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Despite the recent advances in chemotherapeutic treatments against cancer, some types

of highly aggressive and invasive cancer develop drug resistance against conventional

therapies, which continues to be a major problem in the fight against cancer. In recent

years, studies of alterations of DNA methylome have given us a better understanding

of the role of DNA methylation in the development of tumors. DNA methylation (DNAm)

is an epigenetic change that promotes the covalent transfer of methyl groups to DNA.

This process suppresses gene expression through the modulation of the transcription

machinery access to the chromatin or through the recruitment of methyl binding proteins.

DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to

tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant

DNAmmay occur through hypermethylation in the promoter regions of tumor suppressor

genes, which leads to their silencing, while hypomethylation in the promoter regions of

oncogenes can activate them. In this review, we discuss the impact of dysregulated

methylation in certain genes, which impact signaling pathways associated with apoptosis

avoidance, metastasis, and resistance to therapy. The analysis of methylome has

revealed patterns of global methylation, which regulate important signaling pathways

involved in therapy resistance in different cancer types, such as breast, colon, and

lung cancer, among other solid tumors. This analysis has provided gene-expression

signatures of methylated region-specific DNA that can be used to predict the treatment

outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome

have been associated with the acquisition of drug resistance. We also review treatments

with demethylating agents that, in combination with standard therapies, seem to be

encouraging, as tumors that are in early stages can be successfully treated. On the

other hand, tumors that are in advanced stages can be treated with these combination

schemes, which could sensitize tumor cells that are resistant to the therapy. We propose

that rational strategies, which combine specific demethylating agents with conventional

treatment, may improve overall survival in cancer patients.
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INTRODUCTION

During carcinogenesis, genetic and epigenetic alterations lead
to dysregulated expression of genes associated with cellular
pathways that regulate processes such as cell proliferation,
cell differentiation, cell death, and cell cycle, among others.
Epigenetic alterations that include DNA methylation (DNAm),
histone modifications, aberrant expression of microRNAs
(miRNAs), and long non-coding RNA (lncRNA) are common in
several types of cancer. These epigenetic changes are hereditary,
transient, and reversible and do not cause modification in
the DNA sequence (1). Cancer can be treated by resection,
chemotherapeutic agents, radiation, and immunotherapy, among
others, as well as any combination of the aforementioned
therapies. However, the 5-year survival rate remains low in many
solid tumors due to tumor intrinsic or acquired resistance (2).

DNAm is a pivotal mechanism in normal cell development,
which plays an important role in the regulation of gene
expression, as well as chromatin stability, genetic imprinting, X-
chromosome inactivation, the suppression of repetitive element
transcription, and transposition. In mammals, DNAm involves
the covalent transfer of methyl groups (-CH3) from S-adenosyl-
1-methionine (SAM) to cytosine in the CpG islands (2). CpG
islands are characterized by a length longer than 200 bp. They
possess a GC content >50% and present a ratio of observed
to expected CpG dinucleotides >0.6. Moreover, CpG islands
have been located in or near ∼50% of human promoters
(3). DNAm is catalyzed by three DNA methyltransferases
(DNMTs), which have been identified in mammals: DNMT1,
DNMT3A, and DNMT3B. DNMT1 maintains hemimethylated
DNA patterns during DNA replication, while DNMT3A and
DNMT3B establish new patterns of methylation in early
embryonic development (4).

Here, we review several DNAm alterations in cancer that
have been associated with carcinogenesis, apoptosis avoidance,
migration, invasion, and metastasis. Several studies have found
that some of these DNAm alterations may be associated with
tumor clinical features such as disease risk, TNM (tumor,
node and metastasis)-stage, prognosis, diagnosis, survival, and
response to treatment. We also discuss several DNAm alterations

in genes and some pathways that have been reported to promote
tumor resistance to therapeutic agents. Additionally, we argue
that the promotion or inhibition of DNAm in a non-specific
way should be carefully revised because of their side effects. In
contrast, more extensive studies should be further developed by
considering the targeting specific alterations in DNAm or editing
the epigenome by CRISPR-Cas9 technology.

DNA METHYLATION REGULATES GENE
EXPRESSION

Genetic mechanisms and epigenetic modifications such as
DNAm, histone modifications, and non-coding RNAs (including
microRNAs) regulate gene expression, which is a fundamental
process that maintains cellular homeostasis. Each cell type
possesses its own gene expression pattern, driven by a specific

epigenetic signature, which may also produce cell heritable
characteristics (5).

DNAm is a covalent modification in which a methyl
group is linked to the cytosine in the dinucleotides cytosine-
guanine (CpG), which is often located in “CpG islands” in
the gene promoters; as a consequence, DNAm can modify
gene expression. The CpG island is a short sequence of DNA
in which the frequency of the CpG sequence is higher than
that in other regions. Hypomethylation of promoter regions
allows gene expression machinery to access the promoters of
target genes. Hypermethylation, on the other hand, can suppress
gene expression through the modulation of the transcription
machinery access to the chromatin or through the recruitment
of methyl binding proteins (5). In addition to promoters, other
upstream DNA regions are rich in CpG sequences, up to 2Kb
distant to CpG islands, which are named “CpG island shores.”
These CpG island shores have been observed in colon and breast
cancers (6, 7), or up to 700 bp in prostate cancer (8). Methylation
of these CpG island shores also regulates gene expression.
This epigenetic regulation was confirmed with the reactivation
of downregulated genes in colon cancer, by demethylation of

hypermethylated CpG island shores, using 5-aza2
′
-deoxycytidine

(a DNAmethyltransferase inhibitor) and DNAmethyltransferase
knockout (6).

Throughout the human lifespan, epigenetic patterns may
change and constitute an important component of the aging
process. Studies of human DNA methylome have revealed
that one-third of 476,366 DNAm sites are affected by age.
When age increases from 14 to 94 years, 60.5% of these
affectedDNAm sites become hypomethylated, and 39.5% become
hypermethylated (9).

DNAm is a dynamic process that can also be affected by
environmental factors, diet, and exercise habits, which can
induce particular gene-expression signatures. For instance, the
presence of short-chain fatty acids, such as butyric acid, can
induce changes in DNAm patterns in normal and cancer cells;
diets deficient in methyl-donor folic acid also promote dynamic
changes in DNAm (5). Exercise favors hypomethylation of
peroxisome proliferator-activated receptor gamma coactivator
1-alfa and delta (PGC-1α, PPAR-δ), pyruvate dehydrogenase
kinase-4 (PDK4), which regulate mitochondrial function and fuel
usage. mRNA upregulation of these genes during acute exercise
is correlated with a transient but marked hypomethylation on
each respective promoter (5). Interestingly, the change in the
DNAm patterns associated with exercise is stronger among older
people. The decreased DNAm associated with exercise habits
among older people has been associated with cancer prevention,
rewinding the “epigenetic clock” as people age (10).

CANCER MODIFIES GENE EXPRESSION
THROUGH DNA METHYLATION

Studies of global DNA methylation have found methylation
patterns or signatures that have been associated with different
cancer hallmarks, such as cell proliferation, migration, invasion,
and metastasis, and also with clinical features such as disease
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stage, prognosis, survival, and response to treatment (2). Many
regulatory regions of tumor suppressor genes and oncogenes
present an altered methylation pattern (6). Aberrant DNAm,
mediated by the overexpression of DNMTs, affects tumor
suppressor genes through their hypermethylation, leading to
transcriptional silencing of these genes. On the other hand,
transcriptional activation by hypomethylation is observed in
proto-oncogenes. Hypomethylation may be detected in early and
late stages of the tumorigenesis in several cancer types, such as
lung cancer, breast cancer, prostate cancer, gastric cancer (GC),
and hepatocellular cancer, among others (6).

Neoplastic transformation, carcinogenesis, and cancer
progression may be led by DNAm disruption, given that
epigenetic changes have been demonstrated in multiple cancers
(11). Most DNAm changes in cancer occur in both CpG islands
and CpG island shores, affecting the expression of tumor
suppressors and oncogenes (6). For instance, it has been found
that ∼7,000 CpG islands are altered in the genome of human
bladder cancer (12).

Analysis of methylation patterns in genomes of normal breast
tissue indicates that the 5’ end of highly expressed genes presents
enriched sites of hypomethylation. This 5’ end region includes the
promoter, first intron, and first exon. In contrast, themethylome’s
analysis of genomes of the breast tumor cell lines (MDA-
MB-231 and MCF-7) shows extensive hypomethylation in the
intergenic and intragenic regions. These tumor cell lines present
megabase-sized hypomethylated zones, which are associated
with gene-poor regions containing tissue-specific gene clusters,
fragile sites, chromosomal rearrangement breakpoints, and
large genes. This suggests that hypomethylation is involved in
genome instability. Interestingly, the extensively hypomethylated
genes are all silenced. Also, primary breast tumors exhibit a
methylation pattern that is between those of the cell lines and
the normal tissue (13). It is well-documented that inactivation of
tumor-suppressor genes can also be caused by deletions, point
mutations, or allelic loss. Marsit et al. speculated that there
might be a mutual relationship between the predisposition to
promoter hypermethylation and genetic deletion in non-small
cell lung carcinomas (NSCLCs). Interestingly, tumors that exhibit
a high loss of heterozygosity show a reduced propensity for
hypermethylation. The authors conclude that tumor suppressor
gene silencing might be caused by allele loss events or epigenetic
silencing events, occurring in a roughly dichotomous fashion,
which would promote different molecular phenotypes in lung
cancer (14).

Table 1 (15–85) summarizes genes with decreased expression
in cancer as a consequence of hypermethylation of their
promoter regions. The absence or reduction of the protein
function associated with these genes has been implicated
in the development, progression, invasion, and metastasis of
many cancer types. Moreover, many hypermethylated genes
included in Table 1 participate in pathways involved with
cell death processes. On the other hand, Table 2 (86–120)
summarizes epigenetically regulated genes by hypomethylation
of their promoter regions, which have been found to be
highly expressed in cancer. The expression or increased
protein function associated with some of these genes has been

shown to support cell proliferation, migration, and invasion
of many cancer types. Many hypomethylated genes are highly
expressed and participate in pathways involved in proliferation
and evasion of the immune system (see Table 2). Both the
hypermethylation and hypomethylation status of the regulatory
regions of tumor suppressor genes and oncogenes have been
tested as possible biomarkers for evaluating several parameters,
such as cancer risk, diagnosis, and prognosis. Furthermore,
analysis of the methylation status of certain genes may be useful
for chemotherapy selection for cancer patients, and even for
immunotherapy or target therapy (see Tables 1, 2).

CANCER CELLS PRESENT THERAPY
RESISTANCE BY CHANGING THEIR DNA
PATTERNS

One of the major reasons for the failure of cancer chemotherapy
is multidrug resistance (MDR). MDR is divided into the
categories of primary drug resistance, which already existed prior
to chemotherapy treatment (intrinsic resistance), and acquired
drug resistance, which develops during the administration of
chemotherapy. This MDR is associated with the regulation and
function of apoptotic pathways, intracellular pH, drug pumps,
DNA damage repair ability, and drug detoxification. All of
these mechanisms reduce the concentration of chemotherapeutic
drugs inside the cell, and hyper- and hypomethylation of certain
genes appear to play a role (121).

Multiple changes in the methylation of CpG islands and
CpG island shores have been found following the acquisition
of drug resistance in different cancers. Studies of global DNA
methylation profiling have identified different proportions
of hypermethylated genes against hypomethylated ones.
Baharudin et al. performed DNAm profiling on five recurrent
and 43 non-recurrent patients with colorectal cancer (CRC)
with 5-fluorouracil (5-FU) treatment (122). The researchers
identified 4,787 significantly differentially methylated genes in
the recurrent group of CRC compared to the non-recurrent
group; 3,112 genes were hypermethylated, and 1,675 genes
were hypomethylated. Interestingly, many hypermethylated
genes were associated with the MAPK signaling pathway,
which is implicated in apoptosis regulation. Conversely, many
hypomethylated genes were associated with the PI3K-AKT
signaling pathway and the promotion of proliferation (122). In
another study, Guo et al. compared the methylation of promoters
in a genome-wide study of human lung adenocarcinoma A549
cells resistant to cisplatin (A549/CDDP) with its progenitor
A549 cells. The study identified 3,617 genes with differentially
methylated promoters; 2,036 were hypomethylated, and 1,581
were hypermethylated. The promoters of RAS association
domain family gene 1 (RASSF1), metallothionein 1G (MT1G),
and G protein-coupled receptor 56 isoform 3 (GPR56) showed
significantly higher hypermethylation in A549/CDDP cells
compared to the progenitor A549 cells (123). Thus, increasing
evidence supports the notion that epigenetic changes are a
driving force behind the acquisition of drug resistance.
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TABLE 1 | Hypermethylated promoters of genes associated with tumor suppression, prognosis, response to treatment, or as potential biomarkers.

Cancer type Hypermethylated

promoter

Biological function associated with hypermethylation

Breast

(BC)

BRCA1, DAPK1, and

RASSF1A

Associated with disease progression and poor overall survival of breast cancer patients (15)

DACT2 Contributes to the progression of breast cancer through activation of WNT signaling pathway (16)

ATM Useful as a potential new biomarker for relatively young patients with breast cancer (17)

FOXA1 Impacts parity and breastfeeding because FOXA1regulates a luminal gene expression signature in progenitor cells and

represses the basal phenotype (18)

Cervical

(CC)

RASSF2 Associated with shorter survival in squamous CC (19)

RASSF1A Increases the risk of CC (20)

TFPI2 Important role in carcinogenesis, it correlates with cancer incidence in China (21)

SIM1 Potential diagnostic biomarker (22)

MEG3 Associated with worse recurrence-free and overall survival, potential plasma-based biomarker (23)

P16INK4a Associated with smoking habit and increased risk of cervical carcinogenesis (24)

SALL3 HPV infection correlates with SALL3 hypermethylation and contribution to carcinogenesis (25)

IFN-γ Associated with tumorigenesis (26)

KLF4 Inactivates its tumor suppressor function in cervical carcinogenesis (27)

RAD51L3 and XRCC2 Predict late toxicity in chemoradiotherapy-treated CC patients (28)

Colorectal

(CRC)

RASGRF1 Is a putative biomarker of overall survival in CRC patients (29)

HADHB Impacts in metastasis because HADHB reduces cancer cell migration and invasiveness (30)

EYA4 Potential candidate screening marker in Iranian population and may improve early detection of CRC (31)

STK33 Promising biomarker for the diagnosis, prognosis, and suitable treatment of CRC (32)

BEND5 Promotes to cell proliferation and is a prognostic marker (33)

FAM134B Associated with aggressiveness and poor prognosis of colorectal adenocarcinomas (34)

CHFR Associated with worse overall survival in CRC patients, its loss contributes to tumorigenesis of epithelial cancers (35)

APC 1A Implicated in smoking-associated colorectal carcinogenesis (36)

NDN Promotes cell proliferation by activating the Wnt signaling pathway (37)

hMLH1 Associated with microsatellite instability and CRC risk (38)

Gastric

(GC)

EIF4E Associated with early onset, and it is a prognostic marker for GC (39)

GPX7 Important role in gastric tumorigenesis and progression (40)

IGF2/DMR Hypermethylation of IGF2/DMR in leukocyte are associated with prognosis (41)

RAR-β Association with histological type and clinical outcomes (42)

TERT A potential stool biomarker in non-invasive gastrointestinal cancer screening (43)

MGMT Associated with an increased risk of GC, correlation with TNM-stage (44)

CHRDL1 Induces proliferation and metastasis by activating Akt and Erk (45)

p16 Considered an potential early marker (46)

miR-335 Associated with poor clinical features and prognosis (47)

SFRP2 and DKK2 Associated with poor prognosis via the activation of Wnt/ β-catenin pathway (48)

NDRG4 Contributes to GC risk, associated with poor prognosis (49)

RUNX3 Associated with poor prognosis, valuable diagnostic and prognostic biomarker (50)

ADAMTS8 Important role in the invasion and metastasis (51)

DAL-1 Associated with GC aggressiveness, potential diagnosis biomarker (52)

Hepato-

cellular

NKAPL Predicts poor outcome in HCC patients prognostic biomarker (53)

(HCC) HOXD10 Activates ERK signaling supporting human HCC (54)

FHIT Associated with live cancer risk, low FHIT expression correlates with TNM-stage, tumor size, and merging of cirrhosis

of liver cancer in the Chinese population (55)

RASSF1A Hypermethylated RASSF1A in serum as a screen method for risk and diagnostic biomarker (56)

HCCS1 Potential biomarker for diagnosis and prognosis of HCC patients (57)

SOCS3 Its hypermethylation stimulates HCC development in patients with HBV (58)

(Continued)
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TABLE 1 | Continued

Cancer type Hypermethylated

promoter

Biological function associated with hypermethylation

miR-142 Promotes TGF-β-mediated tumor growth and metastasis (59)

Lung

(LC)

MLH1 Associated with increased risk of NSCLC (60)

PGCP Associated with human bronchial epithelial cells immortalization (61)

AGTR1 Biomarker to assist the detection and diagnosis of lung squamous cell carcinoma (62)

RASSF1A and

p16INK4a

The evaluation of methylation status of both genes is a promising diagnostic method in lung cancer (63)

RARβ Contributes to the NSCLC tumorigenesis and may serve as a potential risk factor, diagnostic marker, and drug target of

NSCLC (20)

WIF-1 Correlates with smoking behavior, promising non-invasive biomarker using blood or pleural effusion (64)

CDKN2A Correlates with tobacco smoking, detected in early stages of LC carcinogenesis (14)

Ovarian

(OC)

RASSF1A Decreased RASSF1A levels in serum is a sensitive tool for diagnosis and monitoring OC (65)

BTG1 Involved in ovarian carcinogenesis (66)

APC Associated with increased risk of OC, biomarker value using blood samples (67)

miR-34a Prognostic relevance, inverse association with grading, p53 mutation status (68)

FANCF Associated with the susceptibility and clinicopathologic features of epithelial OC (69)

RUNX3 and CAMK2N1 Associated with poor clinical outcome in type II of epithelial OC after complete resection (70)

ABCA1 Associated with poor prognosis (71)

MEG3 Contribute to the development of epithelial OC by inability to activate p53 (72)

Pancreatic

(PC)

TERT Diagnostic value in early state I of PC, recurrence, and survival prediction (73)

SAV1 Promotes invasion and migration, represses pancreatic cancer cell apoptosis (74)

HOPX Prognostic indicator of pancreatic neuroendocrine tumor (75)

CDKN2A Critical role in pancreatic carcinogenesis and prognostic marker value (76)

Prostate

(PCa)

ST6GALNAC3 and

ZNF660

Potential diagnostic and prognostic biomarkers for PCa in liquid biopsies (77)

SOX11 Correlates with adverse clinicopathological characteristics of PCa, including higher PSA level and perineural

invasion (78)

IGF2 Relevant during early stages of tumor development, during chemotherapy or androgen deprivation (79)

SPARC Correlation with poorer prognosis based on specific hypermethylated CpG sites (80)

PAQR3 Associated with perineural invasion, biomarker for detection and monitoring PCa (81)

PCDH8 Methylation status is associated with tumor size, shape, stage, and grade, hypermethylation associated with poorer

prognosis (82)

RHCG-TCAF1 Predictive of biochemical recurrence, pathological tumor stage and pre-operative PSA (83)

TERT Predicts biochemical relapse (84)

GSTP1 Marker of high risk of PCa in rebiopsy on an initially negative prostate biopsy (85)

HYPERMETHYLATION OF KEY GENES
ASSOCIATED WITH THERAPY
RESISTANCE IN CANCER

Downregulation of specific genes by hypermethylation of their
promoters may lead to MDR. Table 3 (124–153) shows genes
whose promoters may suffer hypermethylation and have been
associated with resistance to antitumoral therapy in several types
of cancer. The products of some of these genes are associated
with signaling pathways, such as JAK-STAT, Wnt/β-catenin,
MAPK/mTOR, and FAK/Ekt. The promoter hypermethylation
pattern or the downregulated gene expression are promising
biomarkers for early detection of intrinsic or acquired
MRD (Table 3).

The transcriptional silencing mediated by hypermethylation

can be used as a therapeutic strategy to diminish the expression

of genes associated with drug resistance. For instance, it has

been shown that the transmembrane ectoenzyme CD13 endows
GC patients with insensitivity to CDDP and that expression of
this molecule predicts a poor prognosis in CDDP-treated GC
patients. CD13 functions upstream of the epithelial membrane
protein 3 (EMP3) to induce its expression. The optimal
phosphorylation of PI3K is facilitated by EMP3 upregulation.
Phosphorylated PI3K activates the PI3K/AKT/NF-κB pathway
suppressing autophagy and epithelial-mesenchymal transition
(EMT) and overcoming CDDP resistance in GC cells. Ubenimex,
a CD13 inhibitor, induces transcriptional silencing of EMP3 that
is mediated by hypermethylation. Therefore, to overcome CDDP
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TABLE 2 | Hypomethylated promoters of genes involved in tumor progression, prognosis, or potential therapeutic targets.

Cancer type Hypomethylated

promoter

Biological function associated with hypomethylation

Breast

(BC)

NSUN2 Associated with metastatic progression in BC, promoting cell proliferation, migration and invasion (86)

MMP7 Distinguishes the basal-like breast cancer subtype from other triple-negative tumors (87)

IL-10 Involved in the process of breast carcinogenesis (88)

Cervical

(CC)

STK31 It could be a novel cellular target gene for the HPV16 oncogeneE7, hypomethylation biomarker for CC (89)

Colorectal

(CRC)

HES1 Critical role in the progression and prognosis of CRC, associated with poor prognosis (90)

RORA1 Correlation with stages III and IV, but not with stages I and II, biomarker for chemotherapy selection in highly advanced

CRC (91)

MUC5AC Marker of high microsatellite instability in CRC, detects microvesicular hyperplastic polyps and sessile serrated

adenoma (92, 93)

TCF3 Prognostic value indicating recurrence in stage II and III of CRC (94)

Gastric (GC) COX2 Associated with the intestinal type of gastric cancer (95)

IGF2 Surrogate marker of gastric cancer risk, through IGF2 hypomethylation in blood leukocyte DNA (96)

Hepato-

cellular

BORIS Promising prognostic biomarker for the prognosis of HCC (97)

(HCC) RNA5SP38, IL21, and

SDC4P macroH2A1

Prognostic and diagnostic value associated with HCC patient survival (98)

hsa-miR-191 Associated with poor prognosis via activation of c-MET in hepatocellular carcinoma (99)

miR-106a

miR-106a

Promotes the epithelial-to-mesenchymal transition in HCC (100)

Associated with stronger invasiveness, faster cell cycle progression, increased apoptosis resistance (101)

Lung

(LC)

NSD1 A tumor cell-intrinsic driver of an immune cold phenotype, associated with reduced T cell infiltration into the tumor

microenvironment in LC (102)

NY-ESO-1 Associated with poor prognosis in patients not treated with chemotherapy, prognostic marker in stage 3 NSCLCs (103)

MUC-4 TET1 regulates MUC-4 hypomethylation, which plays crucial role in carcinogenesis and tumor invasion (104)

AHRR and F2RL3 Reflects long-term effect of smoking on the LC risk, biomarkers for smoking exposure (105)

ARL4C Involved in tumorigenesis of lung squamous cell carcinoma (SqCC) (106)

TMPRSS4 Associated with poor prognosis in SqCC, a potential therapeutic target (107)

EYA2 Promoter factor of lung adenocarcinoma oncogenesis, altering proliferation and cell cycle distribution (108)

Ovarian

(OC)

SLC6A12 Associated with poor overall survival, it is a metastasis-promoting gene in OC (109)

CT45 Possible prognostic biomarker, immunological or therapeutic target (110)

CA9 Correlated with a more aggressive phenotype in ovarian cancer cells (111)

AGR2 Modulator of more aggressive cancer phenotypes (112)

ATG4A and

HIST1H2BN

Associated with poor progression-free survival and overall survival (113)

Pancreatic

(PC)

SERPINB5 Diagnostic marker for pancreatic ductal adenocarcinoma from pancreatitis (114)

MUC4 Involved in carcinogenesis, prognostic marker for pancreatic cancer (115)

S100A4 Associated with poor differentiation, promising diagnostic marker for early detection (116)

MET and ITGA2 Associated with poor survival, having a role in pancreatic carcinogenesis (117)

Prostate

(PCa)

TFF3 Potential diagnostic biomarker for PCa (118)

CD147 Promotes aggressive tumor progression in human PC (119)

TFF1 and TFF3 Their overexpression in PC may serve as biomarkers (120)

resistance in GC cells, ubenimex epigenetically inhibits the
activation of the CD13/EMP3/PI3K/AKT/NF-κB pathway (154).
Additionally, the NFκB pathway participates in the acquisition
of resistance to tyrosine kinase inhibitor (TKI) treatment in
lung cancer. Although it is a rare event, methylated cytosine

may be converted to thymine by deamination. As a result,
the methylated CG sequence could be converted into the TG
sequence. Treatment with EGFR TKIs leads to activation of
the NFκB pathway and also induces the activation-induced
cytidine deaminase (AICDA) expression. AICDA deaminates
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TABLE 3 | Hypermethylation associated with chemotherapy resistance in cancer.

Cancer type Hypermethylated

promoter

Mechanism associated with hypermethylation and diminished expression Associated

resistance

Breast

(BC)

TGBI Associated with trastuzumab resistance in HER2+ BC patients Trastuzumab (124)

ER-α The formation of the ZEB1/DNA methyltransferase (DNMT)3B/histone deacetylase (HDAC)1

complex on the ER-α promoter leads to DNA hypermethylation and the silencing of ER-α. Thus,

ZEB1 represses ER-α transcription.

Antiestrogen (125)

MSH2 Biomarker for early detection of resistance, target for epigenetic therapy Doxorubicin (126)

MGP Associated with chemoresistant phenotype in ER+ breast cancer cells Doxorubicin (127)

PSAT1 Associated with cytokine and JAK-STAT signaling, and poor clinical outcome to tamoxifen in ER

positive primary tumors

Tamoxifen (128)

Cervical

(CC)

SOCS Ectopic expression of SOCS1 and SOCS3 confer radio-resistance to HeLa cells Radiation (129)

ZNF582 Associated with resistance to radiation and chemotherapy in HeLa cells Radiation (130)

Colorectal

(CRC)

NKX6.1 Metastasis suppressor by regulating epithelial-mesenchymal transition/outcome predictor of stage II

CR patients, associated with poor prognosis

5-FU (131)

DCR1 Silencing of DCR1 in cancer cells may promote pro-survival and pro-growth signals, predictive

biomarker when a combination of irinotecan and capecitabine is used

Irinotecan (132)

MEIS2 Possibly involved in the Wnt/β-catenin pathway to maintain CRC stemness, which leads to L-OHP

resistance

Oxaliplatin (133)

miR-26b Tumor suppressive role of miR-26b is mediated by negatively regulating P-glycoprotein protein

expression

5-FU (134)

CCNEI, CCNDBP1,

PON3, DDX43, and

CHL1

Associated with the recurrence of CRC and 5-azadC-mediated restoration of 5-FU sensitivity is

mediated at least in part by MAPK signaling pathway.

5-FU (122)

Gastric

(GC)

TFAP2E High expression of miR 106a 5p and miR 421 regulate the chemoresistance induced by TFAP2E

methylation

5-FU (135)

TFAP2E The lack of response to fluorouracil-based chemotherapy is associated with TFAP2E

hypermethylation, indicating that it might be a potential predictor of treatment response in patients

with GC

5-FU (136)

Hepato-

cellular

(HCC)

CSF3R

KCNQ1

Associated with poor prognosis, higher recurrence rates, indicative of non-CDDP regimens in

hepatoblastoma patients

Remarkable inhibitory roles on tumor metastasis in vitro and in vivo

Cisplatin (137)

Cisplatin (138)

Lung

(LC)

PDE3A Inhibitor of DNA synthesis and cell viability in cancer cells/PD3A re-expression improves overall

survival in adenocarcinoma patients.

Cisplatin (139)

LRP12 Associated with shorter survival, marker for carboplatin resistance Carboplatin (140)

miR-483-3p Because miR-483-3p directly targets integrin β3, and represses downstream FAK/Erk signaling

pathway, its absence promotes acquired EGFR TKI resistance in EGFR-mutant NSCLC

Gefitinib (141)

GPR56, MT1G, and

RASSF1

Potential methylation markers associated with acquired methylation in multidrug resistance of lung

adenocarcinoma

Cisplatin (123)

Ovarian

(OC)

UCHL1 Knockdown of UCHL1 reduces cell apoptosis contributing to cisplatin resistance in OC cells Cisplatin (142)

OXCT1 Silencing of OXCT1 is associated with cisplatin resistance Cisplatin (143)

BRCA1 Loss of promoter hypermethylation restore BRCA1 function in recurrent disease Cisplatin (144)

miR-199a-3p Favors migratory, invasive and tumorigenic capabilities, and cisplatin resistance Cisplatin (145)

hMSH2 Associated with platinum resistance, poor prognosis value Platinum (146)

RASSF1A Associated with multidrug resistance Platinum and

Placlitaxel (121)

NAGA NAGA acts as a cisplatin sensitizer Cisplatin (147)

TRIB2 Downregulation of TRIB2 contributes to platin-resistance, promising prognostic and predictive

marker

Cisplatin (148)

miR-490-3p miR-490-3p enhances CDDP sensitivity of OC cells through downregulating ABCC2 expression. Cisplatin (149)

Pancreatic

(PC)

BNIP3

miR-132

Associated with chemoresistance in pancreatic ductal adenocarcinoma cell lines

Promotes TGF-β-driven progression of pancreatic cancer

Gemcitabine (150)

Dexamethasone (151)

Prostate

(PCa)

miR-34a Diminished miR-34a expression enhances chemoresistance, allowing upregulation of

ATG4B-induced autophagy through AMPK/mTOR pathway

Dox, Topo (152)

miR-205 and miR-31 Associated with apoptosis resistance in advanced PCa, the antiapoptotic genes BCL2L2 (encoding

Bcl-w) and E2F6 have been identified as the targets of miR-205 and miR-31, respectively.

Docetaxel and

Cisplatin (153)
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the 5-methylcytosine, resulting in thymine to generate a
T790M mutation. Hence, this is also a methylation-associated
mechanism behind the acquisition of a mutation that provides
resistance to TKI treatment in lung cancer (155).

DNAm-induced silencing of tumor suppressors is common
in cancer. The hypermethylation can be reverted using the
FDA-approved DNMT inhibitor 5-aza-2’-deoxycytidine, also
named 5-azacytidine or decitabine. 5-Azacytidine has proven
to be effective in the treatment of hematological neoplasms.
However, its antitumor effect varies in solid tumors (156). The
inhibition of methylation has presented good results in GC;
Zhang et al. reported that growth arrest-specific transcript 5
(GAS5), which is a tumor suppressor lncRNA, is downregulated
in GC. Adriamycin (ADM)-resistant cells (SGC-7901/ADM)
have significantly higher levels of hypermethylation in the
GAS5 promoter than GC SGC-7901 cells. The authors enforced
GAS5 expression, provoking a significant reduction in tumor
growth rate and apoptosis after Adriamycin treatment (157).
Additionally, Wu et al. have shown that hypermethylation of
miR-129-5p CpG island promotes miR-129-5p downregulation,
favoring chemoresistance in GC cells. In the GC MDR
cell line (SGC7901/VCR), the expression of miR-129-5p was
restored through the use of 5-azacytidine, which reduced the
chemo-resistance to 5-FU, vincristine, and cisplatin in this
cell line. When the authors downregulated miR-129-5p, the
chemoresistance was recovered. Furthermore, three members of
ABC transporters (ABCG1, ABCC5, and ABCB1), which are
associated withMDR, are direct targets of miR-129-5p regulation
(158). In contrast, the demethylation of regulatory regions can
induce chemoresistance in cervical cancer. Sensitivity to DNA
topoisomerase I inhibitors in cancer therapy can be affected by
DNA hypermethylation of the Werner (WRN) gene that reduces
WRN expression. The WRN gene codes for a DNA helicase
that contributes to genomic stability. Masuda et al. reported
that cervical cancer-derived cell lines and primary cervical
cancer that presented decreased WRN expression due to DNA
hypermethylation showed high sensitivity to the topoisomerase
I inhibitor (CPT-11). After treatment with 5-azacytidine, the
tumor cells became resistant to CPT-11. To confirm this result,
they transfected with a siRNA against WRN in tumor cells.
These cells increased the sensitivity to CPT-11 (159). Therefore,
treatment with demethylating drugs may have unforeseen and
opposing results in cancer patients.

Silencing mechanisms to prevent the expression of tumor
suppressor genes may also be induced by hypermethylation in
cancer. For instance, potassium (K+) channels are dysregulated
in different tumors and contribute significantly to the malignant
phenotypes, such as chemoresistance, proliferation, and
migration. KCNQ1 (potassium channel) can interact with
β-catenin to affect its subcellular distribution. The interaction of
KCNQ1 with β-catenin reduces Wnt/β-catenin signaling, which
consequently blocks the expression of its downstream targets,
such as MMP7, CCND1, and c-Myc. As a result, proliferation
and cell migration are inhibited. DNA hypermethylation of
KCNQ1 promoter has been shown to downregulate KCNQ1
expression in hepatocellular carcinoma (HCC). Downregulation

of KCNQ1 is found in HCC cell lines and tissues and is associated
with a poor prognosis (138). Additionally, the KCNQ1 Opposite
Strand/Antisense Transcript 1 (KCNQ1OT1) gene is a lncRNA,
which has been reported to be highly expressed in colorectal
and lung cancers. High KCNQ1OT1 expression is correlated
with malignant phenotypes in lung cancer. The transfection of
si-KCNQ1OT1 can effectively knock down the expression of
KCNQ1OT1, increasing KCNQ1 levels and, thus, inhibiting the
malignancy and chemoresistance of lung cancer cells to paclitaxel
(160). Accordingly, treatments that focus on recovering KCNQ1
expression must consider both the hypermethylation of
regulatory regions and the expression of lncRNA. Another
example of multiple mechanisms for silencing gene expression
is the downregulation of BCL2 interacting protein 3 (BNIP3),
which is a proapoptotic member of the BCL-2 family that induces
necrotic-like cell death. Loss of BNIP3 expression in pancreatic
cancer is correlated with methylation of the BNIP3 promoter.
Mahon et al. showed an association between the decreased
expression of BNIP3 and chemoresistance to gemcitabine in
pancreatic ductal adenocarcinoma (PDAC) cell lines. Besides
promoter hypermethylation, S100A4 overexpression, which
belongs to the S100 calcium-binding protein family, represents
an alternative mechanism for inhibiting BNIP3 function in
PDAC. S100A4 knockdown, mediated by RNA interference,
upregulated the expression of BNIP3 in PDAC cell lines that have
an unmethylated BNIP3 promoter, which led to an increased
sensitivity to gemcitabine in PDAC cell lines (150). Consequently,
it is important to keep in mind that hypermethylation is one of
several mechanisms that inhibits tumor suppressor genes, and
anti-cancer treatments must consider this fact.

HYPOMETHYLATION OF KEY GENES IS
ASSOCIATED WITH THERAPY
RESISTANCE IN CANCER

Hypomethylation of promoters for a certain type of gene may
also function as tumor mechanisms for acquiring resistance
to drug therapy. Table 4 (161–181) shows some genes whose
promoters are hypomethylated in several types of cancer.
Hypomethylation of the promoters of these genes leads to their
upregulation. The product of some of these genes supports
mechanisms involved in MDR, proliferation, the repression
of apoptotic signaling, mitochondrial function, and DNA
repair. For instance, Luzhna et al. found that diminished
radiation responsiveness was correlated with significant
global DNA hypomethylation in radiation-resistant cells
(MCF-7/DOX). This radiation resistance can be reversed
by an epigenetic treatment, which is the use of SAM, a
methyl donor. The radiation sensitivity in MCF-7/DOX cells
was promoted through use of the SAM-mediated reversal
of DNA methylation. However, the researchers found that
SAM should be carefully used because the SAM application
decreased responsiveness to radiation on MCF-7 cells that
were originally radiation-sensitive and highly methylated.
Remarkably, the authors concluded that a fine balance of DNA
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TABLE 4 | Hypomethylation associated with chemotherapy resistance in cancer.

Cancer type Hypomethylated

promoter

Mechanism associated with hypomethylation and increased expression Associated

resistance

Breast (BC) ID4 Potential biomarker in distinguishing acquired tamoxifen-refractory BC Tamoxifen (161)

ERp29/ MGMT ERp29 expression in the triple negative MDA-MB-231 breast cancer cells significantly increases cell

survival against ionizing radiation, by downregulating DNA methyltransferase 1, ERp29 promotes

promoter’s hypomethylation of the DNA repair gene (MGMT)

Radiation (162)

ETS-1 Inhibitor of miR-320a expression, downregulation of miR-320a triggers TRPC5 and NFATC3

overexpression, which are essential for BC chemoresistance

Adriamycin and

paclitaxel (163)

miR-663 Overexpression of hypomethylated miR-663 induces chemoresistance in breast cancer cells by

down-regulating HSPG2.

Cyclophosphamide

and docetaxel (164)

MDR1, GSTpi, MGMT,

and Upa

Hypomethylation of the promoter regions of the MDR1, GSTpi, MGMT, and Upa genes is

associated with acquirement of doxorubicin resistance of MCF-7 cells

Doxorubicin (165)

Colorectal

(CRC)

NME2 Enhancer of growth abilities and reduced apoptosis in HCT-8 cells 5-FU (166)

CDO1 CDO1 hypomethylation in stage III colon cancer with postoperative chemotherapy exhibits worst

prognosis than CDO1 hypermethylation. In some CRC cell lines, forced expression of CDO1 gene

increases mitochondrial membrane potential accompanied by chemoresistance and/or tolerance

under hypoxia.

Adjuvant (167)

Nrf2 TET-dependent demethylation of the Nrf2 promoter upregulates Nrf2 and HO-1 expression, which

induces cellular protection mechanisms, leading to 5-FU resistance in CRC cells

5-FU (168)

Gastric (GC) ASCL2 Enhanced ASCL2 expression increases cell growth and promotes resistance to 5-FU in GC cells, a

useful prognostic marker for GC patients

5-FU (169)

MDR1 Overexpression of DCTPP1 decreases the concentration of intracellular 5-methyl-dCTP, which

results in promoter hypomethylation and hyper-expression of MDR1

5-FU (170)

GTSE1 GTSE1 expression represses apoptotic signaling and confers cisplatin resistance in gastric

cancer cells.

Cisplatin (171)

Hepato-

cellular

(HCC)

PD-L1/DNMT1 axis Highly DNMT1 upregulation positively correlates with PD-L1 overexpression in sorafenib-resistant

HCC cells, where PD-L1 induced DNMT1-dependent DNA hypomethylation

Sorafenib (172)

MDR1 MDR1 promoter hypomethylation might be regulated by the riboregulatory H19, inducing the

P-glycoprotein expression through the upregulation of its gene MDR1 in liver cancer cells

Doxorubicin (173)

Lung (LC) TDRD9 Associated with aberrant mitosis and abnormal-shaped nuclei, protects from replicative stress

increasing drug resistance

Aphydicolin (174)

Ovarian (OC) SERPINE1 Associated with EMT process and carboplatin resistance in A2780cp cells Carboplatin (175)

TMEM88 Functions as an inhibitor of Wnt signaling contributing to the platinum resistance Platinum (176)

BRCA1/SIRT1/EGFR

axis

Cisplatin-resistant ovarian cancers increase BRCA1, SIRT1, and EGFR levels compared with those

in cisplatin-sensitive ovarian cancers. Decreased nicotinamide adenine dinucleotide (NAD)-mediated

SIRT1 activity, decreased EGFR levels, significantly elevated SIRT1 levels, and BRCA1 activation are

associated with hypomethylation in the BRCA1 promoter

Cisplatin (177)

HERV HERV-K hypomethylation is associated with a poor prognosis and platinum resistance in ovarian

clear cell carcinoma (OCCC), promising biomarker for predicting OCCC treatment response and

prognosis.

Platinum (178)

MAL Highly expressed MAL gene in serous ovarian cancers from short-term survivors (<3 years) and

treated with platinum-based therapy. MAL methylation status is a potential target for enhancing

sensitivity to platinum-based drugs in epithelial ovarian cancer

Platinum (179)

Prostate

(PCa)

miR-27a-5p miR-27a-5p promoter becomes hypomethylated during PCa progression, miR-27a-5p upregulation

decreases EGFR/Akt1/mTOR signaling

Castration (180)

CD117 and ABCG2 Prostate cancer cell line 22RV1 expresses high surface levels of both CD117 and ABCG2

(CD117+ABCG2+ cells). This subpopulation shows hypomethylation in ABCG2 promoter and also

overexpresses stem cells markers such as Nanog, Oct4, Sox2, Nestin, and CD133

Cisplatin, paclitaxel,

adriamycin, and

methotrexate (181)

methylation is needed to ensure proper drug and radiation
responsiveness (182).

Activation of drug-resistance-associated genes, besides the
hypomethylation of their promoters, can be caused by de novo
gene fusions. In the case of breast cancer, BRCA1-deficient
tumors are extremely sensitive to DNA-damaging drugs and
poly(ADP-ribose) polymerase (PARP) inhibitors. However,

BRCA1 protein was detected in 31 of 42 drug-resistant cases,
despite presenting a hypermethylated promoter. BRCA1-
intragenic deletions and the loss of BRCA1 promoter
hypermethylation have been shown to occur, and de novo
gene fusions take place, where BRCA1 expression can
be under the transcriptional control of a heterologous
promoter (183).
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Therefore, targetingmethylation should be carefully evaluated
because most compounds that promote or inhibit this process are
not gene-specific, which may lead to undesirable effects.

REGULATION OF WNT CANONICAL AND
NON-CANONICAL PATHWAYS BY DNA
METHYLATION THAT SUPPORTS CANCER
DEVELOPMENT AND THERAPY
RESISTANCE

In this section, we include potential mechanisms by which
differentially methylated genes take part in the development
of cancer, by integrating protein interactions and pathways
regulated by methylation (11). Tumors present a dysregulated
pattern of methylation in genes that impact in pathways like
the Wnt canonical pathway and PI3K/AKT/mTOR (e.g., DKK,
SFRPs, WIF1, DVL, APC, PTEN, SALL2, and IGFBP-3), which
support resistance to specific inhibitors as well as conventional
chemotherapeutic agents.

The Wnt/beta-catenin signaling pathway plays important
roles in carcinogenesis and therapy resistance. Wnt is a large
family of secreted lipoproteins that can join to receptors
and co-receptors at the cell surface and activate a complex
signaling network. This pathway participates in a wide range
of physiological cellular processes like embryonic development,
tissue homeostasis, tissue regeneration, cell polarity, cell
proliferation, cell migration, and apoptosis (184, 185). The
Wnt signaling pathway may be activated by the Wnt/ß-catenin

pathway (also known as the canonical pathway (Figure 1)
(185, 186) or non-canonical Wnt signaling. Non-canonical Wnt
signaling, which is independent of β-catenin, is activated by the
pathways Wnt/planar cell polarity and Wnt/Ca2+ (187, 188).

Methylation of genes involved in the Wnt pathway plays
a crucial role in regulating the development and progression
of tumors, as well as metastasis, diagnosis, and treatment.
Several tumors, such as lung, breast, prostate, colon, gastric,
and ovarian cancers, among others, exhibit a pattern of
deregulated methylation in this pathway (184, 189, 190). For
instance, Dickkopf-related protein (DKK3), secreted frizzled-
related protein 1 (SFRP1), SFRP2, and Wnt inhibitory factor-
1 (WIF1), which are tumor suppressor genes, prevent LRP5/6
receptors from interacting with their ligands, consequently
inhibiting the signaling of the Wnt pathway (191, 192). In
the context of methylation, it has been said that several
tumors show the downregulation of DKK3, SFRP1, SFRP2,
and WIF1 by hypermethylation in their promoters (193). The
hypermethylation of DKK3 has been associated with docetaxel
(DTX) resistance in the lung cancer H1299/DTX cell line.
Moreover, treatment with 5-azacytidine on the H1299/DTX cell
line upregulates DKK3 expression at both the mRNA and protein
levels, which inhibits colony formation and induces apoptosis
due to recovered sensitivity to DTX. Additionally, P-glycoprotein
is a drug efflux pump associated with MDR, encoded by the
MDR-1 gene (MDR-1). MDR-1 overexpression is associated with
DTX resistance in lung cancer. Restored expression of DKK3

leads to the downregulation of MDR-1 and P-glycoprotein, thus
increasing sensitivity to DTX. This is a mechanism of regulation
in lung cancer therapy. Therefore, DKK3 may be a therapeutic
target that may help tumor cells recover sensitivity to DTX
(194). Another study found that the decreased expression of
DKK3 is associated with hypermethylation in pancreatic cancer
biopsies in comparison to non-tumor tissue. In this study, DKK3
expression was not detected in three pancreatic cancer cell lines
(Aspc-1, Bxpc-3, and CFPAC-1). DKK3 overexpression by DKK3
transfection in the Bxpc-3 pancreatic cell line promotes the
inhibition of β-catenin translocation to the nucleus, as well as
its transcriptional role under conditions of hypoxia or normoxia.
Furthermore, DKK3 repressed the EMT and migration of Bxpc-
3 cells, mediated by the inhibition of β-catenin. These effects
improved the response to gemcitabine in Bxpc-3 tumor cells,
suggesting that DKK3may be a potential target for therapy (195).

In advanced stages of lung cancer, treatment based on taxanes
is one treatment option, such as paclitaxel and DTX; however,
resistance to therapy is presented in some patients (196).
Ren et al. showed that hypermethylated SFRP1 regulates the
chemotherapy resistance of taxanes and DTX in A-549 and SPC-
A1 lung adenocarcinomas cell lines. The resistance was mediated
by Wnt pathway activation because SFRP1 reduces β-catenin
stability, leading to cell death, whereas SFRP2 promotes β-catenin
accumulation, inducing resistance to apoptosis. Moreover, 5-
azacytidine treatment restored the SFRP1 expression level,
inducing the inhibition of the Wnt pathway and promoting
drug sensitivity in resistant cell lines. Thus, the overexpression
of SFRP1 can improve patients’ responses to taxanes and DTX
therapies (196). Zhu et al. also found that SFRP1 and SFRP5 were
hypermethylated in NSCLC. Furthermore, the hypermethylation
of SFRP5 predicted a poor response to TKI therapy; hence,
SFRP5 methylation could be associated with TKI resistance
(197). Additionally, higher levels of the hypermethylation of
SFRP1, SFRP2, and WIF1 genes were found in colon cancer
compared to non-tumoral tissues. Thus, the hypermethylation of
one or both SFRP1and SFRP2 genes is a promising prognostic
marker for predicting survival in patients who receive post-
operative chemotherapy (198–200). Su et al. found that SFRP5
was hypermethylated in 44.4% of ovarian cancer tissues, as well as
in SKOV3 and A2780 tumor cell lines. The SFRP5 low expression
promotes EMT, tumor growth, invasion, tumor progression, and
cisplatin resistance. Restored expression of SFRP5 reduces Wnt
non-canonical signaling, promoting sensitivity to cisplatin in a
mouse model of ovarian cancer (201).

Several genes whose protein products participate in
the Wnt transduction signaling cascade are regulated by
hypermethylation. Hence, the deregulation of this process
during carcinogenesis may contribute to drug resistance. For
instance, hypermethylation of DVL in prostate cancer has
been suggested to favor resistance to cabazitaxel in DU145
cells. Reactivation of DVL by 5-azacytidine treatment in
DU145 10DRCR cells restores sensitivity to cabazitaxel in this
prostate tumor cell line (202). Hypermethylation of adenoma
polyposis coli (APC), a tumor suppressor gene, inhibits the
Wnt pathway, promoting tumorigenesis and tumor progression
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FIGURE 1 | Activation of the Wnt/β-catenin signaling pathway in the resistance to therapy in cancer by methylation. The canonical Wnt/ß-catenin pathway is activated

by the binding of Wnt to the Frizzled receptor (Fzd). Then LRP is phosphorylated by casein kinase 1 (CK1α) and glycogen synthase kinase 3 beta (GSK3β) associated

with tumor suppressor adenomatous polyposis coli (APC). LRP phosphorylation promotes the recruitment of disheveled proteins (DVL) to the plasma membrane,

where they are polymerized and activated. DVL complex interacts with Axin, which inhibits the degradation of β-catenin and leads to its accumulation in the cytoplasm

and translocation into the nucleus, where β-catenin promotes the activation of LEF/TCF transcription factors inducing the transcription of several genes. In the

absence of Wnt, β-catenin is a target of the destruction complex conformed by Axin, CK1α, APC, and GSK-3β. CK1α and GSK-3β phosphorylate β-catenin,

promoting its ubiquitination by the β-TrCP ubiquitin ligase and degradation through the proteasome. On the other hand, this figure shows some aberrantly methylated

key genes that increase resistance to therapeutic agents and the dysregulation of the Wnt/β-catenin signaling pathway. These genes play an antagonist role in the Wnt

pathway, for instance, Dickkopf-related protein (DKK3), secreted frizzled-related proteins (SFRP1, SFRP2), and WNT inhibitory factor-1 (WIF1), which are tumor

suppressor genes and inhibit the signaling of Wnt to bind LRP5/6 receptors. , phosphorylation; ↑, increase; ↓, decrease, , methylation.

in CRC (203, 204). In breast cancer, Matuschek et al. reported
that hypermethylated APC promotes tumor aggressiveness
in circulating tumor cells. Additionally, 70% of breast cancer
tissues presented hypermethylation in the APC gene (205). By
the same token, loss of APC inactivates the repair of double-
stranded breaks mediated by ATM, Chk1, and Chk2, which
induces doxorubicin resistance (205, 206). Thus, we suggest
that the methylation status of several key genes involved in the
Wnt/canonical signaling pathway may be used as predictive
markers of tumor progression and therapy response.

REGULATION OF THE
PI3K/PTEN/AKT/MTOR SIGNALING
PATHWAY BY DNA METHYLATION
SUPPORTS CANCER DEVELOPMENT AND
THERAPY RESISTANCE

AKT is also recognized as protein kinase B (Serine/Threonine

Kinase 1, or Protein Kinase B), which participates in several

processes such as cell metabolism, cell proliferation, angiogenesis,
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apoptosis, motility, and cell survival (207). Aberrant DNAm
of key genes in PI3K/PTEN/AKT/mTOR signaling pathway
promotes therapy resistance in solid tumors (Figure 2).

Tamoxifen (TAM) is the first line of therapy for the treatment
of estrogen-receptor-positive breast cancer. This type of breast
cancer develops TAM resistance, promoting tumor relapse (208).
Phuong et al. found that the MCF-7 breast cancer cell line
showed TAM resistance (TAMR/MCF-7). This resistance is
mediated by a high expression of DNMT1. DNMT1 along with
SAM induce the hypermethylation of PTEN in amplicon A

and amplicon B sites, leading to its downregulation and the
constitutive activation and phosphorylation of PI3K/AKT. 5-
Azacytidine treatment inhibits DNMT1 in TAMR/MCF-7 cells,
restoring PTEN expression, suppressing cell proliferation, and
promoting cell death by apoptosis (209). Spalt-like transcription
factor 2 (SALL2) functions as a tumor suppressor, which
regulates the AKT/mTOR pathway (Figure 2). Hypermethylated
SALL2 is found in the TAM-resistant ER+ TAMR/MCF-7
breast cancer cell line, which leads to SALL2 downregulation.
SALL2 decreased expression promotes decreased expression

FIGURE 2 | DNA methylation regulates the PI3K/PTEN/AKT/mTOR signaling pathway in the resistance to therapy in cancer. (Left) PI3K induces the phosphorylation

and activation of AKT/mTOR. This transduction signal begins with the activation of the membrane tyrosine kinase receptors (RTKs) or G-protein-coupled receptors,

which promotes the change of phosphatidylinositol (4,5)-bisphosphate (PIP2) in phosphatidylinositol (3-5)-trisphosphate (PIP3). The activation of PI3K

(phosphoinositide-3-kinase) is regulated by the phosphatase and tensin homolog (PTEN) by dephosphorylating PIP3 into PIP2. (Right) We show the aberrant

methylation of the PTEN, Spalt-like transcription factor 2 (SALL2), transforming growth factor beta-induced protein (TGFB1), and Lysine (K)-specific demethylase 5A

(KDM5A) genes through the high expression of methyltransferase (DNMT3B), s-adenosylmethionine (SAM), H3K27me3, H3K9me2, and H3K4me3, promoting a

continued activation of the PI3K/AKT/mTOR signaling pathway associated with resistance therapy in solid tumors. , phosphorylation; ↑, increase; ↓, decrease; ,

methylation, , radiotherapy.
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levels of estrogen receptor-alpha (ERα) and PTEN, which
causes the continued activation of AKT/mTOR. In addition,
hypomethylation of SALL2 increases its expression, leading to
the upregulation of ER and PTEN and the further inhibition of
the AKT/mTOR signaling pathway, which consequently leads to
TAM sensitivity (210).

Among breast cancers, 15–20% are human epidermal
growth factor receptor 2 positive (HER2+) and may develop
resistance to trastuzumab. Palomeras et al. reported that
primary breast tumors that developed trastuzumab resistance
present a loss of expression of transforming growth factor
beta-induced protein (TGFBI) by hypermethylation. TGFBI
inhibits the HER2 receptor and AKT (124). Abnormal activation
of PI3K/AKT is common in breast cancer. Among the most
frequent causes is constitutive signaling through mutational
activation of phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA), which is mutated in 45%
of luminal breast cancers. Thus, a promising therapeutic
strategy is to develop PI3K/AKT inhibitors. KDM5A lysine
demethylase can remove tri- and dimethyl marks on histone
H3 (H3K4me3), leading to tumor progression and drug
tolerance. KDM5A is a target of AKT and, together, they regulate
certain cell-cycle genes. AKT phosphorylates KDM5A, thus
promoting the subcellular localization of KDM5A from the
chromatin-bound regions and nucleus to the cytoplasm. As a
result, KDM5A is rendered unable to demethylate H3K4me2/3.
PI3K/AKT inhibition decreases KDM5A phosphorylation,
promoting the low expression of cell-cycle promoting genes.
Additionally, KDM5A regulates resistance to PI3K/AKT
inhibitors (211).

On the other hand, some mutated EGFR lung cancers
induce resistance to EGFR-TKIs (gefitinib and erlotinib). Two
gefitinib-resistant cell lines (GEF1-1 and GEF2-1) derived
from the PC-9 cell line were treated with 5-azacytidine.
This treatment restored PTEN expression and promoted
sensitivity to gefitinib and erlotinib in GEF1-1 and GEF2-
1 cell lines. Nonetheless, the parental cell line (PC-9 cells)
did not show this sensitivity due to the hypermethylation of
PTEN and hyperactivation of AKT (212). Furthermore, the
hypermethylation of insulin-like growth factor-binding protein-
3 (IGFBP-3) promotes cisplatin resistance in lung cancer.
Downregulation of IGFBP-3 induces PI3K/AKT activation by
specific de-repression of insulin-like growth factor-I receptor
(IGFIR) signaling (213).

Methylation of PTEN promoter is an alternative mechanism
to PTEN downregulation that induces drug resistance. For
instance, lung cancer cells develop radioresistance due to
hypermethylated PTEN that induces low expression of pAKT
and downregulates p53 expression (214). In similar research,
Pappas et al. showed that restoring PTEN expression in the
human lung cancer cell line H1299 by the use of the adenovirus
expression vector (Ad-PTEN) increases sensitivity to ionizing
therapy. Of note, PTEN promoter is methylated in H1299 cells.
The phosphorylation of BAD, a proapoptotic molecule regulated
by AKT, inhibits its binding to Bcl-2, leading to apoptosis. Thus,
restoring PTEN induces lower levels of phosphorylated AKT and
BAD, which sensitizes to apoptosis. Also, Ad-PTEN regulates the

DNA repair of double-strand breaks, mediated by the activation
of H2AX (215).

Differential DNA methylation profiles are found in prostate
cancer samples. These tumors show hypermethylated PTEN and
hemi- and homozygous PTEN loss. The latter has been associated
with poor prognosis, recurrence, and tumor progression (216).

Qian et al. found that DNMTs were highly expressed
in nasopharyngeal carcinoma resistant cells; consequently,
PTEN and PPP2R2B promoter hypermethylation is induced.
DNMT upregulation activates two important signaling
pathways, PI3K/mTOR and PDK1/MYC, favoring survival,
proliferation, and resistance to the BEZ235 inhibitor (217).
Treatment with BEZ235 and the inhibition of DNMT
expression with 5-azacytidine induces drug sensitivity
in resistant tumor cells. Furthermore, 5-azacytidine
dephosphorylates the AKT, GSK3β, MYC, P70, and 4EBP-
1 proteins involved in the AKT/mTOR and PDK1/MYC
pathways. The combination of decitabine and BEZ235
upregulates PTEN protein expression, inhibiting cell growth.
Hence, new combinations of chemotherapeutic agents with
inhibitors against components of the PI3K/AKT/mTOR
signaling pathway should be tested to increase tumor
chemotherapy sensitivity.

CONCLUSIONS AND FUTURE
DIRECTIONS

Several studies have shown that modifications in DNAm patterns
may support cancer development, invasion, and metastasis.
Global methylation analyses suggest that CpG islands tend
to be a highly altered methylation status that depends on
the cancer type (122, 123). Importantly, several studies have
reported that DNAm patterns of drug-treated tumor cells can
change and support the acquisition of resistance to treatments,
such as radiotherapy and chemotherapy. Some of these
DNAm changes have been proposed as promising biomarkers
whose presence would be indicative that therapy must be
replaced (Tables 3, 4).

Additionally, the study of the DNAm patterns and their
involvement in the regulation of several signaling pathways
in cancer has provided significant insight into the molecular
mechanisms underlying the development of cancer. For instance,
dysregulation of Wnt canonical and PI3K/AKT/mTOR signaling
pathways, caused by an altered methylation status in a variety of
genes, has been associated with resistance to current treatments
(taxanes, DTX, cisplatin, TKI, etc.) in many types of cancer.

Some studies have tried to change drug-resistance-associated
DNAm patterns using SAM and DNMTs to increase the
methylation grade or TET-dependent demethylation to diminish
DNAm. Although they have changed the DNAm pattern of the
target gene, these treatments also modify the DNAm patterns
of other genes, causing undesirable secondary effects. For this
reason, a fine balance of DNAm is needed to ensure proper
drug responsiveness.

Recent advances in applied genetic engineering and genome
editing may provide new tools for targeting methylation status in

Frontiers in Oncology | www.frontiersin.org 13 August 2020 | Volume 10 | Article 1152

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Romero-Garcia et al. Methylation Regulates Resistance to Therapy in Cancer

cancer patients. In particular, the clustered regularly interspaced
short palindromic repeats/associated protein 9 (CRISPR/Cas9)
system allows for the addition or removal of DNA from
the genome in a specific manner. Genetic engineering has
produced a new version of Cas9 (dCas9), in which the
activity of endonuclease has been removed but in which
the DNA binding activity is maintained. dCas9 can also
be linked to DNMT3A or ten-eleven translocation-1 (TET1)
enzymes, generating the systems dCas9-DNMT3A or dCas9-
TET1, respectively (218, 219). These systems can induce the
methylation and demethylation of target genes in a specific-
sequence manner, which makes them promising tools in the fight
against cancer or the acquisition of therapy resistance.
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