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Abstract
Background The Neonatal Oxygenation Prospective Meta-analysis found that in infants <28 weeks
gestational age, targeting an oxygen saturation (SpO2

) range of 85–89% versus 91–95% resulted in lower
rates of retinopathy of prematurity but increased mortality. We aimed to evaluate the accuracy of the heart
rate characteristics index (HRCi) in assessing the dynamic risk of mortality among infants managed with
low and high target SpO2

ranges.
Methods We linked the SUPPORT and HRCi datasets from one centre in which the randomised controlled
trials overlapped. We examined the maximum daily HRCi (MaxHRCi24) to predict mortality among
patients randomised to the lower and higher target SpO2

groups by generating predictiveness curves and
calculating model performance metrics, including area under the receiver operating characteristics curve
(AUROC) at prediction windows from 1–60 days. Cox proportional hazards models tested whether
MaxHRCi24 was an independent predictor of mortality. We also conducted a moderation analysis.
Results There were 84 infants in the merged dataset. MaxHRCi24 predicted mortality in infants
randomised to the lower target SpO2

(AUROC of 0.79–0.89 depending upon the prediction window) and
higher target SpO2

(AUROC 0.82–0.91). MaxHRCi24 was an important additional predictor of mortality in
multivariable modelling. In moderation analysis, in a model that also included demographic predictor
variables, the individual terms and the interaction term between MaxHRCi24 and target SpO2

range all
predicted mortality.
Conclusions Associations between HRCi and mortality, at low and high SpO2

target ranges, suggest that
future research may find HRCi metrics helpful to individually optimise target oxygen saturation ranges for
hospitalised preterm infants.

Introduction
While supplemental oxygen therapy is essential for survival in preterm infants, the resulting highly
oxygenated environment may increase the risk of bronchopulmonary dysplasia [1], retinopathy of
prematurity (ROP) [2] and other oxygen free radical-related diseases [3]. The Neonatal Oxygenation
Prospective Meta-analysis (NeOProM) found that in infants <28 weeks gestational age, targeting a
peripheral oxygen saturation (SpO2

) range of 85–89% versus 91–95% resulted in lower rates of ROP but
increased the risk of both mortality and necrotising enterocolitis [4]. There is limited evidence on the
potential use of physiological parameters to optimise oxygen saturation targeting to reduce morbidity and
mortality. As such, many neonatal care centres target a higher SpO2

range of 91–95% for the care of
extremely preterm infants. The choice of the 91–95% target range would be expected to increase survival
by 2.8% (absolute), but also increase the rate of treated ROP by 4% (absolute) without an effect on
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blindness [5]. A method to personalise this trade-off by safely limiting oxygen among patients at low risk
of mortality could have benefits; in 2016, the American Academy of Pediatrics Committee on Fetus and
Newborn concluded that the “ideal physiologic target range of infants of extremely low birth weight is
likely patient-specific and dynamic and … remains unknown” [6]. This statement is consistent with the
reasoning that identifying infants for whom the patient-specific risk of mortality is low might alter the
risk/benefit calculus sufficiently for the low target oxygen range to become the better option for these
patients. This work takes the first steps toward a strategy of personalising oxygen delivery among preterm
infants to reduce morbidity without increasing mortality.

Successful environmental adaptation following extremely preterm birth may reflect pulmonary resilience, a
homeostatic process driven by the autonomic nervous system that regulates physiological stress [7]. Previous
studies have demonstrated that the heart rate characteristics index (HRCi), also known as the HeRO Score
(Medical Predictive Science Corporation, Charlottesville, VA, USA), which measures autonomic nervous
system-related changes in heart rate variability, predicts the risks for various adverse outcomes, including
sepsis [8], urinary tract infection [9], necrotising enterocolitis [10, 11], meningitis [12], respiratory
decompensation [13], extubation failure [14, 15] and mortality [16–20]. It is also associated with the
presence of proinflammatory cytokines [21–23]. In a randomised controlled trial (RCT) that ran
concurrently with the SUPPORT trial (one of the trials included in NeOProM), patients randomised to have
HRCi displayed to clinicians had lower all-cause mortality [24], lower mortality after infection [25] and
lower composite outcome of mortality or neurodevelopmental impairment [26] when compared with
controls; the reduction in mortality may have been the result of earlier identification of infection [27].
A recent before-and-after implementation study was consistent with many of these findings [28].

It is unknown whether the predictiveness of HRCi for mortality is affected by target oxygen saturation range
or whether measures of patient physiology, including autonomic nervous system function, could identify a
subgroup of preterm infants for whom the risk of mortality is low, and may be outweighed by the reduced
risk of bronchopulmonary dysplasia and ROP associated with a lower target oxygen saturation range.

In this secondary analysis of two concurrent RCTs, we aimed to assess whether the HRCi is associated with
the dynamic risk of mortality among infants randomised to low and high target SpO2

ranges. We hypothesised
that the HRCi would identify infants at risk of mortality in both high and low SpO2

target ranges.

Material and methods
Study subjects and design
The de-identified datasets of infants who participated in both the SUPPORT trial (NCT00233324) [29] and
HRCi trial (NCT00307333) [24] from the University of Alabama at Birmingham were linked using the
following shared demographic variables: birth weight, gestational age, sex, 1-min Apgar and 5-min Apgar,
providing unique matches between the two datasets with no intended sample size. The HRCi RCT enrolled
infants with birthweight <1500 g, while the SUPPORT trial included patients of <28 weeks gestational
age. Further details, including ethics reviews and CONSORT reporting including flow diagrams, can be
found in their previous publications [24, 29].

All infants in the HRCi RCT had continuous heart rate data collected and HRCi scores were generated
hourly. However, only the patients randomised to display the HRCi score had it rendered to clinicians
involved in their care; for control patients, the HRCi scores remained hidden until after the trial was
completed [24].

In the SUPPORT trial, a two-by-two factorial designed RCT, pulse oximeters were modified to display an
oxygen saturation reading that was either slightly higher or slightly lower than the actual reading to blind
clinicians to determine whether the patient was randomised to the low or high target oxygen saturation
range. As a second aspect to the RCT, patients were separately randomised to receive either continuous
positive airway pressure (CPAP) or intubation and surfactant [28]. Clinical variables are defined in the
SUPPORT trial data dictionary [30], including small for gestational age (based on the sex-specific
Alexander growth curves [31]).

Statistical methods and analysis
We examined the utility of the maximum daily HRCi (MaxHRCi24) from each postnatal day up to
36 weeks post-menstrual age (PMA) to predict the risk of mortality within a range of prediction windows
from 1 to 60 days among patients randomised to either the low or high target SpO2

range. From each daily
MaxHRCi24 for each patient and for each prediction time window, we generated predictiveness curves and
calculated performance metrics. These included area under the receiver operating characteristics curve
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(AUROC); and we calculated sensitivity, specificity, positive predictive value, negative predictive value
and risk ratio using an HRCi threshold of 3.0 on each daily MaxHRCi24 (a value that we expected would
achieve an appropriate balance between sensitivity and specificity from prior work [32]). To deal with the
presence of repeated measurements of MaxHRCi24 from each patient during these calculations, 95%
confidence intervals for AUROC and risk ratio were calculated via 200 iterations of bootstrapping with
replacement at a patient level [33].

In multivariable analyses, we used Cox proportional hazards models, including demographics and target
SpO2

range, to test whether MaxHRCi24 was an independent predictor of mortality by 36 weeks PMA, and
we conducted moderation analyses. Demographic predictor variables were chosen if they were both
significant in univariable analysis and uncorrelated with other significant demographic predictor variables.

Missing HRCi scores were not included in the analyses. Differences among continuous variables were
assessed using the t-test. Proportions were tested using Fisher’s exact test. We assessed significance at
p<0.05. During multivariable analysis, we considered two candidate predictor variables to be correlated
when the absolute value of the coefficient of correlation between the two variables was >0.5, and removed
one of the two in such cases. All calculations were performed in R (www.r-project.org). We used the
STARD guidelines for reporting studies of diagnostic accuracy [34].

Results
There were 84 infants in the merged dataset (table 1). There were no significant differences in patient
demographics between the low and high target SpO2

range groups.

In the analysis of all days prior to 36 weeks PMA, the maximum daily HRCi score (MaxHRCi24) was
available in 90% of patient days, and the presence of a high MaxHRCi24 (i.e. MaxHRCi24 ⩾3) was strongly
predictive of mortality in all prediction time windows analysed in infants randomised to either target SpO2

range (table 2). Figure 1 is a predictiveness curve for MaxHRCi24 at an example prediction window of
7 days, and supplementary table S1 shows metrics of model performance at MaxHRCi24 thresholds of 2.0
and 5.0. The three thresholds, 2.0, 3.0 and 5.0, correspond to roughly the 48th, 62nd and 76th percentile
MaxHRCi24 scores, respectively. Figure 2 demonstrates the trends of MaxHRCi24 in the days prior to death,
with the median, 25th and 75th percentile MaxHRCi24 scores of survivors plotted for reference.

In multivariable analyses, we evaluated candidate predictor variables in univariable Cox models to predict
mortality by 36 weeks PMA. We found birth weight, gestational age, 1-min Apgar, 5-min Apgar,
randomisation to CPAP, randomisation to HRC display, multiple birth status, full course of antenatal
steroids and small for gestational age were significant, while sex, race and any course of antenatal steroids
were not significant and were removed. We removed birth weight owing to collinearity with gestational

TABLE 1 Patient demographics

Low target SpO2 High target SpO2

Patients (n) 45 39
Birth weight (g), mean±SD 861±204 781±200
Gestational age (week/day) 26/1 (25/3–27/3) 25/4 (24/6.5–26/6.5)
Small for gestational age 3 (7) 4 (10)
Male 23 (51) 25 (64)
Race
Black 25 (56) 17 (44)
White 20 (44) 22 (56)

Hispanic ethnicity 0 (0) 0 (0)
1-min Apgar score 4 (2–6) 4 (2–6)
5-min Apgar score 7 (6–8) 7 (5.5–8)
Randomised to HRCi control 26 (58) 19 (49)
Randomised to SUPPORT CPAP 29 (64) 19 (49)
Died by 36 weeks PMA 7 (16) 8 (21)
After sepsis/meningitis 4 (57) 6 (75)

Data are presented as median (interquartile range) or n (%), unless otherwise stated. No differences were
significant at p<0.05. SpO2

: peripheral oxygen saturation; HRCi: heart rate characteristics index; CPAP: continuous
positive airway pressure; PMA: post-menstrual age.
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age, and 5-min Apgar owing to collinearity with 1-min Apgar. In a multivariable Cox model including the
remaining candidate predictor variables, 1-min Apgar was not significant. Our final model of significant,
uncorrelated predictor variables included gestational age, randomisation to CPAP, randomisation to HRC
display, multiple birth status, a full course of antenatal steroids and small for gestational age. In a Cox
model including these variables plus the target SpO2

range, MaxHRCi24 from each postnatal day up to
36 weeks PMA was an important additional predictor of mortality by 36 weeks PMA (p<0.001).

TABLE 2 Metrics of predictive performance of MaxHRCi24

Prediction window (days) Target SpO2 range AUROC
(95% CI)

Risk ratio Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

1 Low 0.89 (0.89–0.90)* Inf (NA–NA) 100 63 1.2 100
High 0.91 (0.90–0.91)* Inf (NA–NA) 100 62 1.7 100

3 Low 0.88 (0.87–0.88)* 35 (31–40) 95 64 2.2 99.9
High 0.86 (0.85–0.87)* 17 (15–18) 93 62 3.1 99.8

7 Low 0.86 (0.85–0.86)* 36 (28–38) 95 64 5.0 99.9
High 0.84 (0.82–0.84)* 16 (12–17) 91 63 6.0 99.6

15 Low 0.84 (0.84–0.85)* 18 (16–19) 91 65 9.7 99.5
High 0.82 (0.82–0.83)* 11 (10–13) 87 63 9.5 99.1

30 Low 0.80 (0.80–0.81)* 11 (10–11) 86 66 13.6 98.8
High 0.85 (0.84–0.85)* 15 (14–15) 90 64 13.1 99.1

60 Low 0.80 (0.77–0.80)* 8 (6–9) 81 67 16.9 97.7
High 0.85 (0.84–0.85)* 13 (12–13) 89 65 14.1 98.9

Metrics of MaxHRCi24 to predict mortality in the subsequent time window. MaxHRCi24 threshold set to 3 for calculating risk ratio, sensitivity,
specificity, PPV and NPV. Confidence intervals were calculated via 200 iterations of bootstrapping with replacement at the patient level. MaxHRCi24:
maximum daiy heart rate characteristics index; SpO2

: peripheral oxygen saturation; AUROC: area under the receiver operating characteristics curve;
PPV: positive predictive value; NPV: negative predictive value; Inf: infinite; NA: not applicable. *: p<0.05.
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FIGURE 1 Predictiveness curve for maximum daily heart rate characteristics index (MaxHRCi24) to predict
mortality within 7 days among low and high target peripheral oxygen saturation (SpO2

) range patients. The lines
are the MaxHRCi24 and represent the predicted risk of mortality. For example, the 50th percentile MaxHRCi24
for both groups was slightly over 2. The boxes represent the observed risk, with 95% confidence interval, for
each decile of predicted risk. The y-axis is the fold-increase in risk over baseline (that is, the MaxHRCi24 for the
smooth lines representing predicted risk, and the case rate of the decile divided by the overall case rate for the
boxes representing observed risk). MaxHRCi24 was highly predictive of mortality within 7 days in both target
SpO2

ranges.
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In moderation analyses, in a Cox model that included the same group of significant, uncorrelated predictor
variables, MaxHRCi24, target SpO2

range and the interaction term between the two each predicted mortality
by 36 weeks PMA (adjusted hazard ratio (aHR)±SE of 4.7±0.20, p<0.001; 2.6±0.41, p=0.02; and
0.38±0.23, p<0.001, respectively), indicating that the aHR of MaxHRCi24 was greater among patients in
the high SpO2

target range group than among those in the low SpO2
target range group.

Discussion
We combined data from two RCTs with the aim of assessing the association between HRCi and mortality
among preterm infants that were managed with a high or low target SpO2

range. While the utility of HRCi
in mortality prediction has been previously demonstrated, this has not been examined in the context of low
or high SpO2

targeting, and we found the HRCi up to 36 weeks PMA to be highly predictive of mortality
among patients in both the low and high target SpO2

groups. In multivariable analyses, HRCi was an
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FIGURE 2 Maximum daily heart rate characteristics index (MaxHRCi24) in the days prior to death. Top panel
registers time by birth, while the bottom panel registers time by mortality. The cyan line represents the median
MaxHRCi24 for survivors, while the light cyan band represents the 25th to 75th percentiles. Each thin grey line
represents the MaxHRCi24 from one patient in the days leading up to mortality, while the thick grey line and
the grey band represent the LOESS-smoothed median and 25th to 75th percentile MaxHRCi24s among the
patients who died. The black dashed line represents a MaxHRCi24 threshold of 3.0, which was used in
calculating metrics of model performance. *: p<0.05 by t-test for the difference between the MaxHRCi24 for
those who died versus those who survived.
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important independent predictor of mortality, and HRCi acted as a moderator of the association between
the target SpO2

range and mortality.

The results of the preplanned moderation analysis highlight an interaction effect between autonomic
nervous system function and target SpO2

range such that infants with low HRCi may be differentially
resilient and protected against adverse clinical outcomes when exposed to a lower oxygen environment. It
is possible that among infants with lower HRCi, oxygen exposure could be safely limited to a lower target
SpO2

range to reduce the risk of adverse clinical outcomes.

Our analysis of daily HRCi scores up to 36 weeks PMA for the prediction of mortality in a range of
subsequent time periods demonstrates that a dynamic increase in a patient’s risk of mortality would likely
be preceded by rising HRCi scores. With sufficient early warning provided by the HRCi, adjusting SpO2

into the high range may potentially still improve the outcome, as evidenced by the performance metrics at
a 15-day prediction window, where the risk ratio for mortality in the next 15 days based on maximum
HRCi in the previous 24 h was 11–18× with a sensitivity of 87–91%. The potential importance of a
15-day advanced warning is demonstrated by the survival curves of the NeOProM trials, which did not
differ between the high and low oxygen saturation target groups during the first 15 days after birth but did
differ by one month after birth [35].

This analysis provides evidence that a strategy of managing patients with low HRCi to a low target SpO2

range and patients with high HRCi to a high target SpO2
range has the potential to be safe from a mortality

perspective while improving morbidity, and could be tested in a future interventional study.

In multivariable modelling, we were not surprised to find a high correlation between birth weight and
gestational age, with both low birth weight and low gestational age well understood to be linked to poor
outcomes. We elected to control for only one in multivariable modelling (including moderation analysis),
selecting gestational age because it defined the more selective of the inclusion criteria (<1500 g from the
HRCi RCT versus <28 weeks gestational age from SUPPORT). We have found in prior work [36] that
models built using gestational age from a cohort of patients selected by birth weight are less robust, and
we encourage other modellers to consider that small for gestational age infants that fall just within the
cut-off for very low birth weight status comprise a decidedly different subgroup than patients of normal
birth weight for gestational age who also fall just within the cut-off, skewing models including gestational
age as a predictor among a cohort defined by birth weight. In addition to our preference for including the
one that is used as an inclusion criterion, small for gestational age, birth weight Z-score and principal
component analysis are example techniques that can help overcome this common pitfall of analysing
neonatal datasets.

We noted that within our cohort of 84 infants, mortality was higher among patients randomised to the high
target SpO2

range, in contrast to the results of the larger SUPPORT and NeOProM datasets, although this
difference was not statistically significant. We also noted trends towards lower birth weight, lower
gestational age and proportionally more males among patients in the high target SpO2

range, which,
although not statistically significant, may explain the trend towards higher mortality in this group. These
trends emphasise the importance of multivariable modelling, and in all of our analyses that included
adjustment for a priori risk, the predictive performance of HRCi for mortality remained significant.

This work has strengths and limitations. Even though the data are from concurrent RCTs, the design was
post hoc and the analysis was retrospective. Further, this dataset comprised only 84 infants from a single
centre who were randomised to concurrent RCTs more than a decade ago when care practices may have
been different. While there may be clear evidence from prior studies that 1) preterm infants who are
targeted to low SpO2

range have lower rates of ROP, 2) HRCi is predictive of mortality and 3) clinical
action taken in response to elevations in HRCi can reduce mortality in the context of neonatal infection,
we have not proven here that among patients managed with a low target SpO2

range, increasing target SpO2

range in response to elevations in HRCi can avert mortality. Despite these weaknesses, we found
statistically and clinically significant results suggesting an association between autonomic function, as a
marker of pulmonary resilience, and SpO2

target ranges. The unexpected mortality difference in SUPPORT
and NeOProM may make future RCTs of SpO2

target ranges difficult; however, data from RCTs such as the
SUPPORT trial can provide unbiased estimates of the effect of altering target SpO2

ranges.

It is possible after further research that the HRCi or other measures of autonomic instability could be used
to dynamically adjust the target SpO2

range among preterm infants to individually balance the competing
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risks of mortality and oxidative stress, achieving better patient outcomes. A future interventional study
could test such a hypothesis.
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