lines in the boxes
correspond to distribution quartiles.
doi:10.1371/journal.pone.0016989.g002
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the proof-of-safety test ranged between 67 (Micro-Tom, red stage)

and 92% (Ailsa Craig, red stage). The result from the proof-of-

safety analysis depends on the definition of acceptable deviation.

Here we present a direct adaptation of the procedure outlined in

ref. [21]. See Text S1, Section 1.3, in File S1 for a detailed

description and the results obtained using asymmetric thresholds

for acceptable deviation in Figure S4b in File S1.

Identifying unintended GM effects
After screening for potentially problematic metabolites and

identifying those for which there is evidence of safety, we addressed

the nature and magnitude of the incurred differences. We first fitted

an OPLS-DA model of all samples to obtain an overview of

genotype-dependent variances. Cross-validation pointed to six

predictive components that together associated 25% of the variance

with the genotype. They are shown in Figure 4d as a parallel

coordinates plot. To obtain a better overview of the distances

between the different cultivars we computed the pairwise Euclidean

distances between all observations using only the six predictive

components. The distance matrix was then compressed into two

dimensions using Sammon’s multi-dimensional scaling (MDS) [27].

Figure 4e presents the obtained visualization with each cultivar

encircled by a 95% confidence ellipse. The distances within- are

typically smaller than between genotypes, except for an apparent

confusion among Moneymaker, the transgenic lines, and Ailsa

Craig. Five-fold cross-validation showed that Ailsa Craig could

actually be well recognized, but the controls and the two transgenic

lines were internally mixed up (Figure 4f). The miraculin over-

expressing lines are thus closer to the control line than any of the

traditional cultivars.

Two independent experiments indicate reproducible
unintended effects of GM

As we could not detect conclusive differences between the

control- and transgenic lines despite the high miraculin accumu-

lation in the latter (Data S3 in File S2), we performed focused

experiments using only the control- and transgenic lines. The

growth medium was changed to soil and two watering regimes

were applied to monitor the interactions under different watering

conditions. The fruits were sampled in their red ripening stage.

Miraculin protein accumulation was lower when both lines were

grown on soil than on HC solution; the average was 11mg|gFW{1

for 7C and a mere 3mg|gFW{1 for 56B. The miraculin mRNA

levels showed a similar trend (Figure S2 in File S1).

Multi-platform metabolite profiling resulted in a summarized

data set with 120 unique annotated metabolites and a total of 1033

peaks. Twenty-six metabolites were identified on more than one

platform with the average pairwise cross-platform correlation 0.47

(Figure S3 in File S1).

PCA and ANOVA indicated that the largest source of variation

was the difference in harvesting time (Figure S5a-b in File S1). The

plants’ genotype and watering treatment accounted for similar

ratios in total variance but showed no significant interaction effect.

By ANOVA (Modified t-test [28]), 113 and 80 peaks were

significantly different between Moneymaker and lines 56B and 7C,

respectively (FDRv0:05). Data S4 in File S2 lists the annotated

metabolites that were differentially abundant in both 56B and 7C.

We observed no significant correlation between the metabolite

levels and miraculin accumulation looking at the 7C samples (see

the comparison between observed t-statistics and the t-distribution

under the null-hypothesis in Figure S6 in File S1).

Figure 3. Evaluation of the achieved coverage. PCA was performed on the predicted physicochemical properties of the detected metabolites
and the metabolites in the LycoCyc database. (a) The loading plots show that PC1 is dominated by size-related- and PC2 by solubility-related
properties. (b) The score plots show that the distribution of the detected metabolites occupies a similar space as the reference metabolites. The inset
barplot shows the ratio of variance among the reference metabolites covered by each of the individual platforms and the summarized data set. No
small volatile molecules such as hydrogen cyanide (HCN) and ethyl aldehyde (EtO) or large secondary metabolites represented by the cluster of CoA
ligates (x-CoA) were detected. Abbreviations: Log vapor pressure (LgPVap), octanol: water partitioning coefficient (LgP), octanol:water solubility
distribution coefficient at pH 7.4 (LgD-7), biological concentration factor at pH 7.4 (BCF-7), adsorption coefficient at pH 7.4 (KOC), molecular volume
(MVol), molecular refractivity (MR), molecular weight (MW), free rotating bonds (Rot), boiling temperature (Tb), flash point (Tf), enthalpy of
vaporization (HVap), polar surface area (PArea), number of H-bond donors/acceptors (HDon/HAcc), surface tension (SrfTen), density (D), index of
refraction (IoR).
doi:10.1371/journal.pone.0016989.g003
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Figure 4. Evaluating SE of miraculin over-expressing tomatoes grown on HC solution. (a) Score scatter plot of PCA of the annotated
metabolite profiles. Separation of the two ripening stages can be seen on PC1 and of the different cultivars on PC2. (b) Contribution to variance of the
different experimental factors. Each peak was scaled to a total sum of squares (SS) of 100. Peaks above the 95th F-distribution percentile indicate
significance at Pƒ0:05. Factors with separated observed- and F-distribution percentiles indicate the overall significance of that factor. (c) The ratio of
peaks considered to indicate safety at a significance level of Pv0:05 compared to the Moneymaker line. For comparison purposes, the test was
applied to the transgenic lines and the traditional cultivars. (d) Parallel coordinates plot of the predictive components from the OPLS-DA model. Each
biological sample is drawn as a line that connects its positions on each of the components. Each dimension describes a unique aspect of the
genotype-correlated variance among the metabolite profiles. All genotypes except 7C and Moneymaker are separated on at least one axis.
Percentages indicate the ratio of total variance explained by the corresponding dimension. (e) Result from Sammon’s MDS of distances computed
using the six predictive OPLS-DA components shown in (d). (f) Confusion matrix for predicting the genotype using the OPLS-DA model during five-
fold cross-validation.
doi:10.1371/journal.pone.0016989.g004
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OPLS-DA could separate both 56B and 7C from the control

with near perfect accuracy by cross-validation; however, it

associated only 4 and 6% of the variance with the genotype

correlated component T (Figure 5a-b). The empirical p-values

from resampling tests were strongly significant (p~0:001 for both

56B and 7C). The genotype-unrelated components explained

approximately 10% and 13%, respectively, of the variance and

was strongly correlated with the chronology of harvesting (Spear-

man’s r~0:4 [56B] and r~0:6 [7C], Figure S7a in File S1). The

correlation loadings, the proximity between each peak and the

predictive component, showed a clear overlap between the two

models (Figure 5c) with, for example, increased spermidine- and

decreased inositol-1-phosphate levels.

To compare these results across the used growth conditions we

performed the same focused OPLS-DA for 56B and 7C versus the

control using the HC data (Figure 5d-e). The prediction accuracy

of these models was low but greater than with randomized data,

the empirical p-values from resampling tests (p~0:053, 7C and

p~0:013, 56B). Similar to the models from the soil experiment,

the HC-based models for 56B and 7C showed an overlap in the

correlation loadings. Here the transgenic lines had higher levels of

4-hydroxy-proline and proline and lower levels of myo-inositol

than the control (Figure 5f).

Comparison of the loadings of the commonly-detected metab-

olites between the HC and the soil experiment showed a

correlation that was significantly greater than zero for the two

independent models of 7C (Spearman’s r~0:34, p~0:0003,

n~104), but not the models of 56B (r~0:08, Figure S7b in File

S1). Figure 5g is a scatter plot between the two loading vectors for

the 104 metabolites that were identified in both experiments and

other metabolites indicated on the Y and X axes. Proline, 4-

hydroxy-proline, and spermidine manifested relatively high

loadings under both conditions, indicating that their levels were

higher in 7C than the control. On the other hand, asparagine,

arginine, serine, and inositol-1-phosphate were less abundant.

Discussion

Untargeted metabolomics is like casting a net over all

metabolites; it facilitates the broad and unbiased screening of an

organismâJTMs molecular composition. The goal of an SE

evaluation is not only the identification of unintended changes

but also the quantification of evidence for overall similarity. As

such evidence can only be obtained for actually detected

compounds the question of safety cannot be answered fully: the

unacceptable accumulation of an undetected metabolite(s) cannot

be ruled out.

Therefore, the usefulness of an untargeted SE evaluation

depends on having an assessment of the profiling performance

— the size of the net and the coarseness of its mesh — to estimate

the likelihood of such a rogue metabolite(s). In the present study

we combined GC-MS, LC-MS, and CE-MS to profile transgenic

tomatoes. These platforms support metabolite identification and

using a strategy from the field of drug discovery [29], we showed

that the platforms are complementary. The reliably detected

metabolites together approximated 85% of the chemical diversity

seen in the LycoCyc database, LC-MS alone captured 76%, GC-

MS 70% and CE-MS 65% (Figure 3b). A larger percentage

indicates a better coverage but care should be taken when

interpreting it quantitatively since different metabolite classes

exhibit different ranges of diversity in their physicochemical

properties. LC-MS focuses on secondary metabolites which are

very diverse in a wide range of properties (e.g. size, density and

vapor pressure). GC-MS and CE-MS on the other hand mainly

detect primary metabolites which are relatively homogenous

compared to the secondary metabolites. For the purpose of an

unbiased evaluation, all types of metabolites are of interest and

even small increases in coverage is therefor desirable. The

evaluation of metabolomic coverage presented here would be

improved by using a much broader set of physiocochemical

properties and this will be a topic for future studies in our research

group.

We emphasize that the introduced coverage statistic does not

serve to estimate the total metabolomic coverage; this can only be

estimated given a list of all available metabolites, but such a list

arguably very difficult to create. Instead, our analysis serves to

indicate that any abundant but undetected metabolite is likely to

exhibit exotic properties compared to the known tomato metabo-

lome, or to be similar to the types of molecules that we did not detect

e.g. small volatiles and very large secondary metabolites. Custom-

izing the protocols to facilitate the detection of such molecules could

be a next step in improving chemical coverage.

The reproducibility between different platforms (Figure S3 in

File S1), the overlap of ripening-related changes with previous

studies [30,31] (Figure 4a, Data S1 in File S2), and earlier

validations using external standards [32,33] indicate good overall

analytical precision of the platforms we used. To control for

satisfactory precision with respect to individual metabolites, we

applied a test to ensure that the data correlated well with known

experimental factors. With this approach we obtained evidence

that any undetected differences attributable to GM are smaller

than are the differences between different cultivars and ripening

stages.

The first step in our SE evaluation was proof-of-safety analysis;

it showed that w92% of the tested peaks (Figure 4c) deviated less

from the control line than the accepted limit estimated using the

reference panel of traditional cultivars. The inconclusive peaks

showed relatively small changes with all averages being below the

accepted upper limit. This indicates that high variance, rather

than a shift in the average, was the predominant reason for failing

the proof-of-safety. That said, the list of metabolites that did not

pass the test (Data S2 in File S2) may provide a guide for designing

future quantitative targeted analysis.

In the second step we used OPLS-DA to look for changes

attributable to GM. Discrimination analysis using the metabolite

profiles from the HC experiment indicated a high overall

proximity between the transgenic lines and the control

(Figure 4e). A possible reason for the modest phenotypical

differences is that miraculin is xenogenic and presumably

metabolically inert in tomato. In addition, it is exported from

the cell [23,34] and this may further limit metabolic interference.

The small impact of GM was confirmed in the soil experiment

where only 4–6% of the variance was contributed by differences

between the genotypes; the harvesting index accounted for nearly

twice as much. The relatively very low variance associated with

GM concurs with large scale data of GM maize and soybean [35].

Interestingly, the changes found in 56B, and 7C were similar in

both experiments (Figure 5c,f) although 56B accumulated almost no

miraculin when grown on soil. An explanation for this could be that

the differences between transgenic lines and the control are due

both to over-expression-related- and non-related pleiotropic effects.

Contributing factors to the pleiotropic effect could be heritable

epigenetic regulation attributable to tissue culturing, the transfor-

mation procedure [36–38], the position of the insert, and the

marker gene used for selection. Hypothesizing that the effects are

additive, we expected higher miraculin accumulation to result in a

stronger deviation of 56B than 7C from the control; the

discrimination analysis supports this hypothesis (Figure 5d-e). On

Metabolomics for Objective SE Assessment

PLoS ONE | www.plosone.org 7 February 2011 | Volume 6 | Issue 2 | e16989



soil, 56B accumulated almost no miraculin; the differences from the

control were dominated by the miraculin-unrelated effect. On the

other hand, 7C accumulated more miraculin (Figure S2 in File S1)

and therefore exhibited both effects. Consequently, we observed

overlapping between the HC- and the soil experiments for 7C

(Figure 5g). The correlation between the loadings from the

independent HC and soil based models for 7C highlights that

multivariate approaches are better at finding small concerted

changes among a large number of variables than corresponding

univariate approaches.

Figure 5. Focused OPLS-DA models for discriminating the Moneymaker (MM)- from the transgenic lines. Percentages on the axes
indicate the ratio between the explained and the total variance. The predictive components T (56B and 7C) are correlated to the genotype; the TO

components (56B and 7C) are orthogonal. (a–b) Score plot for the OPLS-DA model between 56B and MM using data from the soil experiment and (b)
7C and MM (b). (c) Correlation loading plots show the well-described peaks. The correlation indicates an overlap between the metabolites that are
used to isolate 56B and 7C. The two models associate 4% and 6% of the variance to the genetic modification of 56B and 7C, respectively. (d–f) OPLS-
DA models using the metabolite profiles of tomatoes grown on HC solution. (g) Overlap between the metabolites used to discriminate 7C and
Moneymaker using metabolite profiles from soil and HC experiments. Asparagine (Asp) levels are lower in 7C than MM and the proline (Pro) levels are
higher. Metabolite abbreviations are shown in Data S5 in File S2.
doi:10.1371/journal.pone.0016989.g005
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The hypothesized miraculin-related metabolic signature is

characterized by a decrease in asparagine which is involved in

the nitrogen metabolism during the ripening stages [30], an

increase in the reliable stress indicator proline, and the anabolic

growth regulator spermidine [39]. Furthermore, the levels of

inositol and its precursor inositol-1-phosphate were decreased.

The inositol levels have been shown to change during ripening

[40] and to vary across different varieties [41] of tomatoes.

Taken together, our findings lead us to conclude that our multi-

platform approach yields a wide and robust characterization of the

tomato-fruit metabolome. The differences between the transgenic

lines and the control were small compared to the differences

observed between ripening stages and traditional cultivars. The

next step in SE evaluation may focus on other types of molecules

such as large secondary metabolites and proteins.

Materials and Methods

Plant material
Metabolomics meta data formatted according to guidelines of The

Metabolomics Standards Initiative [42] is given in Text S2 in File S1.

Two miraculin over-expressing tomato lines, 56B and 7C (Solanum

lycopersicum L. cv. Moneymaker) [23], and the traditional cultivars

Moneymaker, Aichi First, Ailsa Craig, Micro-Tom, M82 and

Rutgers were grown in a netted-greenhouse at University of Tsukuba

in 2006, 2008 and 2009. Both transgenics had single inserts of the

miraculin gene (Figure S8 in File S1) with shown stable inhertiance to

T5 [43]. Three experiments were performed: a pilot experiment

using fruits of the Moneymaker, 56B and 7C at the red stage grown

on soil and HC with harvest in spring, a large scale experiment on

HC using all genotypes and both green and red ripening stages (stage

determined visually) also harvested in spring, and an experiment with

fruits of the Moneymaker, 56B and 7C at the read stage grown on soil

with harvest in late summer (Table S1 in File S1). In the soil

experiment, plants were grown under high-watered or low-watered

conditions controlled by an automatic water supply device (UNSU

CSK-5500, Sankeiriika inc.). The amount of the diluted Hyponex

solution (N-P-K = 6-10-5: EC1., HYPONeX JAPAN Co., Ltd.)

supply was determined by soil water potential values. Miraculin

mRNA expression and protein accumulation was measured using

quantitative real-time polymerase chain reaction (qRT-PCR) and

enzyme-linked immunosorbent assay (ELISA) respectively as de-

scribed in ref. [25,44]. The harvested fruits were chopped and 1 g

fresh weight (FW) of the pieces was put in a 2-ml tube with 5 mm

Zirconia beads to be used for metabolomics profiling and 3 g was

saved for ELISA and qRT-PCR assays. The frozen samples were

lyophilized before metabolite profiling.

To compare these results across the used growth conditions we

performed the same focused OPLS-DA for 56B and 7C versus the

control using the HC data (Figure 5d-e). The prediction accuracy

of these models was low but greater than with randomized data,

the empirical p-values from resampling tests (p~0:053, 7C and

p~0:013, 56B). Similar to the models from the soil experiment,

the HC-based models for 56B and 7C showed an overlap in the

correlation loadings. Here the transgenic lines had higher levels of

4-hydroxy-proline and proline and lower levels of myo-inositol

than the control (Figure 5f).

Metabolite profiling
All data was log2 transformed and scaled to unit-variance prior

to further data analysis. All peaks with more than 30% missing

values were excluded. The detected metabolites are listed in Data

S5 in File S2. The final summarized data sets are available at

http://prime.psc.riken.jp/?action = drop_index.

GC-MS was performed as described in ref. [45]. A total of

0.5 mg dry weight (DW) of the fruit samples were subjected to

derivatization and an equivalent of 0.6 mg and 6 mg of the

derivatized samples were injected into the GC-MS instrument for

detection of highly and lowly abundant metabolites respectively.

The chromatograms were pre-processed using the HDA method

[46] and normalized using the CCMN algorithm [33].

LC-MS (negative and positive mode) was performed as

described in ref. [47]. Samples were extracted and an equivalence

of 125 mg was injected into the instrument.

CE-MS (cation and anion mode) was done according to ref.

[48]. Measurements were performed using a total of 14 mg of each

sample.

Data analysis
Filtering was done by first removing all peaks with more than

30% missing values. All remaining peaks were then tested for

detection performance of biological variance by fitting a linear

model between the estimated abundance and first order predictors

based on the experimental factors ripening stage, genotype,

treatment and harvesting time. Only peaks that could be predicted

by this model as decided by ANOVA F-test, Pv0:05, were

retained.

Data summarization was performed by first unifying

platform specific metabolite identifiers to a common non-

redundant referencing scheme using the MetMask tool [16].

The three matrices were then concatenated and correlated peaks

with the same annotation were replaced by their first principal

component to reduce data redundancy. Poorly correlated

metabolite-pairs were left as duplicates.

Coverage of the chemical diversity was estimated by

fetching all available predicted physicochemical properties from

the ChemSpider database (http://www.chemspider.com) for the

detected metabolites and the metabolites mentioned in the

LycoCyc database [26]. Vapor pressure was log transformed

and all traits were scaled to unit variance to give them equal

importance. Chemical coverage was defined as the percentage of

variance among the LycoCyc metabolites that could be predicted

using a PCA model of the properties of a given subset of

metabolites. Specifically, chemical coverage was defined as:

Coverage~ 1{

P
(XLycoCycPsub)P’sub{XLycoCyc

� �2P
X 2

LycoCyc

 !
|100

where XLycoCyc are the unit-variance scaled physicochemical

properties of metabolites in LycoCyc, and Psub the loadings matrix

from the PCA model of the properties of a subset of metabolites

(e.g. those from an individual platform). Missing value robust PCA

was performed using the pcaMethods package [49].

Proof of safety analysis was performed using an adapted

version of the method described in ref.[21]. Briefly, acceptable

deviations from the control were defined by the symmetric

maximum absolute boundaries of the 90% confidence intervals of

mCultivar,i{mControl where the ith cultivar is the one furthest away

from the control plant (Moneymaker). Safety was declared when

the compound null hypotheses stating that the transgene deviate

either more or less than the estimated accepted thresholds could be

rejected using two one-sided Student’s t-tests with correction for

unequal variances. The normality assumption was examined using

Kolmogorov-Smirnov (KS) test (Figure S9 in File S1).

Multivariate discriminant analysis was performed using

OPLS-DA [22]. Briefly, OPLS-DA extracts a set of components,

meta features, that describe the class related variance in the
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metabolite matrix. These components are oriented so that they

together discriminate the sought classes well. Another set of

components are also calculated that describe as much of the class

unrelated variance. The derived model is can be used to predict

both the class separating components and the orthogonal

components for new data. Resampling tests were done by shuffling

the class labels and recomputing prediction accuracy one thousand

times, counting the number of occasions where random class labels

obtained better or equal accuracy compared to the original labels,

b; p~(1zb)=(1z1000).

All data analyses were performed using R v2.12.1 [50]. See

Text S1 in File S1 for a more detailed description of the data

analysis.

Supporting Information

File S1 Supporting descriptions of the data analysis, metabo-

lomics meta data as well as supporting Figures S1-S9 and Table S1

and S2.

(PDF)

File S2 Supporting data sets S1-S5. Lists of detect metabolites,

metabolite abbreviations, estimated abundance differences.

(XLS)

Acknowledgments

We thank M. Kobayashi, N. Hayashi, H. Otsuki, S. Shinoda and

M. Suzuki (RIKEN Plant Science Center, Japan) for their technical

assistance and K. Akiyama and T. Sakurai (RIKEN Plant Science Center,

Japan) for their support with data storage and management. We are

grateful to P. Jonsson, H. Stenlund (Umeå University, Sweden) and T.

Moritz (Umeå Plant Science Centre) for sharing their software for GC-MS

data pre-treatment. Tomato cultivars Aichi-first, Ailsa Craig, Micro-Tom,

Moneymaker, M82, and Rutgers were provided by the National Bio-

Resource Project Tomato of the Ministry of Education, Culture, Sports,

Science and Technology (MEXT), Japan.

Author Contributions

Conceived and designed the experiments: MK HE KS SW KHT.

Performed the experiments: MK TH AO FM SW KHT. Analyzed the

data: HR MK. Contributed reagents/materials/analysis tools: MY. Wrote

the manuscript: HR MK KS. Assisted data analysis: AF MA.

References

1. OECD (2006) An introduction to the food/feed safety consensus documents of

the Task Force. Series on the Safety of Novel Foods and Feeds 14: ENV/JM/

MONO(2006)10.

2. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment

of plant-derived foods. Regul Toxicol Pharmacol 50: 98–113.

3. Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food

safety issues related to genetically modified foods. Plant J 27: 503–528.

4. Kok EJ, van Hal NLWF, Winnubst LNW, Kramer EHM, Dijksma WTP, et al.

(2007) Assessment of representational difference analysis (RDA) to construct

informative cDNA microarrays for gene expression analysis of species with

limited transcriptome information, using red and green tomatoes as a model.

J Plant Physiol 164: 337–349.

5. Barros E, Lezar S, Anttonen MJ, van Dijk JP, Rhlig RM, et al. (2010)

Comparison of two GM maize varieties with a near-isogenic non-GM variety

using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:

436–451.

6. Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, et al. (2004) Proteomics as

a tool to improve investigation of substantial equivalence in genetically modified

organisms: the case of a virus-resistant tomato. Proteomics 4: 193–200.

7. Gall GL, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME (2003) Metabolite

profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a

tool to detect potential unintended effects following a genetic modification.

J Agric Food Chem 51: 2447–2456.

8. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, et al. (2005)

Hierarchical metabolomics demonstrates substantial compositional similarity

between genetically modified and conventional potato crops. Proc Natl Acad

Sci U S A 102: 14458–14462.

9. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, et al. (2006) A

metabolomic study of substantial equivalence of field-grown genetically modified

wheat. Plant Biotechnol J 4: 381–392.

10. Levandi T, Leon C, Kaljurand M, Garcia-Canas V, Cifuentes A (2008)

Capillary electrophoresis time-of-flight mass spectrometry for comparative

metabolomics of transgenic versus conventional maize. Anal Chem 80:

6329–6335.

11. Hoekanga OA (2008) Using Metabolomics To Estimate Unintended Effects in

Transgenic Crop Plants: Problems, Promises, and Opportunities. J Biomol Tech

19: 159–166.

12. Saito K, Matsuda F (2010) Metabolomics for Functional Genomics, Systems

Biology, and Biotechnology. Annu Rev Plant Biol 61: 24.1–24.27.

13. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, et al. (2003) High-

throughput classification of yeast mutants for functional genomics using

metabolic footprinting. Nat Biotechnol 21: 692–696.

14. Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR

spectroscopy and multivariate analysis as a technique for metabolite finger-

printing of Arabidopsis thaliana. Phytochemistry 62: 949–957.

15. Colquhoun IJ, Gall GL, Elliott KA, Mellon FA, Michael AJ (2006) Shall I

compare thee to a GM potato? Trends Genet 22: 525–528.

16. Redestig H, Kusano M, Fukushima A, Matsuda F, Saito K, et al. (2010)

Consolidating metabolite identifiers to enable contextual and multi-platform

metabolomics. BMC Bioinformatics 11: 214.

17. Obert JC, Ridley WP, Schneider RW, Riordan SG, Nemeth MA, et al. (2004)

The composition of grain and forage from glyphosate tolerant wheat MON

71800 is equivalent to that of conventional wheat (Triticum aestivum L.). J Agric

Food Chem 52: 1375–1384.

18. Wang J, Guo L, Lin J (2009) Composition of transgenic Volvariella volvacea

tolerant to cold stress is equivalent to that of conventional control. J Agric Food
Chem 57: 2392–2396.

19. Altman DG, Bland JM (1995) Absence of evidence is not evidence of absence.
BMJ 311: 485.

20. Schuirmann D (1987) A comparison of the two one-sided tests procedure and

the power approach for assessing the equivalence of average bioavailability.

J Pharmacokinet Biopharm 15: 657–680.

21. Hothorn LA, Oberdoerfer R (2006) Statistical analysis used in the nutritional
assessment of novel food using the proof of safety. Regul Toxicol Pharmacol 44:

125–135.
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