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Visual assessments of mammographic breast density by radiologists are used in clinical practice; however, these assessments have
shown weaker associations with breast cancer risk than area-based, quantitative methods. The purpose of this study is to present a
statistical evaluation of a fully automated, area-based mammographic density measurement algorithm. Five radiologists estimated
density in 5% increments for 138 “For Presentation” single MLO views; the median of the radiologists’ estimates was used as the
reference standard. Agreement amongst radiologists was excellent, ICC = 0.884, 95% CI (0.854, 0.910). Similarly, the agreement
between the algorithm and the reference standard was excellent, ICC = 0.862, falling within the 95% CI of the radiologists’ estimates.
The Bland-Altman plot showed that the reference standard was slightly positively biased (+1.86%) compared to the algorithm-
generated densities. A scatter plot showed that the algorithm moderately overestimated low densities and underestimated high
densities. A box plot showed that 95% of the algorithm-generated assessments fell within one BI-RADS category of the reference
standard. This study demonstrates the effective use of several statistical techniques that collectively produce a comprehensive
evaluation of the algorithm and its potential to provide mammographic density measures that can be used to inform clinical practice.

1. Introduction

Breast density refers to fibroglandular tissue in the breast and
is one of the top major risk factors for breast cancer. Women
with extremely dense breasts (75% or greater mammographic
density) have a four- to sixfold increase in the risk of
developing breast cancer compared to those with fatty breasts
(less than 25% density) [1-3].

Traditionally, visual assessment by radiologists has been
used to characterize and quantify mammographic density
(and a womanss risk for breast cancer) using Wolfe Grades,
Tabar Patterns, Boyd Scales, or the American College of Radi-
ologists’ (ACR) Breast Imaging Reporting and Data System
(BI-RADS) density lexicon [4-7]. Despite good reproducibil-
ity, methods used to characterize mammographic density
have shown weaker associations with breast cancer risk
compared to methods quantifying mammographic density
[2, 3, 8] and suffer from inter- and intraobserver variability.

The ACR has stated that radiologists’ visual assessments
of percent breast density using the BI-RADS lexicon are “not
reliably reproducible” [9]. This fundamental lack of repro-
ducibility has led to the development of various semi- and
fully automated algorithms to quantify percent breast density
as a means to overcome inter- and intraobserver variability.
It is therefore important to apply rigorous statistical methods
to evaluate the performance of these algorithms.

L1 State of the Art. Area-based methods used to quan-
tify mammographic density have produced reliable and
standardized mammographic density measurements on a
continuous scale. The de facto standard of such methods is
the Cumulus software [10, 11]. Using Cumulus, a digitized
film-screen mammogram is displayed and a trained user
selects a threshold value to separate the breast area from the
background (i.e., the region of interest). A second threshold is
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then selected to identify regions of dense breast tissue, and the
percent breast density is calculated as the area of dense tissue
divided by the area of the region of interest. Despite being
a proven predictor of breast cancer risk, the semiautomated
nature of Cumulus’ breast density assessments is susceptible
to inter- and intraobserver variability and could be improved
by a fully automated method. Additionally, this software is
intended for use with digitized film-screen mammograms.
As 90% of certified mammography units in the USA are now
full-field digital [12], a software for use with full-field digital
mammograms (FFDMs) is needed.

Volume-based methods theoretically yield accurate esti-
mates of mammographic density and so it is simply assumed
that volume-based density estimates are associated with
breast cancer risk, as has been demonstrated to be the case
for area-based estimates (both visually and algorithmically
assessed) [13, 14]. Volumetric methods use “For Processing”
FFDMs and DICOM header information to calculate den-
sity. Yet, volume-based estimates have not been shown to
demonstrate a similarly strong association with breast cancer
risk [11, 15, 16]. Additionally, the underlying distribution of
mammographic density estimates from volumetric methods
is significantly more left-skewed than that of area-based
methods (typical range 0-40% versus 0-100%) [17], making
them difficult to interpret by radiologists, who are not simply
able to visualize mammographic density as a volumetric
construct [11, 15].

The assessment of the agreement between percent breast
density algorithms and an expert radiologist should neces-
sarily quantify the consistency or reproducibility of mea-
surements made by these two “raters” on the same set of
digital mammograms. The intraclass correlation coefficient
(ICC) provides such a measure of agreement [18]. The Bland-
Altman plot is another way to assess agreement between
raters. Scatter and box plots can also yield insights into the
level of agreement between raters. Yet, much of the literature
validating emerging density measurement algorithms relies
on the use of the Pearson correlation coefficient, p, which
is a measure of the linear dependence between two raters
and can be quite high despite the agreement being poor
[18, 19]. Overall percent agreement is another statistic that
is used to assess agreement but is also flawed as it does not
factor in any inherent inter- and intrarater variability [19].
Reporting of a single numerical measure of agreement alone
is one-dimensional and does not present a comprehensive
perspective on algorithm performance.

This paper presents several statistical methods that col-
lectively provide a more comprehensive evaluation of the
performance of a fully automated area-based image analysis
algorithm that generates percent breast density measures
from FFDMs.

2. Materials and Methods

138 “For Presentation” FFDMs collected from the Capital
District Health Authority in Nova Scotia were retrospectively
analyzed. Images were acquired on Siemens full-field digital
mammography machines and automatically postprocessed
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by the manufacture’s proprietary software at the time of
acquisition. This early stage work has focused on the medi-
olateral oblique views and excluded craniocaudal views as
it has been shown in the literature that mammographic
density estimates from only one view are sufficient to indicate
breast cancer risk [20]. In addition, the ACRs National
Mammography Database breast density element definition
stipulates that “if left and right breasts differ, use the higher
density” [21].

2.1. Percent Density Analysis. Percent mammographic den-
sity was measured by a fully automated research-based
algorithm that uses “For Presentation” FFDM:s to calculate
an area-based measure of density as a percentage on a con-
tinuous scale (Figure 1, Panels 1(a) through 1(d)). Using view
position and image laterality information from the DICOM
header (elements (0018, 5101) and (0020, 0062), resp.) the
software creates and applies a mask to identify the breast
envelope (region of interest) by removing the pectoral muscle,
subcutaneous fat, and overlay text (Panel 1(b)). A variation
of the MaxEntropy and Moments thresholding methods is
applied to determine a threshold for dense tissue in the breast
[22,23]. The area of the dense tissue (i.e., the number of pixels
of dense tissue) is then calculated (Panel 1(c)), as is the area of
the region of interest (i.e., the number of pixels in the breast
area, Panel 1(d)), and the final density estimate is calculated as
the ratio of dense tissue area to the region of interest. In this
manner, the software uniquely generates a reproducible, fully
automated, area-based estimate of mammographic density
using “For Presentation” FFDM images.

To evaluate the agreement between the algorithm and an
expert mammographer, percent mammographic density was
visually assessed by five radiologists in 5% density increments
(0%, 5%, . .., 95%, 100%) using five megapixel Barco Screens
supported by the Syngo MammoReport Software (VB24D,
Siemens AS). Visual assessments were performed by two
senior mammographers, one junior mammographer, one
senior resident, and one fellow. This 21-point scale was used
as a proxy for a continuous measure.

2.2. Statistical Analysis. To quantify the reliability of esti-
mates performed by the radiologists’ visual assessments,
Intraclass Correlation Coefficients (ICCs) were used to mea-
sure interobserver agreement. Although the interpretation
of ICCs can vary depending on the context, the ICC is
equivalent to a quadratically weighted Kappa, and a widely
referenced scale for interpretation of Kappa values can be
used as a general guide [24, 25]. Specifically, ICC values
of 0.00-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00
were used to indicate poor, fair, moderate, substantial, and
excellent to perfect agreement, respectively.

It has repeatedly been shown that radiologists’ visual
assessments of mammographic density are associated with
breast cancer risk [1, 3, 4, 10, 26]. As such, the median of
the visual assessments performed by the five participating
radiologists was considered to be the reference standard
for this analysis. The algorithm was considered promising
in informing clinical practice if the agreement between the
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FIGURE 1: A sequence of processed images generated at various
steps of the algorithm for estimating area-based mammographic
density: (a) a “For Presentation” mammogram from our sample;
(b) the image after a mask has been applied to identify the breast
envelope; (c) the area of dense tissue (red pixels); and (d) the region
of interest as a binary map of the breast envelope. The algorithm
calculates percent breast density as the number of red pixels in Panel
(c) divided by the number of white pixels in Panel (d).

algorithm and the reference standard fell within the 95% CI
of the ICC of the radiologists.

The ICC was used to quantify the level of agreement
between the algorithm and the reference standard, and a
scatterplot was used to demonstrate the relationship between
the two. A Bland-Altman difference plot was used to analyze
the agreement between the algorithm and the reference
standard and to quantify the amount and direction of bias as
well as the upper and lower limits of agreement (bias +1.960
of the difference) [27]. Lastly, a box-and-whisker plot was

3
100 |
o o

B ICC = 0.862 - S
=754 RS S on ool L
5 . : e o of
o :
g 0o oamgleSe o
5 B w b/ o
el : .
g5 501 B I R
o . .
=} .05 o
< .
> oo o ©
A DR I oo o AN
Q 3 ‘oo
=} .
% X o /o oo o
T 251 0o ©wd w o0 ° o
m X .)‘ 0000’ o

U D S p.=0.889

[e DO o000
0 d
0 25 50 75 100
Algorithm density

FIGURE 2: Scatter plot showing the relationship between the mam-
mographic density estimates produced by the algorithm (x-axis)
and the reference standard (y-axis). The blue line indicates perfect
agreement between the algorithm and the reference standard, in
which case all points would fall exactly on the line of agreement.
The red line is the line of the best fit determined by linear least
squares regression analysis and shows that the algorithm tends to
slightly overestimate density compared to the reference standard for
lower densities and slightly underestimate density compared to the
reference standard for higher densities.

used to visualize the results in terms of the BI-RADS density
lexicon (0-24%, 25-49%, 50-74%, and 75-100%) [7].

3. Results

Five radiologists visually assessed 138 images to estimate
mammographic density, and the algorithm was applied to
those same 138 images to generate a fully automated density
assessment for each of the images.

The radiologists’ visual assessments were in excellent
agreement with an ICC = 0.884, 95% CI (0.854, 0.910).
The algorithm demonstrated excellent agreement with the
reference standard with an ICC = 0.862, which fell within
the 95% CI of the agreement between the radiologists’ visual
assessments. The algorithm is validated well on an external
set of 261 mammograms, ICC = 0.841.

The Pearson correlation coeflicient between the algo-
rithm and the reference standard assessments was p = 0.889.

The algorithm slightly overestimated low densities and
underestimated high densities compared to the reference
standard (Figure 2). Overall, there was a small, positive
bias in the reference standard assessments compared to the
algorithm assessments, as measured by the mean difference
between the reference standard and the algorithm assess-
ments (bias = 1.86%) (Figure 3). Additionally, the upper and
lower agreement levels were both less than 25%, and thus
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FIGURE 3: Bland-Altman difference plot showing agreement
between the algorithm and the reference standard measures of
mammographic density. The difference refers to the reference
standard minus the algorithm assessment. The absolute values of
the upper and lower agreement limits are <25%, which is the span
of a single category in the 4-level BI-RADS density classification
scheme. A bias of +1.86%, as indicated by the orange band above the
horizontal zero difference line, shows that the reference standard
density is on average only slightly higher than the density generated
by the algorithm.

approximately 95% of the data classified by the algorithm
was within one BI-RADS category of the reference standard
classification (Figure 3).

When the algorithm and reference standard estimates
were classified using the BI-RADS density lexicon, the box-
and-whisker plots showed good agreement within categories
(Figure 4). Each box was contained in the accordant colour
bar, and, as expected from the Bland-Altman difference plot,
the tails on the graphs did not exceed the adjacent BI-RADS
categories.

4. Discussion

The algorithm demonstrates excellent agreement with radi-
ologists’ visual assessments of mammographic density. Crit-
ically, the observed magnitude of this agreement falls within
the 95% CI of agreement observed between radiologists.
This algorithm is unique in that it generates fully automated
mammographic density measurements that can be straight-
forwardly compared with visually determined radiologists’
estimates, which are well accepted as being associated with
breast cancer risk.

The sole use of the Pearson correlation coefficient (p)
provides a one-dimensional and overinflated impression of
the level of agreement.

The statistical evaluation presented in this paper used
ICCs and Bland-Altman, scatter, and box plots to quantify
agreement and bias in breast density assessment between
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FIGURE 4: Box-and-whisker plot displaying the distribution of
reference standard mammographic density assessments falling into
the algorithm-derived classifications designated by the standard 4-
level BI-RADS density lexicon. Ideally, each of the boxes and their
whiskers should be entirely contained in their respective BI-RADS
levels. The reference standard mammographic density assessments
in the lowest and the highest BI-RADS levels are well classified, while
the middle two levels overlap in both directions into adjacent BI-
RADS levels.

a fully automated algorithm and radiologists’ assessments.
This multifaceted methodology can be employed to com-
prehensively evaluate the performance of any breast density
measurement algorithm and provides an alternative to the
often reported Pearson correlation coefficient and percent
agreement statistics which do not consider random chance
agreement and cannot quantify bias between different raters.

As breast density legislation gains momentum in the USA
and mammography providers are required to disclose breast
density in the lay report, there will be an increasing need
for automated solutions that provide reliable and accurate
measurements of breast density. A woman’s breast density
will be used to determine her optimal followup, and thus
the performance of these algorithms must be evaluated using
robust statistical methodologies.

5. Conclusion

Further work is needed to extend the applicability of the
breast density algorithm to FFDMs from other manufacturers
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as each manufacturer has their own proprietary image pro-
cessing algorithms that generate “For Presentation” images.
Additionally, as radiologists use both mediolateral and cran-
iocaudal views to assess breast density in a clinical setting, the
present algorithm must also be extended to accommodate the
analysis of craniocaudal views.

The present algorithm is an effective research tool and
shows promise in its ability to provide automated mammo-
graphic density measurements that can be used to inform
clinical practice. The Pearson correlation coefficient (p)
provides an inadequate, inflated, and overoptimistic measure
of the level of agreement. The statistical methods employed
provide a comprehensive evaluation of the level of agreement
between the algorithm and the reference standard and con-
firm that the algorithm has an excellent level of agreement
with the reference standard. Agreement between raters can

only be adequately assessed using multiple statistical meth-
ods.
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