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Weakly supervised learning 
for classification of lung cytological 
images using attention‑based 
multiple instance learning
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In cytological examination, suspicious cells are evaluated regarding malignancy and cancer type. 
To assist this, we previously proposed an automated method based on supervised learning that 
classifies cells in lung cytological images as benign or malignant. However, it is often difficult to label 
all cells. In this study, we developed a weakly supervised method for the classification of benign and 
malignant lung cells in cytological images using attention‑based deep multiple instance learning 
(AD MIL). Images of lung cytological specimens were divided into small patch images and stored in 
bags. Each bag was then labeled as benign or malignant, and classification was conducted using AD 
MIL. The distribution of attention weights was also calculated as a color map to confirm the presence 
of malignant cells in the image. AD MIL using the AlexNet‑like convolutional neural network model 
showed the best classification performance, with an accuracy of 0.916, which was better than that of 
supervised learning. In addition, an attention map of the entire image based on the attention weight 
allowed AD MIL to focus on most malignant cells. Our weakly supervised method automatically 
classifies cytological images with acceptable accuracy based on supervised learning without complex 
annotations.

Lung cancer is the leading cause of cancer death among males and females worldwide, and early and accurate 
diagnosis is critical for  survival1. When the presence of a tumor is noted in a chest X-ray or CT examination, 
pathological examination is performed to classify it as benign or  malignant2. Pathological examination includes 
cytology and histology. In cytology, a cytotechnologist (screener) first screens the samples and finds suspicious 
cells. The cytopathologist then observes the identified cells in detail and a decision is sometimes made using a 
combination of regular cytology specimens and immunostaining specimens. Cytology, the first step in detecting 
malignant cells, plays an important role in influencing the final diagnostic results. However, the screener must 
find suspicious cells within a large number of cells. The task is extremely burdensome, and there are concerns 
about the variation in diagnostic accuracy among screeners. Therefore, in this study, we focused on the clas-
sification of benign and malignant lung cells based on deep learning technology, which has excellent image 
recognition capability.

Deep learning technology is an application of multilayer neural network technology and convolutional neural 
networks (CNNs), which were developed with inspiration from the workings of vision, and is widely used for 
image classification, object detection, and prediction. There are also many applications in medical  imaging3–9. For 
pathological images, CNN has also been used to determine the distribution of malignant  cells10,11 and to classify 
 cells12,13. We have developed diagnostic support technology for lung cytology, and have proposed methods that 
use CNN to classify cells as benign or  malignant14.

In these studies, target image and label (correct answer) pairs for that image are given to the deep learning 
model for training, which is called supervised learning. Good classification performance is achieved when the 
correct label is assigned to each image. On the contrary, if the labels are inaccurate, the classification performance 
will be degraded. In cytology, there are some similarities between benign and malignant cells, and there are also 
many atypical cells. Therefore, it is difficult to assign accurate labels of benign and malignant to individual cells. 
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Recently, multiple instance learning (MIL) has been attracting attention as a weakly supervised learning method 
that can train networks without creating labels on a one-to-one  basis15.

MIL introduces the concept of “instances” that represent individual data and “bags” that contain instances that 
belong to groups such as cases. The network performs the classification in bag units. In this case, even if there are 
extra or incorrect instances in the bag that do not contribute to the classification, their influence is low because 
the classification is performed comprehensively on a bag-by-bag basis. Recently, several methods that introduce 
attention mechanisms and deep  learning16 have been  proposed17,18. An attention mechanism is a technique to 
evaluate which information should be paid attention to when a target contains a large amount of information. 
Recently, it has been widely used in the fields of natural language processing and image recognition. By clarifying 
the areas to be focused on, better performance can be obtained compared to that obtained using conventional 
methods. By visualizing the internal parameters of the attention mechanism, it is possible to determine the 
instances that have been paid attention to, and to visualize the basis for the decision. Deep learning techniques 
are also effective in extracting features from instances and processing attention mechanisms. Ilse et al. proposed 
an attention-based deep MIL (AD MIL) using deep learning and the attention mechanism, and showed that it 
can be applied to text and cell classifications in histological  images18. In addition, Hashimoto et al. applied MIL 
processing of whole slide images at multiple scales to classify lymphoma  subtypes17.

To the best of our knowledge, there are no studies on the classification of benign and malignant cells in lung 
cytological images using weakly supervised learning, and no comparison has been made with supervised learn-
ing. In this study, we developed a method for the classification of benign and malignant cytological images using 
AD MIL and compared its performance with that of supervised learning.

Methods
Outline of proposed scheme. An outline of the proposed method is shown in Fig.  1. Images of lung 
cytological specimens were divided into small patch images and stored in bags with case IDs. Each bag was then 
labeled as benign or malignant, and the classification of benign or malignant was performed by supplying the 
bag units to the AD MIL.

Image dataset. This study was performed as a retrospective study with permission from the Institutional 
Review Board of Fujita Health University (IRB number: HM16-155). The informed consent was obtained from 
patients subject to the condition of data anonymization. All experimental protocols were performed in accord-
ance with the relevant guidelines and regulations in compliance with the Declaration of Helsinki. For this study, 
lung cells of 322 patients were collected with interventional cytology using either bronchoscopy or CT-guided 
fine-needle aspiration cytology, and comprised 108 benign and 214 malignant cases. Malignant cases comprised 
124 adenocarcinomas, 52 squamous cell carcinomas, and 38 small cell carcinomas. In these diagnoses, a final 
decision was made in conjunction with the histological analysis of specimen from a biopsy. Biopsy tissues were 
collected simultaneously with cytological specimens, fixed in 10% formalin, dehydrated, and embedded in paraf-
fin. In some cases, where diagnosis was difficult, the 3 μm tissue sections were subjected to immunohistochemi-
cal analysis to make the decision. Cytological specimens were prepared with liquid-based cytology using the 
BD SurePathTM liquid-based Pap test (Beckton Dickinson, Franklin Lakes, NJ, USA) and were stained using 
the Papanicolaou method. Using a digital camera (DP20, Olympus Corporation, Tokyo, Japan) attached to a 
microscope (BX53, Olympus Corporation) with a 40 × objective lens, 1252 microscopic images of benign cells 
and 1805 of malignant cells were acquired in a JPEG format with a size of 1280 × 960 pixels per image.

To classify these images, it is important to understand the characteristics of the cells of interest. The charac-
teristics of benign and malignant cells are described below.

Characteristics of benign cells. Benign cells have smaller, more uniform nuclei, and smoother cell borders. 
Nucleoli are small and few. The volume of cytoplasm is large, and normal pulmonary bronchial epithelial cells 
have cilia.

Characteristics of malignant cells. The characteristics of malignant cells vary greatly, depending on their tissue 
type (adenocarcinoma, squamous cell carcinoma, small cell carcinoma). In general, malignant cells have less 
cytoplasm and irregularly shaped nuclei. In adenocarcinoma, large nucleoli are often observed and the chro-
matin particles are rough. In addition, nuclei are often unevenly distributed in the cytoplasm. Squamous cell 
carcinoma, which is often confused with adenocarcinoma, has smaller nucleoli and finer chromatin particles. 
The cytoplasm is thick, and the nuclei are often located near the center of the cytoplasm. In these two histological 
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Figure 1.  Schematic diagram of the proposed method.
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types, the nuclei are larger than in normal cells, whereas in small cell carcinoma, the nuclei are smaller and are 
often interconnected. On Papanicolaou staining, the nuclei of small cell carcinoma cells are darker than those of 
other histological types and appear different in color from other cells.

Generation of instances. Because MIL can classify a batch of data based on a large amount of data, each 
specimen image with a matrix size of 1280 × 960 was divided into small patches that were used as instance 
candidates (Fig. 2). For the matrix size of patch images, we used 64 × 64 pixels as the baseline, as the larger cell 
nuclei can be included in the image. We also evaluated the classification performance with the matrix sizes of 
96 × 96 and 128 × 128 pixels. Here, the image of the captured specimen had a wide field of view, and the patch 
images contained areas without cells. Therefore, the image was binarized to divide it into regions with cells and 
background regions. If the area of cells occupied more than 10% of the area in the patch image of the instance 
candidate, the instance was registered as a malignant or benign bag for analysis; otherwise, it was deleted. The 
binarization threshold was calculated for each image using the Otsu’s automatic binarization algorithm.

Classification method. The structure of the AD MIL used for classification is shown in Fig. 318, and con-
sisted of a backbone layer, an MIL attention layer, and one output layer (Fig. 3a). The backbone layer was com-
posed of a CNN, and by providing the instance (Ik) in the bag into the CNN, feature extraction was performed, 
and the feature vector hk was obtained. Here, we employed LeNet-like19, AlexNet-like20, inception architec-
ture (Inception)21, networks with residual structure (ResNet)22, and dense connected structure (DenseNet)23 
(Fig. 3b) as CNN in the backbone layer, and compared their classification performance. The structure of the 
CNN was determined empirically.

In the conventional MIL technique, the synthesized vector, which is obtained by calculating the maximum 
or average value of the elements of the feature vector group in the bag, was used for identification. However, the 
importance of an instance could not be accurately recognized with the simple calculation of the maximum or 
average values in the conventional method. Therefore, Ilse et al. proposed an MIL technique using an attention 
 mechanism18. Attention mechanism allows the control of the neural network to pay more attention on instances 
that are most likely to be labeled as positive. It detects key information from a large amount of inaccurate data, 
which is consistent with the practical diagnosis process.

In this method, a neural network is used to calculate the attention weight, which represents the importance 
of an instance, and a weighted feature vector z, which is a weighted average of the instances, is obtained using 
the following  equations18.

where hk is the feature vector of the kth instance, and ak the attention weight given for each instance and normal-
ized so that the total value of ak is 1 for each bag. Two vectors of w and V are the parameters for calculating the 
attention weight, which are determined by training the network. The weighted features z were then assigned to 
a fully connected (FC) layer with a single artificial neuron, and bag classification (benign and malignant) was 
performed. Here, a sigmoid function was introduced as the activation function of the artificial neuron. There-
fore, AD MIL weights the instances in the bag to create a single vector that is representative of the bag, which 
is then used to identify whether the bag is benign or malignant. The code of the AD MIL used in this study was 
a modified version of the code proposed by Ilse et al.18, and we used a Python program developed using Keras 
and Tensorflow as APIs for deep learning.

Evaluation metrics. To confirm the effectiveness of the proposed method, we evaluated its classification 
accuracy. All cases were used to evaluate the ability of classification between benign and malignant on a case-by-
case basis using the tenfold cross-validation method. Cross-validation is a method that divides data into multiple 
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Figure 2.  Generation of instances for benign and malignant bags.
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datasets, and repeatedly trains and evaluates them to obtain classification accuracy for all data. In this study, we 
divided the data into 10 sets, used 9 of the 10 sets as training data, and evaluated the remaining dataset, which 
was repeated 10 times. In each training, 10% of the training data were used as validation data while monitoring 
the training error. The number of training epochs was 100, the batch size was 1, and  Adam24 was used as the 
optimization algorithm. The learning rates, β1, and β2, were 0.0005, 0.9, and 0.999, respectively. We also used a 
computer with an Intel core i7 7800X CPU and an NVIDIA Quadro RTX 8000 GPU for training.

This method was aimed at improving the performance of MIL by using the attention mechanism. To confirm 
the effectiveness of the attention mechanism, we compared the classification performance with the attention 
mechanism disabled. Specifically, as in the conventional MIL, the feature vectors extracted from each instance 
were averaged, and the combined vector was calculated and used for classification.

Furthermore, to compare our method with supervised learning, we performed general supervised learning 
on data where all case images contained labels (benign or malignant). We prepared a CNN with an AlexNet-like 
structure, which was also used in the AD MIL model, with one additional FC layer, and classified it as benign 
or malignant using the Softmax function. Then, we trained and evaluated the prediction results for each image 
using the tenfold cross-validation method, as in the evaluation of the AD MIL. Based on the obtained prediction 
results, we calculated the confusion matrix and classification accuracy by calculating the prediction probability 
for each image. Note that AD MIL was evaluated on a case-by-case basis, and in actual clinical practice, if even 
one malignant cell is included in an image, it is considered malignant. Therefore, in the classification by super-
vised learning, the maximum value of the malignancy probability was obtained for all the images included in 
one  case13. Based on the maximum probability, benign and malignant images were classified, and the overall 
classification accuracy per case was evaluated. The number of training epochs was 100 and the batch size was 16. 

Figure 3.  Architecture of the AD MIL. (a) Overall structure of the AD MIL. (b) CNN model for feature 
extraction.
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We also employed Adam optimization algorithm with the learning rates of 0.00005, β1 of 0.9, and β2 of 0.999. 
The same parameters as in MIL were used, except for a batch size of 16. Then, for cases classified as malignant 
by AD MIL, the distribution of attention weights was determined for the instances comprising a single image, 
and a color attention map was obtained. This allowed us to analyze which part of the specimen was the focus.

Results
Figure 4 shows the accuracy of the proposed method for classifying benign and malignant patches while chang-
ing the matrix size of the patch images. As a result, the best performance was obtained when the matrix size of 
the patch image was set to 64 × 64 pixels, which was used in subsequent analyses.

Tables 1, 2, 3, 4, 5, 6 and 7 show the confusion matrices obtained by summing up the results of classification 
by AD MIL while changing the CNN structure, and the results of image-based and case-based classification by 
supervised learning. Sensitivity, specificity, accuracy, and balanced accuracy are shown in Table 8. Here, bal-
anced accuracy is expressed as the average of sensitivity and specificity, and is used when the number of images 
in the data differs between two classes. In the evaluation results, the classification by AD MIL, which adopts an 
AlexNet-like structure for CNN, showed the best classification accuracy.

An example of the overall microscopic images of benign cases that were correctly and incorrectly classified 
by the AD MIL is shown in Fig. 5. In the right side of paired images are attention maps drawn by the attention 
weights of all instances. Similarly, the image of a malignant case is shown in Fig. 6.

Figure 4.  Accuracy comparison of different patch sizes.

Table 1.  Confusion matrix of weakly supervised learning with LeNet-like model.

Predicted: Benign Predicted: Malignant

Actual: Benign 98 10

Actual: Malignant 23 191

Table 2.  Confusion matrix of weakly supervised learning with AlexNet-like model.

Predicted: Benign Predicted: Malignant

Actual: Benign 96 12

Actual: Malignant 15 199

Table 3.  Confusion matrix of weakly supervised learning with Inception model.

Predicted: Benign Predicted: Malignant

Actual: Benign 95 13

Actual: Malignant 27 187
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Table 4.  Confusion matrix of weakly supervised learning with ResNet model.

Predicted: Benign Predicted: Malignant

Actual: Benign 99 9

Actual: Malignant 27 187

Table 5.  Confusion matrix of weakly supervised learning with DenseNet model.

Predicted: Benign Predicted: Malignant

Actual: Benign 34 74

Actual: Malignant 38 176

Table 6.  Confusion matrix of supervised learning: image-based evaluation (AlexNet-like model).

Predicted: Benign Predicted: Malignant

Actual: Benign 33,542 6013

Actual: Malignant 7114 62,813

Table 7.  Confusion matrix of Supervised learning: case-based evaluation (AlexNet-like model).

Predicted: Benign Predicted: Malignant

Actual: Benign 77 31

Actual: Malignant 3 211

Table 8.  Classification results.

Learning method CNN model Sensitivity Specificity Accuracy Balanced accuracy

Weakly supervised learning

AD MIL
LeNet-like 0.893 0.907 0.898 0.900

Conventional MIL pooling 
LeNet-like 0.921 0.778 0.873 0.850

AD MIL
AlexNet-like 0.930 0.889 0.916 0.910

Conventional MIL pooling 
AlexNet-like 0.893 0.750 0.845 0.822

AD MIL
Inception 0.874 0.880 0.876 0.877

Conventional MIL pooling Inception 0.897 0.528 0.773 0.713

AD MIL
ResNet 0.874 0.917 0.888 0.900

Conventional MIL pooling 
ResNet 0.921 0.778 0.873 0.850

AD MIL
DenseNet 0.822 0.315 0.652 0.569

Conventional MIL pooling 
DenseNet 1.000 0.000 0.665 0.500

Supervised learning: image-based 
evaluation AlexNet-like 0.898 0.848 0.880 0.873

Supervised learning: case-based 
evaluation AlexNet-like 0.985 0.713 0.849 0.849
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Discussion
In this study, we developed a method for the classification of benign and malignant lung cytological images using 
AD MIL, a weakly supervised learning method. Three CNN models for the AD MIL were compared, and the 
AlexNet-like model showed the best classification performance, with an accuracy of 0.916. For general image 
classification tasks, inception and dense model, which have complex structures, show good performance. These 

Figure 5.  Classification result and attention maps on attention weight of benign cells. (a) Correctly classified 
benign cells. (b) Mis-classified benign cells.

Figure 6.  Classification result and attention maps on attention weight of malignant cells. (a) Correctly classified 
malignant cells. (b) Mis-classified malignant cells.
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are mainly trained using 224 × 224 pixels as input and a large number of images. In the comparative experiments 
conducted in this study, the AlexNet-like model with a simple structure showed the best performance. In this 
study, the weights in the network are trained from the initial state to extract image features from images as small 
as 64 × 64 pixels. From the experimental results, it is considered that the simpler architecture performed better 
feature extraction than the more complex one.

Upon comparing the performance of the proposed method, with and without the attention mechanism, 
the results of the method with the attention mechanism (CNN: AlexNet-like model) showed up to 9% higher 
classification performance with balanced accuracy, indicating that the attention mechanism is effective for cell 
classification. The results showed that the attention mechanism was effective in classifying cells.

As a supervised learning method, image classification was performed with the AlexNet-like CNN model used 
in AD MIL, and the results show that AD MIL was slightly better than supervised learning. In the attention maps 
presented in Figs. 5 and 6, the focus of attention is slightly different between malignant and benign cases. In 
malignant cases, the cells that are strongly suspected to be malignant are at a high attention level (yellow or red). 
On the contrary, in benign cases, attention tended to be paid to the whole area or to the periphery of the cells. 
Benign cells have a relatively uniform shape of nuclei and may show striae around the cytoplasm; it is believed 
that AD MIL has been trained to classify the abovementioned differences. Even when a benign image is incor-
rectly classified as malignant, the cytotechnologist or cytopathologist only needs to confirm the area focused on 
by AD MIL, which may shorten the diagnosis time.

The best matrix size for the instance (patch image) given to AD MIL was 64 × 64 pixels. This is thought to 
be the size of the field of view where a single cell fits in the microscopic image and attention to individual cells 
is engaged.

Both malignant and benign cases contain a variety of cell types. For malignant cells, as mentioned above, the 
shape of the nucleus and cytoplasm, as well as the structure, arrangement, and color of the inside of the nucleus, 
differ from those of benign cells. In addition, there are three subcategories of lung cancer, each of which has 
different characteristics and incidence rates. The breakdown of the types of lung cancer used in this study is 58% 
adenocarcinoma, 24% squamous cell carcinoma, and 18% small cell carcinoma; these percentages reflect the 
actual percentage of patients. Because the proposed method could be used for correct classification of benign 
and malignant cells among these case groups, it appears to have identified the characteristics contained in the 
three types of malignant cells and discriminated malignant cells from benign cells.

In our previous studies, classification of benign and malignant lung cytological images was performed with 
nearly 90% accuracy. If experts such as cytolopathologists accurately label individual cytological images as benign 
or malignant, good classification performance can be achieved. However, a cytological specimen obtained from a 
single patient contains a large number of cells, and it is extremely difficult to designate the benign and malignant 
properties of each cell. In addition, when experts evaluate these specimens, they do not classify them as benign 
or malignant on a cell-by-cell basis, but rather make a comprehensive diagnosis, and thus the classification 
methods used by experts and supervised learning are different. Rather than assigning a correct label to each cell, 
our approach was to divide a large number of cell images obtained from a single patient into small patch images 
(instances) and classify them comprehensively on a bag-by-bag basis. In addition, CNN was used to obtain 
advanced features from the images, and an attention mechanism was used to select and evaluate the images of 
interest. Therefore, this method is closer to the clinical diagnosis procedure than conventional supervised learn-
ing: it can classify a large number of images with high accuracy without the need for complicated work by experts.

The field of view in this study was relatively small because the images were collected by a camera attached to a 
microscope; this method may be more useful when using whole slide images containing a large number of cells.

A limitation of this study was that the specimens were collected at a single institution, and the number of cases 
was small. In the future, it will be necessary to collect specimens from other institutions and construct a more 
robust classification model. Thus, the practical effectiveness should be evaluated via external validation. In this 
paper, we show results of various experiments on AD MIL, and processed them by supervised learning method 
using the same patch images as a comparison. Considering various learning models have been  proposed25,26, it 
is necessary to compare the results with those, in the future.

In cytological diagnosis, classification of cancer type is required after the identification of the benign and 
malignant status. We have proposed a method for automatic classification of the histological types of lung cancer 
based on supervised  learning27. In the future, we plan to develop a tissue type classification method based on a 
weakly supervised learning method.

Conclusion
In this study, we developed a method for classification of cytological images as benign or malignant using AD 
MIL, and compared its ability with classification by supervised learning. We show that weakly supervised learn-
ing with AD MIL was able to reach the acceptable accuracy obtained with supervised learning and visualize the 
regions that contributed to the decision by the attention mechanism. We conclude that our method automatically 
classifies cytological images more easily and accurately than methods based on supervised learning.
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