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Abstract: Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of pa-
tients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the
overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by
radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure
of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage.
However, radiation also concomitantly activates multiple prosurvival signaling pathways, which
include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint
activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging
data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which
occurs through its activation of the transcription of many essential genes that support cell survival,
DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways
protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting
radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the
radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to
the radioresistance of cancer cells.

Keywords: radiation therapy; cell signaling pathways; cell cycle checkpoint; DNA repair; apoptosis;
autophagy

1. Introduction

Radiation therapy (RT) is routinely used for cancer treatment, and more than fifty
percent of patients with cancer, including pediatric cancer, receive RT as part of their
treatment [1]. When combined with chemotherapy, termed chemoradiation, RT provides
additional benefits, as shown by better disease control and a significant improvement of the
survival of cancer patients [2–4]. Although RT contributes approximately 40% of curative
cancer treatment, radioresistance (intrinsic or acquired) remains a major problem that
impedes RT efficacy for cancer treatment [5–9]. Furthermore, no approaches are currently
available for radiosensitizing cancer cells or for stratifying cancer patients based on their
potential in receiving the benefit of RT. Thus, a clear understanding of the biochemical
mechanisms that promote cancer cell survival in response to RT is anticipated to facilitate
identifying therapeutic targets to improve the efficacy of RT.

The current literature indicates that ionizing radiation (IR) can activate numerous
cellular signaling pathways which lead to the induction of senescence, apoptosis, autophagy
(leading to cell death or survival), and/or cell cycle checkpoint activation and DNA repair
(Figure 1) [1,10–15]. With the latter, cells undergo cell cycle arrest to repair single- or double-
stranded DNA damage with appropriate mechanisms and subsequently reenter the cell
cycle if the damage is repaired. Accordingly, prosurvival signaling pathways in response
to ionizing radiation (IR) are typically involved in the promotion of DNA repair and the
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inhibition of apoptosis induction [11,12,16,17] (Figure 2). These signaling pathways can act
conjointly to minimize the radiation-induced cytotoxicity to cancer cells and, subsequently,
biochemically reprogram the cancer cells to become radioresistant. In this review, we
summarize the signaling pathways promoting cancer cell survival in response to IR.
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Figure 1. Cellular response to radiation-induced DNA damage. Ionizing radiation (IR) induces DNA
damage in cancer cells in the form of either single-strand breaks (SSB) or double-strand breaks (DSB).
DNA damage sensed by cells results in various cellular responses: senescence, apoptosis, autophagy,
cell cycle arrest, and DNA repair. Signaling pathways that promote cell cycle checkpoint activa-
tion/DNA repair and inhibition of apoptosis can protect cancer cells from IR-induced cytotoxicity,
promoting survival and the subsequent radiation resistance of cancer cells.
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Figure 2. Core factors in DNA damage response and DNA repair networks. Ionizing radiation
causes DNA damage that activates ATM, ATR, and DNA-PK kinases, which transmit signals to
their downstream targets to promote DNA repair by NHEJ and HR while activating checkpoint
response pathways to arrest the cell cycle. If the DNA damage cannot be repaired, other cellular
signaling responses, such as those that lead to apoptosis, autophagy, and senescence induction will
be triggered.
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2. IR-Induced DNA Damage Activates Cell Cycle Checkpoint Response to Promote
Cell Cycle Arrest and DNA Repair
2.1. The Signaling Pathways That Activate Cell Cycle Checkpoint Response

The cytotoxicity caused by IR is mainly the result of DNA damage. IR induces several
forms of DNA damage, which include single-stranded DNA breaks (SSBs), double-strand
DNA breaks (DSBs), sugar and base damages, and DNA-protein crosslinks [12,17,18].
Among those, DSBs are the most lethal form of DNA damage, as misrepaired and unre-
paired DSBs will result in genomic instability and cell death, respectively [19,20].

Upon DNA damage being sensed following IR, the cell cycle checkpoint will be
activated to allow time for DNA repair [21]. Three cell cycle checkpoints exist, termed
the G1 checkpoint, intra-S checkpoint, and G2 checkpoint, which block the cell cycle
progression at the G1/S border, intra-S, or G2/M border, respectively, after detecting the
DNA damage [21]. If the cell cycle checkpoints are defective in the cells or the DNA damage
cannot be unrepaired, other responses (such as apoptosis, senescence, autophagy cell death,
or necrosis) may be activated to eliminate the injured cells [21]. Therefore, a properly
functional cell cycle checkpoint facilitates DNA repair in cancer cells, which is anticipated
to promote the cell survival in response to IR.

ATM (Ataxia Telangiesctasia Mutated) and ATR (Ataxia Telangiectasia and Rad3-
related) kinase-mediated signaling pathways play essential roles in the activation of cell
cycle checkpoint response and DNA repair following radiation-induced DNA damage
(Figure 2) [21,22]. Upon sensing DNA damage, ATM and ATR are rapidly activated, which,
in turn, activate their downstream targets, including p53, DNA-activated protein kinase
(DNA-PK), Checkpoint kinase (Chk)1, and Chk2 [21,22]. Activation of the Chk1/2 kinases
results in the phosphorylation of Cell division control protein (Cdc)25 phosphatase, which
leads to the subcellular sequestration (by 14-3-3), degradation, and/or inhibition of Cdc25
that otherwise activate the Cdk1 (Cyclin-dependent kinase 1)/Cyclin B activity to promote
the G2/M transition of the cell cycle [23]. Furthermore, in response to IR, ATM, and ATR
kinases, as well as Chk1 and Chk2 kinases, can directly phosphorylate and activate p53
tumor suppressor [21,22,24]. Consequently, activation of p53 by ATM, ATR, Chk1, and
Chk2 results in a marked induction of p21 protein, which directly inhibits the activities of
the Cdk4/Cyclin D, Cdk6/Cyclin D, and Cdk1/Cyclin A/B complexes to block the cell
cycle progression [21,22].

Cell cycle progression requires the activities of Cdk kinases. While the G1/S transition
of the cycle requires the activity of Cdk4/Cdk6 coupled with Cyclin D, the G2/M transition
of the cell cycle requires the activity of Cdk1 coupled with Cyclin B [25,26]. The G1
checkpoint is mainly guarded by the p53 tumor suppressor and its transcriptional target
p21, which directly binds to and inhibits Cdk4/6 [27]. The G2 checkpoint is controlled by
the Cdk1/Cyclin B complex [26]. It is known that most cancer cells are defective in the G1
checkpoint due to the common mutations in the key regulators of the G1 checkpoint (e.g.,
p53, Cyclin D) [27]. However, most cancer cells possess a functional G2 checkpoint, which
is operated mainly through p53-independent mechanisms [28]. Thus, abrogation of the G2
checkpoint in the cancer cells that are defective in the G1 checkpoint can sensitize the cells
to radiation [29].

The inhibitory phosphorylation of Cdk1-Y15 by the Wee1 and Myt1 kinases inhibits
Cdk1 activity, and it is the essential step for the activation of the G2 checkpoint by radia-
tion [30]. Cdk1-Y15 resides in the ATP-binding domain of Cdk1, and phosphorylation of
this site prevents the binding of ATP to Cdk1, thus inhibiting Cdk1 activity. The dephospho-
rylation of Cdk1-Y15 is catalyzed by the Cdc25 dual-specificity phosphatase that activates
the Cdk1 activity [31–33]. During IR-induced G2/M cell cycle arrest, the phosphorylation
of Cdk1-Y15 is maintained [30,34,35].

ATM, ATR, and DNA-PK also serve as major activators of DNA repair, and each of
them is recruited to the DNA damage sites by a specific co-factor: Nijmegen breakage
syndrome 1 (NBS1) (a component of the MRE11-RAD50-NBS1 complex) for ATM [36–38],
ATRIP for ATR [39], and Ku80 for DNA-PKcs [40,41]. The initiation step will trigger
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the subsequent recruitment of additional co-factors required for the assembly of DNA
repair apparatus at the sites of DNA damage. biochemically, DNA-PK primarily triggers
DSB repair via non-homologous end-joining repair (NHEJ), ATM triggers both NHEJ and
homologous recombination (HR) repair of DSB, and ATR mainly triggers HR-mediated
DSB repair [22,42]. In addition, there is functional redundancy and crosstalk among the
three DNA damage response (DDR) pathways. Ultimately, activation of the three pathways
by radiation results in the inhibition of Cdk activities leading to cell cycle arrest to allow
time for DNA repair and cell survival [12].

2.2. DNA Repair Pathways

In response to the DNA damage by IR, cancer cells rapidly activate ATM, ATR, and
DNA-PK, all of which are members of the phosphoinositide 3 kinase-related kinase family.
These kinases transduce the DNA damage signaling, coordinate the assembly of DNA
repairing apparatuses at the damaged sites and initiate the repairing of DNA (Figure 2) [17].
IR-induced DSBs are repaired mainly either by NHEJ or HR [17]. NHEJ directly re-
ligates the free-ends of the broken DNA without the need for a homologous template
and, thus, it is an error-prone process [43]. To begin, NHEJ first requires the recruiting
of the Ku70/Ku80 heterodimer to each end of the broken DNA and the formed complex
triggers subsequent recruiting of DNA-PKcs that results in the juxtaposition of the two
DNA ends. The Ku70/Ku80/DNA-PKcs complex further recruits the DNA ligase com-
plex (XRCC4/XLF/DNA ligase IV/PNK) to process the final ligation [43]. In contrast to
NHEJ, HR takes advantage of sequence information present in the intact sister chromatid,
accurately repairing DSBs with high fidelity [43]. Thus, since NHEJ does not require a
DNA template for the repair, it can function through the cell cycle. In contrast, HR mainly
operates during the S and G2 phases when a DNA template becomes available after the
DNA replication [43]. Radiation also produces SSBs, which are mainly caused by base
oxidation by ROS/RNS [19]. To repair this type of damage, the cell uses the base exci-
sion repairing mechanism. To process the repair, the single and multiple damaged bases
will first be removed by DNA glycosylase-mediated incision and apurinic endonuclease
1 (APE1)-mediated incision, respectively, and the generated nicks will be filled up by the
joint work of DNA polymerases and the DNA ligase [44]. In the end, the successful repair
of the damaged DNA caused by IR permits cells to survive and reenter the cell cycle. On
contrary, failure of repairing the damaged DNA will result in one of the following outcomes:
senescence, autophagy, necrosis, or apoptosis (Figure 2).

3. Radiation Induces Several Prosurvival Signaling Pathways
3.1. Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinases Mediate Prosurvival Signaling
Pathways in Response to IR

The EGFR/epidermal growth factor receptor (ErbB)/HER family of receptor tyro-
sine kinases (RTKs) are trans-membrane proteins that share a similar structure, which
contains an extracellular region, a transmembrane region, and an intracellular region
(Figure 3) [45,46]. There are four members in the family, EGFR/HER1, ErbB2/HER2,
ErbB3/HER3, and ErbB4/HER4 (Figure 3) [45,46]. While the extracellular region contains
the ligand binding and dimerization domains, the intracellular region contains the tyro-
sine kinase domain and phosphorylation regulatory tail [47]. Among them, ErbB2/HER2
does not bind to any ligand, and ErbB3/HER3 exhibits a very low enzymatic activity [47].
As a result, a ligand can only bind to EGFR/HER or ErbB4/HER4, which stimulates
either the homo- or hetero-dimerization of the RTK receptors, and the subsequent trans-
phosphorylation of the c-terminal regulatory tail of the receptors (Figure 3) [47]. After-
ward, the phosphorylated tyrosine residues form docking sites for downstream adap-
tors and signal transducers, triggering the activation of downstream signaling pathways
such as PI3K (phosphoinositide 3-kinases)/AKT (AKT8 virus oncogene cellular homolog),
RAS/RAF/MEK (MAPK/Erk kinase)/ERK (Extracellular signal-regulated kinase), phos-
pholipase C-γ/protein kinase C and JAK (Janus-family tyrosine kinase)/STAT (Signal
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transducer and activator of transcription) pathways [46,48]. Among those, PI3K/AKT and
RAS/RAF/MEK/ERK signalings play significant roles in promoting cell survival following
irradiation (Figure 3) [49,50].
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Figure 3. Radiation induces activation of HER receptors, which, in turn, leads to the activation of
PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways that promote cell survival.

It has been reported that IR exposure induces EGFR (Epidermal Growth Factor Re-
ceptor)/HER1 (Human epidermal growth factor receptor 1) phosphorylation, indicative
of its activation [51–53]. Our work with human breast cancer cells demonstrates that IR
activates not only the phosphorylation of HER1 but also the phosphorylation of HER2,
HER3, and HER4 [54]. Although the mechanism causing this effect of IR has not yet been
clearly elucidated, it might be attributed to the inhibition of the receptor protein tyrosine
phosphatases (PTPs) that dephosphorylate the HER RTKs. The evidence supporting this
concept is that receptor PTPs can be efficiently inactivated by reactive oxygen/nitrogen
species (ROS/RNS) through the oxidation of their enzymatic active sites such as those that
contain Cysteine residue [55], and IR has been shown to induce ROS/RNS production via
a mitochondria-dependent mechanism [56]. Thus, IR-induced ROS/RNS could inhibit the
membrane-bound receptor PTPs, and, in turn, result in the activation of HER RTKs.

ErbB/HER RTKs have been implicated in promoting cancer cell survival in response
to radiation, which is likely to involve the following two mechanisms: (1) inducing the
prosurvival AKT and ERK1/2 signaling pathways [45,46] (Figure 3), and (2) facilitating cell
cycle checkpoint response to promote DNA repair [49,50]. Supporting the concept, studies
from our group have shown that HER2 activation is necessary for the induction of the
G2/M checkpoint following IR in breast cancer cells [54], and others have demonstrated a
role of EGFR/HER1 in promoting the activation of DNA-PK that is essential for initiating
DSB repair by NHEJ [57,58].

3.2. Ras-Related C3 Botulinum Toxin Substrate 1 (Rac1) Mediated Signaling Pathways in
IR Response

Rac1 belongs to the Rho family of GTPases that play key roles in cytoskeleton reor-
ganization, cell polarity, and cell migration [59]. Like all GTPases, Rac1 is active in its
GTP-bound form and inactive in its GDP-bound form [60]. The exchange of GDP to GTP on
Rac1 is facilitated by its GEFs (Guanine nucleotide Exchange Factors), while the hydrolysis
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of GTP on Rac1 is promoted by its GAPs (Guanine nucleotide Exchange Factors) [60]. Upon
activation, Rac1 transduces numerous downstream signaling pathways [61,62]. Through its
downstream effector PAK1/2 kinases that phosphorylate/activate Raf1 and MEK1 kinases,
Rac1 can induce the activation of the extracellular signal-regulated kinase (ERK1/2) me-
diated signaling that promotes cell survival and proliferation [63–65]. Similarly, Rac1 via
PI3K can activate the AKT signaling pathway that plays a significant role in cell survival in
response to various stimuli [66–68]. Both AKT and ERK1/2 signalings promote survival
following IR exposure [69–75].

Our studies have revealed the role of Rac1 in promoting the survival of breast and
pancreatic cancer cells responding to IR exposure [76–78]. Our data indicate that IR induces
a rapid activation Rac1 activity, which is essential for IR-induced ATM/ATR signalings
that lead to G2 checkpoint activation and cell survival. Our studies also show that Rac1
activity is required for the resistance of breast cancer cells to the clinical protocol of hyper
fractionated radiation treatment and the upregulation of the expression of Bcl-xL anti-
apoptotic protein in the RT-resistant cells [78]. Consistently, studies by others show that
deficiency in Rac1 function attenuates cell cycle checkpoint response, DNA repair, and cell
survival in response to both IR and UV irradiation [79].

3.3. IR-Activated ERK1/2 Signaling Pathway

ERK1/2 signaling activation in response to IR is commonly observed in cancer cells,
and evidence suggests at least four mechanisms contributing to this biological event. The
first mechanism involves the activation of the ErbB/HER receptors by IR. As discussed
above, we and others have demonstrated an essential contribution of ErbB/HER RTKs
to the activation of ERK1/2 signaling in breast and lung cancer cells in response to IR
(Figure 3) [52,54]. In addition, Ras activation by ErbB/HER receptors induces EGFR-
ligand production, resulting in an autocrine feedback loop that can further enhance the
Ras/Raf/MEK/ERK signaling cascade [80,81]. Consistent with the finding, ectopic expres-
sion of Ras-N17 dominant-negative mutant, which inhibits the endogenous Ras GTPase,
abrogates the IR-induced ERK1/2 signaling activation [82,83]. The second mechanism
involves the BRCA1 tumor suppressor. Our studies demonstrate that BRCA1 protein
expression is required for the IR-induced activation of ERK1/2 signaling in breast cancer
cells, and conversely, ERK1/2 activity supports the protein stability of BRCA1 in the irra-
diated breast cancer cells [72]. These results suggest a positive feedback loop regulation
between ERK1/2 signaling and BRCA1 protein stability in response to IR, which may
play an important role in sustaining the G2/M cell cycle checkpoint response following
IR, as inhibition of either BRCA1 or ERK1/2 in breast cancer cells abolishes G2/M cell
cycle arrest and results in a concomitant induction of apoptosis [72]. The third mechanism
involves the ATM kinase. It has been shown that inhibition of ATM partially blocks the
induction of ERK1/2 signaling following IR, and, likewise, inhibition of ERK1/2 attenu-
ates radiation-induced ATM phosphorylation, as well as the recruitment of ATM to DNA
damage foci [84]. This displays another positive feedback loop in the radiation response,
this time involving ATM and ERK1/2 signalings. The fourth mechanism involves the
Rac1-GTPase signaling. As discussed above, IR induces a rapid Rac1 activation, which,
in turn, through its downstream effector PAK1/2 kinases, activates the Raf/MEK/ERK
signaling [63–65].

The main function of ERK1/2 signaling activation by IR is to promote cell sur-
vival [69–72]. ERK1/2 signaling activates many transcription factors that increase the
expression of the genes encoding for anti-apoptotic proteins [85,86]. The best-known anti-
apoptotic transcription factors that are activated by ERK1/2 in response to IR include
CREB (cyclic AMP-responsive element-binding protein) and C/EBP-β (CAAT/enhancer-
binding protein β), both of which are induced by p90rsk that is directly substrate of
ERK1/2 kinases. The activated CREB and C/EBP-β, in turn, induce the expression of
several anti-apoptotic proteins such as B cell leukemia (Bcl)-xL, Myeloid cell leukemia
(Mcl)-1, and c-FLICE inhibitory protein (FLIP)s [87–89]. Furthermore, ERK1/2 directly
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inhibits several pro-apoptotic proteins that include Bad, Bim, and caspase 9 via inhibitory
phosphorylation [90–93].

ERK1/2 signaling has also been shown to promote DNA repair in response to IR. We
and others have demonstrated an essential role for ERK1/2 signaling in the activation
of the G2/M DNA damage checkpoint in response to IR, and this involves the ERK1/2
activity in the activation of ATR and BRCA1, both of which are key regulators of the G2
checkpoint response and DNA repair [69,71,72,94,95]. Furthermore, IR-induced ERK1/2
signaling has also been linked to the transcriptional up-regulation of the genes involved in
DNA repairs, such as excision repair cross complementation group 1(ERCC1), X-ray repair
cross-complementing group 1 (XRCC1), and Xeroderma pigmentosum complementation
group C (XPC) [96,97]. Moreover, ERK1/2 activates DNA-PK, which is required for NHEJ-
mediated DSB repair, and PARP-1, which is essential for repairing SSBs [97–100]. In
addition, ERK1/2 signaling positively regulates ATM-dependent HR for DSB repair [84].
Thus, the positive role of ERK1/2 signaling in cancer cell survival following radiation is
also through its promotion of G2/M checkpoint activation and DNA repair. Consistent
with these observations, several studies demonstrate that constitutive activation of Ras
increases the radioresistance of cancer cells, whereas inhibition of MEK or ERK leads to the
radiosensitization of cancer cells [69,76,94,95].

Collectively, the activation of ERK1/2 signaling by IR involves multiple mechanisms.
In return, ERK1/2 activation promotes cell survival by both promoting DNA repair and
blocking apoptosis induction.

3.4. The PI3K/AKT Signaling Promotes Cell Survival in Response to IR

The PI3K/AKT signaling plays a critical role in blocking apoptosis induction, which
relies on the AKT function in the direct inhibition of several pro-apoptotic proteins, while
upregulating several anti-apoptotic pathways (Figure 4) [101–104].
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Figure 4. PI3K/AKT mediated signaling promotes cell survival. (i) Activation of PI3K by radi-
ation leads to the phosphorylation/activation of AKT; (ii) AKT phosphorylates and inhibits the
pro-apoptotic proteins Bad, Bax, and Bim; (iii) AKT activates Nuclear factor (NF)-κB transcription
factor, resulting in the up-regulation of the expression of pro-survival genes Bcl-2 and Bcl-xL; (iv) AKT
phosphorylates the pro-survival protein XIAP, which binds to and inhibits caspase3/7/9 that are
required for apoptosis induction; (v) AKT phosphorylates/activates the mammalian target of ra-
pamycin (mTOR) kinase, which then phosphorylates and activates the anti-apoptotic protein Mcl-1;
(vi) phosphorylation of Forkhead box O (FOXO)3a (transcription factor) by AKT results in the in-
hibition and nuclei exclusion of FOXO3a, which otherwise up-regulates the gene expression of
pro-apoptotic proteins Bim and Noxa.

By phosphorylation, AKT can directly inhibit the key pro-apoptotic proteins Bad, Bax,
and Bim, all of which are members of the Bcl-2 family (Figure 4) [102–104]. Furthermore,
AKT phosphorylates the transcription factor FOXO3a (Forkhead box O3), resulting in
the cytoplasmic retention and subsequent proteasomal degradation of FOXO3a, which
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otherwise increases the expression of pro-apoptotic factors Bim and Noxa to promote
apoptosis [105–108].

PI3K/AKT signaling also promotes several anti-apoptotic pathways, which include
the pathways of NF-κB, XIAP, and mTOR (Figure 4). Firstly, as discussed below in the NF-
κB section, PI3K/AKT signaling activates the NF-κB transcription factor by freeing it from
the bound inhibitor IκB, allowing NF-κB to translocate into the nuclei to induce expression
of a variety of anti-apoptotic genes, especially Bcl-2 and Bcl-xL [109]. Secondly, AKT
phosphorylates/activates XIAP (X-linked inhibitor of apoptosis protein), which then binds
to and inactivates the caspases 3, 7, and 9 that are required for apoptosis induction [110].
Thirdly, AKT phosphorylates and activates mTOR kinase, which, in turn, phosphorylates
and activates Mcl-1 anti-apoptotic protein [111,112]. Fourthly, AKT directly phosphorylates
and activates the catalytic subunit of DNA-PK, which is the driver of the NHEJ repair of
DSB that promotes cell survival in response to IR [113].

AKT has been shown to negatively regulate apoptosis induction by hypoxia, a condi-
tion that is often produced by radiation therapy [114,115]. It has been shown that GSK3
(glycogen synthase kinase 3) plays a central role in triggering hypoxia-induced apoptosis
through its activation of the mitochondria-dependent death-signaling pathway [115,116].
However, AKT can inhibit GSK3 by inhibitory phosphorylation at the Ser 9, which results
in the activation of glycolysis and glucose transport that inhibit apoptosis induction by
hypoxia [117].

Activation of the PI3K/AKT signaling following IR has been frequently detected in
cancer [49,50]. As discussed above (Figure 3), the most likely mechanism involves the
activation of ErbB/HER receptors by IR, as the phosphorylation of the carboxyl-terminal
regulatory tail of ErbB3/HER3 produces six docking sites for the binding of the p85
adaptor subunit of PI3K (Figure 3) that phosphorylates PIP2 (phosphatidylinositol-4,5-
biphosphate) to generate PIP3 (phosphatidylinositol (3,4,5)-triphosphate), which results in
the recruitment and activation of PDK1 (phosphoinositide-dependent kinase 1) [118,119].
Upon activation, PDK1 phosphorylates AKT-Thr308 to partially activate AKT, which primes
the further phosphorylation of AKT-Ser473 by PDK2 that fully activates AKT activity [119].
In addition, Ras activation by ErbB/HER receptors or via mutations can also positively
regulate the IR-induced PI3K/AKT signaling through its activation of the production of
EGFR ligands that further activate the ErbB/HER signaling [120,121].

Collectively, the pro-survival function of PI3K/AKT signaling is predicted to promote
the radioresistance of cancer cells and the concept has also been supported by numerous
studies both in vitro and in vivo. These studies show that inhibition of PI3K/AKT signaling
either by chemical or biological inhibitors can enhance the radiosensitivity in some cancer
cell types, which is accompanied by diminished DNA repair and increased apoptosis
induction [73–75,113,122,123]. However, inhibition of PI3K/AKT in some cell models
shows little effect on radiosensitivity [27,69,124–126]. These studies indicate that the effect
of PI3K/AKT signaling on the radiosensitivity of cancer cells is probably cell-type specific.

3.5. NF-κB Signaling Pathway Promotes Radioresistance

NF-κB, a heterodimer consisting of p50 and RelA, is a transcription factor playing
an important role in the regulation of inflammatory response to various stimuli including
radiation and chemotherapy drugs (Figure 5) [127–129]. NF-κB normally is inhibited by
the Inhibitory κB protein (IκB) that sequesters NF-κB in the cytoplasm [129]. Following
stimulation, activated IκKs phosphorylate IκB, resulting in its degradation promoted by
βTrCP [129]. This releases the sequestered NF-κB, which then translocates into the nuclei
and induces expressions of its target genes that promote survival and proliferation [129].
Additionally, IR-induced ATM and ROS can further enhance the NF-κB pathway [130]. The
best validated antiapoptotic gene targets of NF-κB are Bcl-2, Bcl-xL, and Mcl-1, which are
members of the Bcl-2 family. Furthermore, IR activates NF-κB to express cell cycle-specific
genes, such as cyclin D1, which is also implicated in radioresistance [128]. Consequently,
hyperactivity of the NF-κB signaling has been linked to the radioresistance of cancer cells.
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Figure 5. Overview of the NF-κB signaling pathway. NF-κB is inhibited by IκB in the cytoplasm. Upon
activation by upstream signals (e.g., Tumor Necrosis Factor (TNF)-α, Interleukin (IL)-1, Chemo, IR),
IκK (IκB kinase) phosphorylates IκB, resulting in its proteasomal degradation by the Skp_Cullin_F-
box (SCF)βTRCP–ubiquitin ligase complex. Consequently, this frees NF-κB, allowing it to be translo-
cated into the nucleus to activate gene transcriptions that promote proliferation and survival.

4. Radiation Activates the Autophagy Signaling Pathway That Leads to Either Cell
Survival or Cell Death

Autophagy is a highly programmed process of lysosome-mediated degradation, which
is a conserved cellular defensive mechanism against various stress stimuli such as oxi-
dation, nutrient deprivation, ER stress, and DNA damage [131,132]. The mTOR kinase
plays a central role in the regulation of autophagy induction, as its activation by AKT
and MAPK inhibit autophagy induction while its inhibition by AMPK and p53 promotes
autophagy induction [131–133]. The activation of autophagy signaling begins with the
inhibition of mTOR kinase and activation of ULK kinase, which subsequently complexes
with and activates ATG13 and FIP200. Meanwhile, PI3K-III forms another complex with
the other autophagy-related proteins (ATG14, VPS24, Beclin1, and p150). Both the PI3KIII
complex and ULK complex are then recruited to a double-layer membrane structure to
form phagophores that ultimately fuse with lysosomes and proceed to the degradation of
the protein cargos [132,133]. Generally, the function of autophagy is thought to promote
cell survival through maintaining energetic homeostasis. However, autophagy can also
induce cell death to eliminate the seriously damaged cells [131,132,134]. It has been known
that radiation-produced ROS/RNS not only causes oxidative stress and impedes mitochon-
drial function in cells but also induces DSB/SSB DNA damage, all of which can trigger
autophagic response leading to cell death or survival. The latter protects the irradiated
cancer cells, thus promoting radioresistance [5,133,135–137]. Multiple factors can also affect
the fate of the autophagy response to radiation. These include the cell types, the degree of
damage, and/or nutrient conditions [14,138,139].

5. HIF-1α Signaling Pathway Facilitates Radio-Protective Mechanisms in Tumor Cells

The current literature supports an important role of hypoxia-inducible factor-1 (HIF-1),
a transcription factor that serves as a master regulator of cellular responses to hypoxia,
in the promotion of radioresistance of tumor cells under both hypoxia and normoxia
conditions [140].

HIF-1 is a heterodimer consisting of one hypoxia-inducible subunit (HIF-1α, HIF-2α
or HIF-3α) and HIF1β that is constantly expressed and insensitive to the cellular oxygen
concentration [140,141]. HIF-1α and HIF-2α, which share 48% identity in their protein
sequences, have been shown to contribute to tumor resistance to radiation therapy [141].
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While HIF-1α is ubiquitously expressed in almost all cell types and tissues, HIF-2α is mostly
expressed only in the vascular endothelium, lung and heart tissues, and placenta [142].

Under normoxia, the ODDD (oxygen-dependent degradation domain) domain of
HIF1α are hydroxylated at Pro-402 and Pro-564 residues by the α-ketoglutarate- and O2-
dependent prolyl-4-hydroxylases, resulting in the proteasomal degradation of HIF1α that
are mediated by the von Hippel-Lindau (VHL) E3 ubiquitin ligase (Figure 6). In con-
trast, under hypoxia, HIF-1α becomes stabilized and translocates into the nuclei to form a
complex with HIF-1β and followed by recruiting the transcriptional adapter/histone acetyl-
transferase proteins, p300 and CBP (CREB-binding protein), to a transcription complex that
activates the transcription of HIF-1 targeted genes [143]. In addition to the primary regu-
lation by VHL, HIF1α expression can also be regulated by STAT3 (Signal Transducer and
Activator of Transcription 3), NF-κB nuclear factor-κB, microRNAs/long noncoding RNAs,
c-Myc, angiotensin II, and signaling pathways involving stress- or the mitogen-activated
kinases, PI3K and mTOR [141,144,145].
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Figure 6. Overview of the hypoxia-inducible factor 1 (HIF-1) signaling pathway under normoxia
and hypoxia conditions. Under normoxia, HIF-1α is hydroxylated by prolyl-4-hydroxylase, leading
to its interaction with von Hippel-Lindau (VHL) and subsequent proteasomal degradation. Under
hypoxia, HIF-1α accumulates and translocates to the nucleus and forms a complex with HIF-1β.
The heterodimer complexes then bind to the hypoxia response element (HRE) with p300/CBP and
activate the expression of their targeted genes, which include those that promote angiogenesis (e.g.,
VEGF), autophagy (e.g., LC3-II), anti-apoptosis (e.g., BCL-2), cancer stem cell stemness (e.g., Snail),
and energy metabolism reprogramming e.g., GLUT1).

While the tumor microenvironment is generally more hypoxic than the surrounding
normal tissue, which is attributed to the rapid expansion of tumor volume versus the
relatively delayed growth of blood vessels that supply oxygen, most tumor cells are
defective in the mitochondrial oxidative energy metabolism but using glycolysis as the
main energy metabolic pathway, known as the Warburg effect [140]. As a result, the
antioxidants (NADPH and glutathione) produced by glycolysis can efficiently absorb
the ROS produced by IR in cancer cells, resulting in the stabilization of HIF-1α and its
radioprotective effect in tumor cells under normoxia [145,146].

The ability of HIF-1 to promote the radioresistance of tumor cells is through its activa-
tion of multiple radioprotective mechanisms including angiogenesis, autophagy, inhibition
of apoptosis, supporting cancer stem cell (CSC) stemness, and reprogramming energy
metabolic pathways (Figure 6): (1) HIF-1α promotes angiogenesis by upregulation of VEGF
(vascular endothelial growth factor) expression and increases anaerobic glycolysis [140];
(2) HIF-1α has been shown to promote autophagy induction in hypoxic cancer cells via
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increasing the expression of beclin and LC3-II, which are key components of the autophagic
pathway, and enhancing the miR-210/Bcl-2 and Akt/mTOR/P70S6K pathways; (3) HIF-1α
has been shown to promote cancer cell survival in response to radiation. This role involves
the HIF-1α’s ability to diminish ROS production (as described above) and increase the
expression of microRNA 210, which modulates its mRNA targets to promote DNA repair,
autophagy induction, and apoptosis inhibition [147]. In return, HIF1α-induced miR-210
through a positive feedback loop further stabilizes HIF-1α and enhances its positive im-
pact on radioresistance of hypoxic tumors; (4) Cancer stem cells (CSCs) are known to be
radioresistant. HIF1α induces the transcription of many genes that are essential for the
maintenance of CSC stemness [141,144]. Such genes include those involved in survival, self-
renewal (e.g., hTERT, ABC-Ts, Notch), and promoting the EMT (Epithelial-mesenchymal
transition) phenotype (e.g., TAZ, Snail, Twist, Slug, Zeb-1/2); and (5) HIF-1α plays a central
role in the hypoxia-activated reprogramming of the energy metabolism in cancer cells.
HIF-1α induces the expression of the key enzymes and regulators of glucose metabolism
(such as glucose transporter 1 (Glut1)), resulting in the Warburg effect, which is resulted by
the shift of the ATP-generating pathway from the more efficient mitochondrial oxidative
phosphorylation to less efficient glycolysis [145,146]. Consequently, such a shift results
in a marked decrease in ROS production and an intracellular accumulation of reduced
glutathione (GSH), both of which can effectively diminish the radiosensitivity of hypoxic
tumor cells, leading to radioresistance (Figure 6). Collectively, HIF-1α participates in
the regulation of multiple radioprotective mechanisms in hypoxic tumors and, thus, the
inhibition of the HIF-1α involved pathways may be targeted for radiosensitization of
tumor cells.

6. YAP Signaling Pathway Promotes Radioresistance of Tumors

Yes-associated protein (YAP) is a transcription coactivator of the Transcriptional
Enhanced Associate Domain (TEAD) family of transcription factors. YAP activates the
transcription of many genes required for tumorigenesis and metastasis of most solid tu-
mors [148–151]. YAP is inhibited by the Hippo tumor suppressor pathway, whose activation
results in the phosphorylation of YAP at multiple sites, leading to the cytoplasmic reten-
tion of YAP by 14-3-3, and proteasomal degradation of YAP promoted by the βTrCP-SCF
ubiquitin ligase complex [152] (Figure 7).
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Figure 7. Yes-associated protein 1 (YAP) transcriptional activity promotes radiation-therapy resistance.
As a master transcriptional coactivator of TEA Domain Transcription Factor (TEAD), YAP activates
the transcription of many essential genes that support survival, DNA repair, proliferation, and
epithelial-mesenchymal transition (all of which can synergistically drive cancer cells resilient to
radiation-induced cytotoxicity and developing radioresistance.
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YAP activation has been positively linked to the intrinsic radioresistance of several
cancer types, including cancer of the brain (Glioblastoma and medulloblastoma), breast,
lung, and pancreas [151,153–156]. While the detailed mechanisms that lie beneath this YAP
effect remain to be clearly delineated, previous studies suggest that it generally involves
the YAP function in the transactivation of gene expressions required for cell survival
(Survivin, Bcl-2/Bcl-XL, etc.), DNA repair (p73, etc.), proliferation (EGFR/HER, Axl, cell
cycle genes, MAPK, etc.), and cancer stem cells (SOX2, CTGF, Cyr61, etc.) [151,157]. While
the detailed mechanisms that lie beneath this YAP effect remain to be clearly delineated,
previous studies suggest that it generally involves the YAP function in the transactivation
of gene expressions required for cell survival (Survivin, Bcl-2/Bcl-XL, etc.), DNA repair
(p73, etc.), proliferation (EGFR/HER, Axl, cell cycle genes, MAPK, etc.), and cancer stem
cells (SOX2, CTGF, Cyr61, etc.) [151,152]. Accordingly, these YAP-promoted prosurvival
pathways are predicted can conjointly reduce radiation-induced cytotoxicity and promote
the radioresistance of cancer cells through facilitating DNA repair, inhibiting apoptosis,
and preserving cancer stem cells.

7. Conclusions

RT is a standard approach for cancer treatment, whereas radioresistance (intrinsic
or acquired) has remained a significant clinical problem that limits the efficacy of RT. A
significant challenge is that the radiation concomitantly activates multiple prosurvival
signaling pathways that block apoptosis induction, promote DNA repair and adaptive
energy metabolic changes, and induce angiogenesis, which together markedly reduce
the magnitude of RT-induced lethality in cancer cells. Among those, the main function
of AKT, ERK1/2, and NF-κB signalings is to block apoptosis induction in the irradiated
cancer cells, while the primary functions of the ATM, ATR, and DNA-PK signalings are to
promote the cell cycle checkpoint activation and DNA repair in cancer cells. In addition,
ERK1/2 and AKT signalings also positively regulate the cell cycle checkpoint response
and facilitate DNA repair. Furthermore, hypoxia-activated HIF-1α promotes angiogenesis,
autophagy, CSCs, and reprograming energy metabolism to diminish radiation damage in
cancer cells. Moreover, YAP signaling contributes to intrinsic radioresistance by promoting
the transcription of many genes essential for cell survival, DNA repair, and CSCs. Together,
these signaling pathways conjointly protect cancer cells from radiation injury and promote
radioresistance (Figure 8).
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Figure 8. Overview of ionizing radiation-induced signaling pathways that promote tumor cell
survival and radiation resistance. Activation of ATM, ATR, and DNA-PK signalings by radiation
leads to cell cycle arrest and DNA repair. Activation of HER, ERK1/2, and AKT signaling pathways
by radiation inhibits apoptosis induction and promotes cell cycle checkpoint response and DNA
repair. Antioxidants produced by glycolysis reduce ROS levels in tumor cells to sustain HIF-1α
activity that promotes radioprotective mechanisms.
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