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ABSTRACT

In cancer research, background models for mutation
rates have been extensively calibrated in coding re-
gions, leading to the identification of many driver
genes, recurrently mutated more than expected. Non-
coding regions are also associated with disease;
however, background models for them have not been
investigated in as much detail. This is partially due
to limited noncoding functional annotation. Also,
great mutation heterogeneity and potential correla-
tions between neighboring sites give rise to sub-
stantial overdispersion in mutation count, resulting
in problematic background rate estimation. Here,
we address these issues with a new computational
framework called LARVA. It integrates variants with
a comprehensive set of noncoding functional ele-
ments, modeling the mutation counts of the elements
with a �-binomial distribution to handle overdisper-
sion. LARVA, moreover, uses regional genomic fea-
tures such as replication timing to better estimate
local mutation rates and mutational hotspots. We
demonstrate LARVA’s effectiveness on 760 whole-
genome tumor sequences, showing that it identifies
well-known noncoding drivers, such as mutations in
the TERT promoter. Furthermore, LARVA highlights
several novel highly mutated regulatory sites that
could potentially be noncoding drivers. We make
LARVA available as a software tool and release our
highly mutated annotations as an online resource
(larva.gersteinlab.org).

INTRODUCTION

Genomes of numerous patients have been sequenced (1–5),
opening up opportunities to identify the underlying genetic
causes for complex disease (6–9) and develop more effec-
tive therapies targeted at specific molecular disease subtypes
(10). Most of these studies have so far focused on identi-
fying mutations and defects in the protein coding regions,
or exomes, of disease genomes (2,11–14). These methods
usually search for coding regions with higher than expected
mutation frequencies in protein coding genes through rig-
orous background mutation rate control over a variety of
genomic features (11). Such methods have been success-
fully used on numerous cancer genomes (15). However, the
noncoding regions, which comprise more than 98% of the
human genome, were rarely investigated, primarily due to
the difficulty of functional interpretation of noncoding vari-
ants.

Recent genome annotation analysis has revealed that
a significant portion of the human genome is functional
in a certain tissue or development stage (16,17), and sev-
eral noncoding variants have been implicated in disease
(18). For example, several genome-wide association studies
(GWASs) studies have discovered the phenotypic effect of
common noncoding variants in regulatory regions (19,20).
Other studies have reported that noncoding TERT muta-
tions drive cancer progression in multiple tumor types, in-
cluding melanomas and gliomas (21–23). Moreover, muta-
tions in the promoter regions of PLEKHS1, WDR74 and
SDHD were also identified as recurrent driver mutations in
some cancer types (24). In another example, analysis of the
miRNA-binding sites on BRCA1 and BRCA2, the estab-
lished risk genes of breast cancer, indicated that certain vari-
ants in these sites are associated with increased likelihood
of early onset breast cancer (25). Furthermore, some refer-
ences showed that a histone H1 variant is linked to onco-
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gene expression in ovarian cancer (26). In light of these dis-
coveries and the growing availability of whole-genome se-
quencing data (2,27–32), a statistical framework facilitating
the identification of highly mutated noncoding mutations is
called for.

More recently, a genome wide computational effort has
been made to discover the noncoding regions with higher
mutation burden in cancer genomes (24). Weinhold et al.
called whole genome somatic variants for human tumor
sequences from The Cancer Genome Atlas (TCGA) (28)
and analyzed the variants that fall into noncoding annota-
tions. A P-value was computed for each annotation reflect-
ing the likelihood that the given annotation had more vari-
ants than expected from background mutation processes,
which was modeled with a binomial distribution. They suc-
cessfully identified some known noncoding drivers, such as
the TERT promoter, and reported some novel candidates
that were not discovered previously. The use of the binomial
distribution is based on two assumptions: (i) the mutation
rate is homogeneous; (ii) variants arise independently. How-
ever, cancer genomes often violate these assumptions. First,
studies on the coding variants already proved that the muta-
tion rates in cancer genomes demonstrate substantial cancer
type, sample and regional heterogeneity (11). Second, some
passenger mutations are generated by other driver events,
such as structural alterations and mutations in DNA repli-
cation or repair genes (33). In the human genome, there
are many regions with highly correlated mutational profiles.
For instance, the germline variant distribution is influenced
by the high linkage disequilibrium (LD) of many regions,
and for somatic variants, there are many known hotspots.
Hence, some degree of dependency is to be expected in the
human germline and somatic mutations. Consistent with
these statements, we observed that the somatic mutation
counts in the noncoding elements exhibited substantially
higher variance than expected, the so-called overdispersion,
indicating that a binomial distribution might be potentially
inadequate to handle such data, and the resultant P-values
might be heavily inflated. Hence, if this P-value inflation is
not taken care of, a significance calculation based on a bi-
nomial distribution might report some artificial mutation
hotspots by chance instead of real driver events.

Here, we present a computational system, LARVA
(Large-scale Analysis of Recurrent Variants in noncoding
Annotations), that identifies highly mutated noncoding reg-
ulatory elements using whole genome sequencing (WGS)
variant data from multiple genetic disease patients. LARVA
treats the mutations counts within a given regulatory ele-
ment as a �-binomial distributed random variable. This de-
sign accommodates the heterogeneous nature of mutation
accumulation in cancer genomes and the potential depen-
dency among neighboring loci by allowing the local muta-
tion rate to be drawn from a � distribution. Furthermore,
we also divided the whole genome into several local bins and
classified them using some known genomic confounders of
the mutation rate, such as replication timing, for a more
accurate local background mutation model. Such integra-
tive analysis could potentially control the false positive rate
in an effective manner. We demonstrate the usefulness of
LARVA for finding both well-known and novel noncoding
regulators with higher mutation burdens in a set of WGS

cancer data that represents all the different types of whole
genome sequenced cancers to our knowledge (see ‘Materi-
als and Methods’ section for details). We release the non-
coding annotations and the results in this paper as a po-
tentially useful resource to researchers. Although designed
for somatic variant analysis, the logic of LARVA can be im-
mediately extended for germline variant analysis in complex
diseases. The following sections describe LARVA’s concepts,
their applications to the study of genetic disease and our
cancer findings.

MATERIALS AND METHODS

Whole genome cancer variant data

We collected whole genome cancer variant calls from a large
number of previously sequenced cancer genomes. The ma-
jority of our data came from a set of 507 whole genome
cancer samples published in Alexandrov et al. (27). This
data spans breast cancer, lung cancer, leukemia, pancreatic
cancer, pilocytic astrocytoma, medulloblastoma, liver can-
cer and lymphoma (Figure 1A and Supplementary Table
S1). This was supplemented with a collection of 95 prostate
cancer samples we obtained from publications (2,28–30), a
set of 26 unpublished glial tumor samples, 32 kidney can-
cer samples from the TCGA (28) and a set of 100 stomach
cancer samples from Wang et al. (31).

Quality control of the WGS variants

A number of genomic regions are known to have poor read
mappability due to sequence phenomena that cause am-
biguous mapping results, such as a large number of tandem
repeats. These regions are known as signal artifact black-
list regions (34). Since it is likely that variant calls in these
regions are possibly inaccurate, we opted not to use these
regions or any intersecting variants in our mutation rate
calculations (details in Supplementary Figure S1). Black-
list regions were derived from (34), and downloaded from
the UCSC Genome Browser. Variants intersecting these re-
gions, as determined by BEDTools (35), were removed from
the analysis.

Noncoding annotation summary

Our analysis covered a range of noncoding regulatory an-
notations. The GENCODE v16 main annotation file was
parsed to derive the coordinates of regulatory annotations
close to gene regions, including promoters and untranslated
regions (UTRs)(36). Transcription factor (TF) binding sites
were derived from the Chip-seq experiments conducted as
part of the ENCODE project (37). We collected the full list
of TF binding sites in all possible tissues and cell lines from
ENCODE. Distal regulatory modules (DRM) enhancers,
which regulate the expression of genes at nonadjacent sites,
were derived from (38). Another class of regulators, the
Dnase I hypersensitive (DHS) sites (39), were also derived
from the ENCODE project. Additionally, we added a set
of sites deemed ‘ultra-conserved’ in (40) due to their ex-
tremely high level of conservation across many species. Fur-
thermore, we used a set of ‘ultra-sensitive’ sites from (41),
so named because they are noncoding regions under higher
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Figure 1. (A) A pie chart representing the distribution of samples in our dataset of collected whole genome sequenced (WGS) cancers. (B) A flowchart
of LARVA’s procedure for identifying significant highly mutated noncoding elements. Cancer variants in VCF format are passed through quality control
filters and then intersected with our noncoding annotation corpus. After factoring in regional mutation rate corrections, a �-binomial distribution is fitted
to the observed data, which allows the identification of elements with a significant mutational burden.

selective pressure from the population genetics perspective.
Finally, similar to the 2500 bp promoter sites, we studied the
more proximal transcription start sites (TSSs) by extracting
the 100 bp regions immediately upstream of GENCODE
gene coding annotations (36). Table 1 summarizes the non-
coding annotations.

Pseudogenes are known hot spots for artifacts due to
their high context resemblance to their parent genes. In
order to avoid potential variant calling bias, partially due
to mapping difficulty, we removed the promoters, TSS and
UTR analyses for pseudogenes in the GENCODE annota-
tion (details in Supplementary Figure S2 Text S1 section 1).

Models used for significance evaluation of mutation burden

The mutation counts for each regulatory element were cal-
culated from the 760 cancer genomes mentioned above. For
each regulatory element category, three models were used to
calculate the mutation rate that would be expected due to
background stochastic mutation processes for significance
evaluation.

Suppose there are k noncoding regulatory elements (e.g.
TF binding sites) to be analyzed. For the ith element, let
ni stand for the total number of nucleotides in i. xi and p
represent the number of mutations within element i and the
probability of observing a mutation in each position. Some
previous models (24,42) assumed that p is constant over the
entire genome and mutations occur in an independent way.
Hence, in model 1, xi can be described as a binomial distri-
bution.

xi : Binomial(ni , p) (1)

However, due to the heterogeneous nature of the cancer
genomes and the possible dependencies among neighboring
loci, large overdispersion was found in the mutation count
data (as seen in Figure 4 in the ‘Results’ section). As a re-
sult, we first improved model 1 into a two-layer hierarchi-
cal model (model 2). Instead of setting p as a constant, we
allow it to be drawn from a � distribution with two pa-
rameters μ and σ indicating the average mutation rate and
overdispersion respectively (details in Text S1). As a result,
the marginal distribution of xi follows a �-binomial distri-
bution.

xi |p : Binomial(ni , p)
p : β(μ, σ ) (2)

Furthermore, mutation rates are known to be con-
founded by a lot of genomic features, such as replication
timing (represented by R), so we further divided the non-
coding regulatory elements into 10 bins according to the
averaged replication timing signal. Within each bin, we as-
sumed that the mutation rate follows the same distribution.
Therefore, model 3 can be represented as:

xi |p : Binomial(ni , p)
p : β(μ|R, σ |R)
μ|R, σ |R : constant within the same R bin

(3)

Method of maximum likelihoods was used for model 1.
The moment estimator mentioned in (43,44) was used to
estimate the parameters in model 2 and 3, and the P-values
were calculated accordingly for the three models (for details
see section 2 in Text S1).
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Table 1. List of noncoding annotations collected for LARVA’s analysis

Feature Nucleotide Number Length mean Length SD Fraction

Promoter 89 325 819 72 965 2500 0 0.028
TF peak 376 580 899 5 710 734 632.341 434.949 0.120
DHS site 434 080 020 2 890 742 150.162 4.520 0.138
DRM enhancer 8 273 100 9599 861.871 987.892 2.637 × 10−3

Ultra-conserved 126 007 481 261.969 70.477 4.020 × 10−5

Ultra-sensitive 610048 1354 683.149 769.190 1.945 × 10−4

UTR 41 398 790 155 052 392.539 781.461 1.320 × 10−2

TSS 13 615 140 196 520 100 0 4.343 × 10−3

Workflow of LARVA

The workflow of LARVA is given in Figure 1B. The cancer
variants in VCF format pass through a quality control filter
that includes removing those variants that fall into blacklist
regions. The preprocessed variants, along with our collected
set of noncoding annotations that do not overlap black-
list regions, are used in the main computation. The main
processing step includes counting all variant intersections
with the noncoding annotations. DNA replication timing
was used in model 3 for local mutation rate corrections. For
each annotation category, the background mutation model
was calculated using models 1–3 mentioned above and P-
values were given accordingly.

Release of results

We release the noncoding annotations, the mutation counts
and the corresponding P-values on the 760 cancer genomes
used in this paper as a potentially useful resource to facil-
itate cancer researchers for driver event discovery and val-
idation in the future. The files can be directly downloaded
from larva.gersteinlab.org. The files available for download
include:

(i) C++ source code with documentation and a regression
test suite;

(ii) A LARVA Docker image, which encapsulates all of
LARVA’s prerequisite software and greatly simplifies
installation;

(iii) Our noncoding annotation collection; and
(iv) Our P-values from running LARVA with our cancer

variant collection on our noncoding annotation collec-
tion

RESULTS

Overview of the annotated noncoding variants on various can-
cer genomes

We sought to study the whole genome somatic mutation
patterns of as many different cancer patients as possible. To
that end, we collected whole genome cancer variant call sets
from a range of cancer data repositories (27,28) and publi-
cations (2,27,29–32). Our data spans 760 genomes and in-
cludes 14 types of cancer (Figure 1A and Supplementary
Table S1). In all these samples, the percentage of coding
variants were summarized in Supplementary Table S2.

As shown in Table 1, our noncoding annotation list spans
∼30% of the human genome. We observed different can-
cer types demonstrate distinct mutational preferences over

these noncoding regions. To illustrate this phenomenon, we
used 11 types of cancer from our overall dataset, for which
there are at least 20 samples and calculated the fraction of
WGS mutations within each noncoding element category
(boxplots of various colors in Figure 2). The overall nu-
cleotide percentage of each annotation over the genome was
used as the background (black dashed lines in Figure 2). In
one instance representative of the large differences observed
between cancer types, variants in kidney cancer genomes
were found to be preferentially located in the TF binding
site while lung adenocarcinoma is mutation depleted in this
region (0.140 average versus 0.098 average, in Figure 2). A
large sample difference was also observed in several can-
cer types. For instance, within Pilocytic Astrocytoma, there
are samples that have a TF binding peak mutation fraction
as high as 0.252 and as low as 0.011, which represents a
∼23-fold difference. Hence, it is important to understand
the mutation patterns in these noncoding annotations and
take their unique characteristics into consideration.

Large cancer type, sample, regional heterogeneity of cancer
genomes and the potential dependency among neighboring re-
gions violate the binomial assumption

In (24), the mutation burden tests are performed based on
the binomial distribution, which inherently assumes a con-
stant mutation rate and completely independent mutation
events. However, these assumptions might not be appropri-
ate for either somatic or germline variant analysis.

First, in our analysis of hundreds of WGS somatic muta-
tion signatures, we observed huge cancer type, sample and
regional somatic mutation rate heterogeneity. To demon-
strate cancer type and sample mutation rate heterogeneity,
we selected all cancer types with more than 20 samples in it.
We split the human genome into 1 mega basepair (Mbp) size
bins and intersected the individual sample variants from our
dataset to calculate the mutation rate of each sample. Con-
sistent with the analysis in coding regions (11), we observed
huge mutation rate differences between cancer types. For
instance, the average whole genome mutation rate in stom-
ach cancer is as high as 11.389 mutations/Mbp (Figure 3A),
which is ∼800 times the mutation rate in medulloblastoma
(0.0142, Figure 3A). Furthermore, the whole genome mu-
tation rate also fluctuates wildly across samples and such
changes may go as high as 100 times within the same cancer
type (0.359 versus 21.8 in breast cancer, for example). Ad-
ditionally, to illustrate regional mutation rate heterogene-
ity, we randomly selected 50 one-megabase-length regions
to calculate the mean and standard deviation (SD) of the lo-

http://larva.gersteinlab.org
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Figure 2. Mutational heterogeneity between different types of cancer within several prominent classes of noncoding annotations. The percentage of muta-
tions varies widely between noncoding element types, cancer types and samples of the same cancer type.

Figure 3. (A) Between samples of the same cancer type, there is huge mutation rate heterogeneity. For most cancers, the mutation rate spans several orders
of magnitude. (B) Variation in the mutation rate in fifty 1 Mbp regions across chromosome 1 in lung cancer (top) and prostate cancer (bottom).
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cal mutation rate across samples in lung cancer and prostate
cancer (Figure 3B). As shown in Figure 3B, the average lo-
cal mutation rate may vary from 0 to 50.8 mutations/Mbp
across the randomly selected bins and the SD range is un-
usually huge for each bin. Similar results were also observed
in prostate cancer (Figure 3B).

Several biological signatures could partially explain the
observed mutation rate heterogeneity. For example, the later
replicating regions usually suffer from accumulative DNA
damage and therefore are prone to mutations (45). Further-
more, methylated cytosines in CpG sites are often unsta-
ble and undergo deamination to thymine, which yields a C
to T transition (33). Hence, there is a noticeable mutation
rate difference at CpG and non-CpG sites. Several other hy-
potheses were also proposed and summarized in Hodgkin-
son and Eyre-Walker’s review paper (33).

Second, mutation events might not be independent of
each other. For example, in germline mutation analysis, mu-
tations with high LD are prone to co-occur. Additionally,
some passenger mutations are generated by other driver
mutations. The driver mutation might be a mutation in a
DNA replication or repair gene. Moreover, some structural
variations, such as long insertions or deletions, might cause
problems in pairing during meiosis and thus generate ad-
ditional point mutations in neighboring regions (46). Con-
sistent with this hypothesis, the mutation rates of the sur-
rounding structural variations are elevated in several eu-
karyotic species (46–48).

Perhaps due to the violation of these two assumptions,
we observed a much higher than expected variance in the
mutation count data. For example, at a 10 kb bin resolu-
tion, the observed mutation count variance is 7.679 times
the expected value under the binomial assumption. Hence,
it is necessary to introduce other statistical models to handle
such overdispersion in the mutation count data.

Improved mutation count fitting through a �-binomial distri-
bution

As discussed in the previous section, a binomial distribution
model used in (24), which assumes a constant mutation rate
and independent mutation process, could be problematic in
more practical data analysis applications when the mutation
counts are highly overdispersed. Hence, we first proposed a
two-layer model to fit the variant count data (model 2 in
the ‘Materials and Methods’ section). Instead of setting a
constant mutation rate, our model treats the mutation rate
as a �-distributed random variable, which flexibly provides
the underlying mutation rate with desired mean and vari-
ance properties. Then the mutation counts within each reg-
ulatory element could be easily modeled as a �-binomial
distribution (details in ‘Materials and Methods’ section).

We fitted the mutation count data at a 10 kb bin resolu-
tion of the 760 WGS cancer genomes under the fixed (bino-
mial) and variable (�-binomial) mutation rate assumptions
in Figure 4. We calculated the frequency of the observed
mutation count in each bin and compared it with the bi-
nomial (model 1) and �-binomial (model 2) fittings respec-
tively. Figure 4A shows that the observed data demonstrates
much heavier tails than the binomial distribution, while the
�-binomial distribution fits the right tail very well. In or-

der to quantitatively exhibit the improved performance of
�-binomial fitting, we utilized Kolmogorov–Smirnov (KS)
statistics to compare the two distributions with the observed
data in a nonparametric way. A larger KS statistic indi-
cates a higher level of deviation between the two distribu-
tions. Specifically, 1000 bins were drawn from �-binomial
and binomial fitted distributions separately to calculate
the KS statistic against the randomly sampled 1000 muta-
tion counts from the observed data. This scheme was re-
peated 1000 times and the cumulative distribution function
(C.D.F) of the KS statistics were given in Figure 4B. The
median KS statistic value for the �-binomial distribution
was 0.087, significantly <0.218 of the binomial distribution
(P-value for two-sided Wilcoxon test <2.2 × 10−16, box-
plots given in Figure 4C). Different bin sizes were analyzed
using the sample method and results were similar (Supple-
mentary Figures S3 and S4). In order to avoid overfitting,
we utilized half of the data for distribution fitting and the
remaining half as the input to calculate the KS statistic for
evaluation. This scheme was repeated 100 times. The �-
binomial distribution still significantly outperforms the bi-
nomial distribution (0.0821 versus 0.216, P-value for two
sided Wilcoxon test <2.2 × 10−16, Supplementary Figure
S5). Hence, the improved performance of the �-binomial
distribution is due to its enhanced flexibility to handle the
overdispersed mutation count data instead of overfitting.

In the significance analysis, P-values were usually calcu-
lated from the right tail of the null distribution. However,
the huge deviation of the binomial distribution from the
observed one could potentially introduce huge P-value in-
flation and consequently result in numerous false positives.
We defined the P-values for the observed distribution as the
percentage of bins with equal or larger mutation counts.
However, the improved fitting of the �-binomial distribu-
tion could solve this problem and provide more accurate P-
value assessment.

Local background mutation rate calculation through replica-
tion timing correction further controls false positives and false
negatives

Recently, several computational efforts have been made to
link somatic mutation rates with several genomic features in
protein-coding regions (11,33). A particularly well-known
example is DNA replication timing. During replication,
single stranded DNA usually accrues endogenous DNA
damage, such as oxidation and deamination (45). Hence,
DNA that is replicated in a later stage would be suscep-
tible to the effects of accumulative damage and would be
prone to all classes of substitutions. Consistent with this as-
sumption, scientists observed that the later replicating re-
gions demonstrate remarkably higher mutation rates (45).
Although replication timing has been used successfully to
calculate the background model in the coding regions, little
work has been done in the noncoding regions in cancer ge-
nomics. Hence, we explored the effect of replication timing
on the mutation rate calculation (model 3 in the ‘Materials
and Methods’ section), and the consequential effect on the
P-value evaluation.

Using 1 kb bins, we counted the average replication tim-
ing value within the bin, and then separated the top and
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Figure 4. (A) The �-binomial distribution (pink line) provides better fitting to the observed mutation counts at 10 kb resolution (black line) of 760 cancer
genomes, especially at the right tail as compared to the binomial distribution (turquoise line). (B) A comparison of the cumulative distribution function
(CDF) of the binomial distribution and the �-binomial distribution from part (A). (C) Boxplots of the Kolmogorov–Smirnov (KS) statistics.

bottom 10% of replication timing bins for mutation rate
calculation. As shown in Figure 5A, we observed notice-
able differences in the mutation rate vis-a-vis the replica-
tion timing signal. The average mutation count of the 760
samples was 1.200 for the bottom 10% replicating timing
bins, as compared to 4.028 for the top 10% (P-value for
two-sided Wilcoxon test <2.2 × 10−16). A KS test was per-
formed to determine whether these two sets of mutation
counts data follow the same distribution and the P-value
is <2.2 × 10−16, indicating that the two distributions are
significantly different.

Moreover, we observed that the mutation counts data for
bins with similar replication timing values still shows ex-
tensive overdispersion. For example, for the bottom 10% of
replication timing bins, the observed variance of mutation
counts was 4.168, which is 3.477 times that under the bino-
mial assumption. Consistently, we observed poor fitting of
the binomial distribution against the observed distribution,
especially in the right tails (Figure 5A). The huge deviation
in the right tails would result in huge P-value calculation
inflation as shown in Figure 5B. The P-value for 16 mu-
tations in the bottom replication timing 1 kb region from
the empirical distribution shows only marginal significance
(3.994 × 10−4), but the binomial distribution could inflate it
to 2.585 × 10−13 due to its bad fitting of the heavy tails on
the right side. But our �-binomial distribution rigorously
controls the P-values through the flexible mutation rate as-
sumption (P-value = 1.002 × 10−3). We demonstrate the
better P-value curve of the �-binomial distribution in a va-
riety of data points and replication timings, indicating the
robustness of our method (Figure 5B).

Additionally, the replication timing effect correction fur-
ther improves the P-value calculation to avoid potential
false positives and false negatives. For instance, for a region
among the top replication timing regions, eight mutations in
1 kb bin would give a P-value of 0.094 after replication cor-
rection from the �-binomial model, but might be reported
as positive when ignoring replication timing effect (P-value
= 0.038 from �-binomial by mixing the top and bottom
10% replication timing points). Similarly, a P-value of 0.064

would reject seven mutations within 1 kb bin as significant
without correction. However, if this point comes from the
bottom 10% of replication timing regions, the true P-value
should be 0.030 due to its relatively lower local mutation
rate. Hence, it is important to perform covariate correction
before calculating P-values.

LARVA discovered a list of highly recurrent noncoding regu-
latory regions from WGS data

We first applied LARVA to the 760 genomes’ variants, in-
tersecting them with the noncoding regions listed in Ta-
ble 1. In total, LARVA reported 3964 and 3776 highly mu-
tated regions before and after replication timing correc-
tions, respectively (as shown in Table 2). On the other hand,
the binomial distribution models reported at least 30 times
more regions as significant because of the aforementioned
P-value inflation, giving rise to a high false positive rate. We
also tested the immediate 100 bp upstream of every possi-
ble TSS (see ‘Materials and Methods’ section for details),
the results of which are depicted in Figure 6B. Forty-five
TSSs passed the 0.05 P-value thresholds after P-value ad-
justment (BH method, (49)). Consistent with previous stud-
ies, we observed that the TSS for TERT came up in the top
regions (Figure 6B) and the oncogene TP53 also ranked
second among all sites. LMO3, which ranked third after
replication timing correction, is a protein-coding oncogene
that is predominantly expressed in brain tissue. It has been
reported to be involved in a variety of cancer types, such
as lung cancer (50) and neuroblastomas (51). PRRC2B’s
TSS was reported as the most significantly recurrent re-
gion among all TSSes. It is a protein-coding gene that is
extensively expressed in brain tissue, but to the best of our
knowledge, there is no study to show the link of PRRC2B to
cancer. Further investigations should be performed for the
purpose of validation. Similar results were given for pro-
moters and UTR regions as well. We selected all the genes
with highly mutated TSSes, promoters or UTRs (adjusted
P-values after corrections ≤0.05) and performed GO analy-
sis (http://amigo.geneontology.org, (52)). The top three en-

http://amigo.geneontology.org
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Figure 5. The 1 kb genome bins representing the top 10% and bottom 10% of the DNA replication timing were used to derive an observed distribution of
mutation counts, demonstrating the influence of replication timing. The fitted binomial and �-binomial distributions are plotted as bar plots (A). P-values
at different mutation counts were given by the observed, �-binomial and binomial distribution.

Figure 6. (A) The number of significant P-values implied by the �-
binomial distribution and the binomial distribution (with and without
DNA replication timing correction). (B) A sorted P-value plot of the top
significant TSSs derived from the LARVA analysis.

riched GO terms are: ‘negative regulation of fibroblast pro-
liferation’, ‘regulation of extrinsic apoptotic signaling path-
way in absence of ligand’ and ‘regulation of cell growth’.

In terms of TF binding sites, LARVA identified 2054 out
of the 5 710 954 binding sites as highly recurrent (0.036%).
The TF CTCF had 852 binding sites reported as signif-
icant (Table 3). CTCF is a multifunction protein that is

linked with multiple cancer types (53). Specifically, sev-
eral studies have reported that disruption of CTCF bind-
ing sites through mutations or abnormal methylation sites is
closely associated with cancer (54,55). Moreover, we found
that the oncogene BCL3 has a noticeably higher signifi-
cant percentage with respect to the average (7.721 times of
the average, P-value for two-sided binomial test = 6.762
× 10−13). Interestingly, BCL3 is a proto-oncogene candi-
date which is closely associated with progression of diverse
solid tumors (56). For example, BCL3 is aberrantly up- and
downregulated in breast cancer and nasopharyngeal carci-
nomas respectively, and is also reported to be strongly asso-
ciated with survival in colorectal cancer. However, it is not
a highly mutated gene according to our data: BCL3’s mu-
tation rate is 1.22 mutations/Mbp while the gene average
is 2.52 mutations/Mbp. Our analysis suggests another pos-
sibility: the misregulation of BCL3 may be due to binding
site disruption instead of the changes in the protein itself.
Further computational and experimental effort should be
made to clarify the mechanism of BCL3 regulation in dif-
ferent cancer types.

Whole genome recurrent events evaluation

Despite great efforts to annotate noncoding regions, there
are still many regions with as yet unknown regulatory roles.
In order to evaluate the recurrent events in these regions,
LARVA provides all possible P-values, whether before or af-
ter adjustment, and with or without replication timing cor-
rections, for high confidence bins on the genome (see ‘Mate-
rials and Methods’ section for details) of variable length. We
also compared the results from our �-binomial model with
the binomial model. For example, we randomly sampled
five thousand 10 kb bins from the whole genome and made
a Manhattan plot of P-values from both methods. It is ob-
vious that the P-values from the binomial distribution were
noticeably inflated (Figure 7B), while our �-binomial model
effectively controls the P-values (Figure 7A). Consistent
with this result, we found that P-values from LARVA fol-
low a uniform distribution much better than those from bi-
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Table 2. Number of significant recurrently mutated elements in each noncoding annotation class derived by LARVA

Feature Larva w/.o Larva w/. Binomial w/.o Binomial w/.

Conserved 0 0 1 2
Sensitive 1 0 45 58
DRM 130 134 1429 1424
UTR 51 51 2093 2078
Promoters 87 59 3646 893
TSS 1588 1478 38 721 38 716
DHS-sites 2107 2054 91 484 91 732
TFBS 3964 3776 137 419 134 903

Table 3. The top transcription factor binding sites (TFBSs) from LARVA’s analysis of our 760 cancer genomes dataset

TF Significant sites Total sites Percent

CTCF 852 2 659 185 3.204 × 10−4

RAD21 135 352 084 3.834 × 10−4

MAFK 93 112 704 8.252 × 10−4

CEBPB 77 111 585 6.901 × 10−4

SPI1 55 81 054 6.786 × 10−4

STAT3 45 140 552 3.203 × 10−4

NR2C2 44 4557 9.656 × 10−4

NFKB1 40 85 483 4.680 × 10−4

MYC 37 129 293 2.862 × 10−4

SMC3 32 73 798 4.336 × 10−4

MAX 31 84 391 3.673 × 10−4

JUND 29 75 702 3.831 × 10−4

BCL3 22 7926 2.776 × 10−3

EP300 22 87 301 2.520 × 10−4

FOXA1 22 88 985 2.472 × 10−4

TFP.WRNIP1 1 2016 4.960 × 10−4

These findings may point to important regulatory disruptions in cancer.

−
−

Figure 7. Manhattan plot of the P-values from 5000 randomly samples 10
kb bins from the �-binomial distribution (A) and the binomial distribution
(B). The binomial distribution might provide heavily inflated P-values due
to its inadequacy to capture the extensive overdispersion of the mutation
count data.

nomial distribution (Supplementary Figure S13). We want
to emphasize that as the sample size grows larger (such as
in the following section of exome sample analysis) and the
target region grows larger, we expect more severe deviation
from the constant mutation rate assumption, usually result-
ing in better performance for LARVA compared to the bi-
nomial model.

Coding region calibration

It is difficult to rigorously test LARVA’s sensitivity and
specificity due to the lack of a benchmark dataset. In con-
trast to our expectations for the coding regions, we have less
information for how LARVA should behave on noncoding
regions. Thus, although LARVA is not optimized on cod-
ing region analysis, we re-estimated the background model
on just the coding regions for the purpose of calibration. In
particular, given our better understanding of coding can-
cer drivers, we have evaluated LARVA on coding regions
on a total of 5032 whole exome sequencing samples from
TCGA (see SupplementaryText S1 for details). To compare
the �-binomial model with the binomial model we used a
consistent and conservative threshold for both.

Many highly mutated genes discovered by LARVA were
clearly documented as associated with some type of can-
cer. On the other hand, many false positIves were reported
by the simple binomial test. Moreover, P-values calculated
from LARVA follow a uniform distribution quite well and
our replication timing correction further improves the P-
value distribution (Supplementary Figure S12). However,
the P-value distribution from the binomial model severely
violates the uniform distribution assumption, providing
further evidence of the binomial model’s inapproapriate fit-
ting.
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DISCUSSION

Due to the rapid decline in time and money involved to per-
form WGS, data is now available for thousands of genomes
where previously only a handful were available (57). How-
ever, the analyses necessary for finding useful patterns in
this data, and making sense of it for clinical benefit, have
not kept pace with this sudden increase. Therefore, it is im-
portant that new algorithms are developed that can effi-
ciently mine relevant patterns from genome sequence data,
and that user interfaces for finding and understanding that
data are optimized so that clinicians and biologists, who
may not have extensive technical expertise, can use these re-
sults effectively in their work.

Compared with the extensive computational and exper-
imental efforts on the mutation patterns in the protein-
coding regions in the past decade (58), the noncoding re-
gions, which were viewed as ‘dark matter’, and comprise
up to 98% of the human genome, are less investigated in
cancer research studies, partially due to the limited knowl-
edge of noncoding function. However, recently several ex-
amples clearly pinpointed the phenotypic effect of muta-
tions in noncoding regulatory regions in a variety of cancer
types. For instance, TERT promoter, a well-known exam-
ple, has been associated with several cancer types (21–23).
Fusions of the 5′ UTR of TMPRSS2 with ETS genes fre-
quently observed in prostate cancer, as well as mutations in
certain miRNA binding sites (59), can influence the binding
affinity at these sites, and thus affect androgen receptor reg-
ulation in prostate cancer. Hence, it is important to explore
the mutation landscapes of such noncoding regions.

In this paper, we have introduced a new computational
framework for exploring patterns of mutation in the non-
coding regulatory regions. Unlike coding region analyses,
where burden tests may be conducted with naturally defined
segments––genes––and synonymous sites may serve as a bi-
ologically meaningful background, whole genome burden
tests are hindered by the fact that many noncoding func-
tional regions are poorly defined, if at all. We took advan-
tage of the complete genome annotation efforts of the EN-
CODE project (16) to extract the most extensive catalog
of noncoding regulatory regions to date. We included the
TF binding sites and DHS sites from all ENCODE exper-
iments, promoters, UTRs, predicted enhancers, conserved
and sensitive noncoding regions from our previous efforts
(18). These annotations are tested for mutation burden, and
the functional significance of each highly mutated region
is immediately clear. Hence, LARVA’s complete design, in
terms of both software and provided data, offers a new, con-
venient processing engine for whole genome mutation bur-
den analysis.

We then ran our algorithm on 760 cancer genomes using
the comprehensive list of noncoding annotations to search
for highly mutated regulatory regions as potential noncod-
ing driver candidates. Consistent with the highly heteroge-
neous protein coding regions (11), we observed larger than
expected mutation variation across cancer types, samples
and genomic regions (Figure 3). Therefore, the recently pro-
posed binomial models, which assume a constant mutation
rate and independence of mutation events, might be inade-
quate for the observed data (Figure 4, Supplementary Fig-

ures S3 and S4). Instead, we set up two hierarchical mod-
els to handle mutation count overdispersion (model 2 and
model 3 in the ‘Materials and Methods’ section). First, we
flexibly modeled the mutation rate in the regulatory ele-
ments as a two-parameter � distribution β(μ, δ), resulting
in a �-binomial distribution for the variant counts; β(μ,
δ) can be seen as the distribution from which the whole
genome region-specific mutation rates (p) are sampled. Al-
ternatively, β(μ, δ) can be treated as the distribution from
which patient-specific or cancer type-specific mutation rates
are sampled. Therefore, when analyzing large regions, such
as enhancers that might be over 10 kb, or small regions
(such as 200 bp TSS sites) in cohorts with a large number
of samples, the �-binomial model provides improved fitting
over the binomial model. On the other hand, when the tar-
get region is small, or the patients are more homogeneous,
we expect less overdispersion from the data. Then, the esti-
mated �-binomial parameters will be similar to those of the
binomial distribution.

In addition, a list of genomic features, such replication
timing, expression level and GC content would largely af-
fect the background mutation rate (Supplementary Figure
S6)(11). As a consequence, the overall background muta-
tion rate is actually a mixture of several different distri-
butions, resulting in extra variance in the mutation count
data (Supplementary Figure S14 in Text S1). Therefore, it
is necessary to separate the covariate effects. In this paper,
we found replication timing is the feature that explains the
largest amount of variation in the mutation counts data, so
we started from this major covariate and corrected its ef-
fect by estimating the local mutation parameters in the �-
binomial. In the future, we plan to further correct multi-
ple covariates jointly. Moreover, in general the quality of
LARVA output depends on the quality of the input vari-
ants. There are some known artifacts in the earlier variant
call sets which might introduce biased results. In the future,
the release of large scale uniformly processed variant call
sets will definitely improve subsequent LARVA analyses.

In the 760 cancer whole genomes in our analysis, we
discovered 3776 noncoding regulatory regions that have
significantly higher mutations than expected and provided
the mutation enrichment significance of bins with variable
length on the whole genome (Table 2). A list of known
noncoding hypomutated regions, such as TERT and TP53
TSS, were also reported by our analysis, which convincingly
proved the effectiveness of LARVA in discovering function-
ally relevant results. We also observed some relatively novel
results such as PRRC2B TSS, CTCF and BCL3 binding
sites. BCL3 is a known oncogene that is highly associated
with several solid tumors (56,60), but this gene itself is not
enriched in our analysis. Our results advocate an alternate
possibility: its mutation in cancer cells is actually in the dis-
ruption of its binding sites, rather than the disabling of the
protein itself. We released our annotations to the public,
which would potentially serve as a useful resource for can-
cer researchers in the future.

In summary, LARVA is a powerful computational
method to explore a broad range of genome annotations
to uncover the ones that are mutated across many sam-
ples. LARVA makes it possible to predict putative noncod-
ing drivers of genetic disease, and prioritize these predicted
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drivers for more rigorous downstream analysis. This may
lead to faster identification of important targets that may
be used to suppress disease with therapies and drugs.

AVAILABILITY

We make LARVA available as a software tool at
larva.gersteinlab.org. We also make our data and re-
sults available at this URL, which includes our complete
set of cancer variant data, noncoding annotations and
P-values computed by the LARVA software on this data.
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