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Abstract

Anal squamous cell carcinoma (SCC) will be diagnosed in an estimated 9,080 adults in the

United States this year, and rates have been rising over the last several decades. Most peo-

ple that develop anal SCC have associated human papillomavirus (HPV) infection (~85–

95%), with approximately 5–15% of anal SCC cases occurring in HPV-negative patients

from unknown etiology. This study identified and characterized the Kras-driven, female sex

hormone-dependent development of anal squamous cell carcinoma (SCC) in the LSL-

KrasG12D; Pdx1-Cre (KC) mouse model that is not dependent on papillomavirus infection.

One hundred percent of female KC mice develop anal SCC, while no male KC mice develop

tumors. Both male and female KC anal tissue express Pdx1 and Cre-recombinase mRNA,

and the activated mutant KrasG12D gene. Although the driver gene mutation KrasG12D is

present in anus of both sexes, only female KC mice develop Kras-mutant induced anal

SCC. To understand the sex-dependent differences, KC male mice were castrated and KC

female mice were ovariectomized. Castrated KC males displayed an unchanged phenotype

with no anal tumor formation. In contrast, ovariectomized KC females demonstrated a

marked reduction in anal SCC development, with only 15% developing anal SCC. Finally,

exogenous administration of estrogen rescued the tumor development in ovariectomized

KC female mice and induced tumor development in castrated KC males. These results con-

firm that the anal SCC is estrogen mediated. The delineation of the role of female sex hor-

mones in mediating mutant Kras to drive anal SCC pathogenesis highlights a subtype of

anal SCC that is independent of papillomavirus infection. These findings may have clinical

applicability for the papillomavirus-negative subset of anal SCC patients that typically

respond poorly to standard of care chemoradiation.

Introduction

In 2021, an estimated 9,090 adults will be diagnosed with anal squamous cell carcinoma (SCC)

in the United States, and anal SCC has been increasing in incidence over the last several
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decades [1, 2]. Anal SCC is typically associated with human papillomavirus (HPV) infection

(~85–95%) [2, 3], yet approximately 5–15% of anal SCC cases occur in HPV-negative patients

with unknown etiology [4, 5]. Unfortunately, patients with HPV-negative anal SCC are signifi-

cantly less responsive to standard of care chemoradiation [5], and have a worse prognosis than

HPV-positive anal SCC [6]. This study presents a novel etiology for HPV-negative anal SCC

development driven by mutant Kras.
In human anal cancer, mutant Kras is identified in 10% of HPV-negative anal SCC samples

[7]. Despite this association, to our knowledge, the present study is the first to identify this cor-

relation in a pre-clinical model. The mutant Kras-driven development of anal SCC was

detected in a genetically engineered mouse model (GEMM) traditionally used in the investiga-

tion of pancreatic ductal adenocarcinoma (PDAC). This mouse harbors a Kras-mutation

(Kras G12D) in cells expressing Cre-recombinase from pancreatic and duodenal homeobox 1

(Pdx1) promoter (KC mice: Lox-stop-lox KrasG12D/+; Pdx1-Cre) [8]. In this study, we found

that Pdx1 expression and consequent Cre-recombinase expression in the anal epithelium

caused activation of the KrasG12D gene in the anal epithelium and tumor development. Fur-

ther, we observed that only female mice developed anal SCC suggesting a sex-hormone depen-

dent interaction with Kras G12D that triggers tumor formation.

Therefore, we sought to understand the sex-dependent development of anal SCC in KC

mice. Activated KrasG12D was present in the anal tissue of both sexes of KC mice, suggesting

both sexes have the potential to develop Kras-mutant anal SCC. To ascertain why only female

KC mice develop tumors, we ovariectomized females and castrated males to eliminate endoge-

nous sex hormones production in the mice and found ovariectomized females displayed sig-

nificantly reduced anal tumor development, signifying female sex hormone dependence. In

turn, ovariectomized and castrated KC mice dosed with estrogen resulted in tumor develop-

ment in both KC female and KC male mice, respectively, indicating the anal tumor develop-

ment is estrogen mediated. This novel phenotype shows a female sex hormone dependent

pathogenesis of Kras-mutant anal SCC that is independent of HPV infection. Given that 2–5%

of anal SCC overall and 10% of HPV negative anal SCC harbor Kras-mutations [7], these find-

ings may have therapeutic implications for this subset of patients. Lastly, the sex-based differ-

ence highlights the importance of characterizing both sexes in pre-clinical studies.

Methods

Animals

All animal studies were conducted according to an approved protocol (M005959) by the Univer-

sity of Wisconsin School of Medicine and Public Health (UW SMPH) Institutional Animal Care

and Use Committee (IACUC). Mice were housed in an Assessment and Accreditation of Labo-

ratory Animal Care (AALAC) accredited selective pathogen-free facility (UW Medical Sciences

Center) on corncob bedding with chow diet (Mouse diet 9F 5020; PMI Nutrition International),

and water ad libitum. The Lox-Stop-Lox (LSL) KrasG12D (B6.129S4-Kras tm4Tyj/J #008179),

Pdx1-Cre (B6.FVB-Tg(Pdx1-cre)6Tuv/J) and Ai14 (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J

#007914) mice were purchased from the Jackson Laboratory (Bar Harbor, ME) and housed

under identical conditions. All mice listed are congenic on a C57BL/6J background

(backcrossing> 15 generations). The LSLKrasG12D and Pdx1-Cre mice were bred to develop

LSL-KrasG12D; Pdx1-Cre (KC) mice. The Ai14, Pdx1-Cre and LSLKrasG12D were bred to develop

Rosa26LSL-tdTomato; LSLKrasG12D; Pdx1-Cre (AiKC) mice. Genotyping was performed according

to Jackson Laboratory’s protocols (Cre: Protocol #21298, Kras: Protocol #29388 and Ai14: Pro-

tocol #29436). Original observations were performed in 16 male KC and 14 female KC mice

and 83 control genotypes. Based on stark sex-dependence, we calculated that 10 KC male, 10
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KC female, and 12 control mice were needed for castration / ovariectomy studies to detect a

50% change in tumor formation by Fisher Exact test and alpha of 0.05. We then calculated that

12 KC female mice would be sufficient for the E2 dosing studies (6 E2 dosed and 6 sham con-

trols) as well as 12 KC male mice (6 E2 dosed and 6 sham controls). Finally, we used 6 AiKC

mice to visually confirm the location of Pdx1-Cre (projected location of mutant Kras expres-

sion) in the anal tissue. The health and well-being of the mice were monitored closely by

research and veterinary staff. Mice that showed signs of distress such as disheveled coat,

hunched posture, rapid weight loss, lack of feeding or lack of defecation were immediately

euthanized. During the experiment process, one castrated KC male mouse was euthanized due

to decline in health and one castrated KC male mouse, one E2 dosed ovariectomized KC female,

one sham dosed castrated KC male and two E2 dosed castrated KC male mice were found

deceased of uncertain circumstances before the study end point. These mice were not included

in the results. Mice were euthanized through CO2 asphyxiation.

Genotyping for the activation of KrasG12D mutation construct

Activated KrasG12D refers to the successful Cre-mediated excision of the Lox-Stop sequence,

allowing for transcription of the mutant Kras allele. To determine the tissue specific activation

of the KrasG12D mutation, we followed the standard method first published by Hingorani [8, 9]

and further utilized by other groups working with this Lox–Stop–Lox conditional Kras mouse

strain [10–12]. Genomic DNA was isolated from tail, pancreas, anus and anal tumor from KC

mice. The DNA was then amplified using polymerase chain reaction (PCR) with the following

probes: 5’-GGGTAGGTGTTGGGATAGCTG-3’ (OL8403) and 5’-CCGAATTCAGTGACTAC
AGATGTACAGAG-3’ (OL8404) with conditions previously published [11]. These primers

amplified a 325 bp band corresponding to the activated KrasG12D mutant allele and a 285 bp

band corresponding to the WT allele.

Tumor studies

The study endpoint (age 9 months) was selected based on existing data evaluating and report-

ing on male KC mice at this age [8]. At 9 months, mice were euthanized and underwent cervi-

cal dislocation followed by midline laparotomy for solid organ assessment. The anus was also

removed for pathologic analysis. A board-certified surgical pathologist with subspecialty train-

ing in gastrointestinal pathology (KAM) who was blinded to the mouse genotype and sex eval-

uated the histologic sections.

Histology

KC mouse tissues (anus and pancreas) were fixed in 10% buffered formalin for 48 hours. Serial

4 μm sections from paraffin-embedded tissues were mounted on charged slides. Hematoxylin

and eosin (H&E) was performed by the Experimental Animal Pathology Lab (EAPL) at the Uni-

versity of Wisconsin-Madison. The histology was evaluated by a certified pathologist (KAM).

DNA recovery from H&E stained formalin fixed paraffin embedded (FFPE)

samples

The anal tissue was scraped from H&E stained slides using a sterile blade [13]. The deparaffini-

zation and genome DNA extraction from H&E stained anal tissues was performed according

to manufacturer’s instructions using ReliaPrep FFPE gDNA MiniPrep System (Promega,

Madison, WI).
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Immunohistochemistry (IHC) for tdTomato

IHC staining for red fluorescence protein (tdTomato) was performed by the Experimental Ani-

mal Pathology Lab (EAPL) at the University of Wisconsin-Madison. For IHC staining, sections

were deparaffinized in xylenes and hydrated through graded alcohols to distilled water. Antigens

were retrieved using citrate buffer pH 6.0 (10 mM Citric Acid, 0.05% tween 20). Endogenous per-

oxidase was blocked with 0.3% H2O2 in PBS for 10 minutes at room temperature and blocking of

non-specific binding was performed using 10% goat serum. Sections were incubated with rabbit

anti-RFP antibody (600-401-379, Rockland Inc, Pottstown, PA) (1:1600) overnight at 4˚C. After

rinsing, sections were incubated with ImmPRESS goat anti-rabbit IgG (MP-7451, Vector Labora-

tories, Burlingame, CA) for 30 minutes at room temperature. Detection was performed using

DAB substrate kit (8059S, Cell Signaling Technology, Danvers, MA). Samples were counter-

stained using Mayer’s hematoxylin (MHS32, Millipore-Sigma, St. Louis, MO) for one minute.

RNAScope in situ hybridization

MmuPV1 detection was performed using the RNAscope 2.5 HD Assay-Brown kit (Advanced

Cell Diagnostics, Newark, CA; 322300) and probe to MmuPV1 E4 (473281) as previously

described [14]. NSG mouse anal tissues that were infected with MmuPV1 or mock infected

[14] were included as positive and negative controls, respectively.

Estrogen receptor alpha immunofluorescence

Formalin-fixed (10% formalin), paraffin-imbedded mouse tissue sections mounted on Super-

frost Plus glass slides (Fisher Scientific, Pittsburgh, PA), were deparaffinized with Xylene (3 x 5

min), and rehydrated in descending concentrations of ethanol as follows: 2 x 10 min each in

100%, 95%, 70%, and 50% ethanol followed by two washes in deionized water for 5 min each

and a final wash in phosphate buffer (PB; 0.1 M phosphate buffer, pH 7.4) solution for 10–15

min. Sections were pretreated with normal donkey serum solution (3% donkey serum, 0.3%

Triton-X 100 in PB, pH 7.4) for 30 min at room temperature and then washed briefly in PB

before being incubated for 48 hrs at 4˚ C with an estrogen receptor α (ERα) rabbit antibody

(C1355) diluted 1:5000. Thereafter the sections were rinsed in PB and next incubated with bio-

tinylated donkey anti-rabbit IgG (1:500) for 2 hours at room temperature, another wash for 30

min in PB and then reacted with streptavidin Alexa Fluor 594 (1:2500) for 3 hrs. Both primary

and secondary antisera were diluted in Tris-(hydroxymethyl)aminomethane (0.5%; Sigma-

Aldrich) in phosphate buffer containing 0.7% seaweed gelatin (Sigma-Aldrich), 0.5% Triton

X-100 (Sigma-Aldrich), and 3% BSA (Sigma-Aldrich), adjusted to pH 7.6. Adjacent sections

were treated equally, but without the ERα antibody for control purposes. After a final rinse

overnight in PB, the sections were cover-slipped with gelvatol containing the anti-fading agent

1,4-diazabicyclo(2,2)octane (DABCO; Sigma-Aldrich; 50 mg/ml). Sections were screened and

photographed using a Nikon E800 fluorescent microscope (Eclipse E800; Nikon Instruments,

Melville, NY) equipped with a fiber illuminator (Intensilight C-HGFI; Nikon Instruments)

and a high-definition digital microscope camera head (DS-Fi1; Nikon Instruments) interfaced

with a PC-based camera controller (DS-U3; Nikon Instruments). It should be noted that the

C1355 ERα antibody has been documented to be specific for ERα in rat and mouse tissues and

does not recognize ERβ [15].

DNA recovery from FFPE tissues and MmuPV1 detection by PCR

DNA was isolated from two formalin fixed paraffin embedded slides per sample as previously

described [14]. PCR was performed using primers specific to the MmuPV1 genome in the L1
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region (F: 5’-GGAAGGAGAGAGCAAGTGTATG-3’, R: 5’-GGGTTTGGTGTGTTGGTTTG-
3’) and analyzed via agarose gel.

RNA isolation

Immediately following cervical dislocation and resection of the organs, specimens (pancreas

and anus) allocated for RNA isolation were placed into RNAlater (ThermoFisher Scientific,

Waltham, MA). The RNA isolation commenced immediately using Qiazol lysis and homoge-

nization using a tissue homogenizer (Brinkmann Instruments, Model PT 10/35, 110 Volts, 6

Amps, 60 Hz). RNA was isolated using the Qiagen RNeasy Kit (Qiagen, Hilden, Germany).

The extracted RNA was quantified using a spectrophotometer (ClarioStar Plate Reader, BMG

LABTECH, Ortenberg Germany) and diluted to 50 ng/μL. Electrophoresis of the purified

RNA was performed with the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA), and each

sample demonstrated an RNA Integrity Number (RIN) of 7.5 or higher, indicative of high-

quality RNA.

Quantitative reverse transcription PCR

The qPCR was done as previously described [16]. Briefly, 500 ng of RNA was reverse tran-

scribed using the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher, Waltham,

Ma) per manufacturer protocol. The qPCR was performed on the Thermo Fisher QuantStudio

7 (Thermo Fisher, Waltham, Ma). All reactions were run in triplicate. Results were analyzed

using the delta-delta CT method [17]. Expression levels were calculated relative to the average

of the C57BL/6J female mice (baseline) or the average of the KC females. The reference group

was labeled on each graph. The following TaqMan1 probes were used: Cre (Enterobacteria

phage P1 cyclization recombinase, Mr00635245_cn), Pdx1 (pancreatic and duodenal homeo-

box 1, Mm00565835_cn) and the house keeping gene Hprt (hypoxanthine guanine phosphori-

bosyl transferase, Mm03024075_m1) (Thermo Fisher, Waltham, Ma).

Castration and ovariectomy

To evaluate the sex differences of anal SCC development in KC mice, male WT and male KC

mice were castrated; meanwhile, female WT and female KC mice were ovariectomized at 6–7

weeks of age. Mice were anesthetized with isoflurane inhalation throughout the surgery. Slow-

release buprenorphine was used as an analgesic for mice undergoing this surgery. The hair

from the surgical area was removed with clippers, and the surgical area was sterilized with an

iodine scrub. Under sterile conditions and using sterilized tools, the testis and ovaries were

removed from male and female mice, respectively [18, 19]. To remove the testis, gentle pres-

sure was applied to the abdomen to push the testis into the scrotal sac [18]. A short 10mm mid-

line incision was made through the skin in the middle of the abdomen [18]. The testis were

located, gently pulled out through that incision along with the epididymal fat pad and carefully

removed via cauterization [18]. To remove the ovaries, two incisions were made: short dorsal

midline incisions parallel to and on either side of the spine [19]. The ovaries were located and

dissected free from attachments [19]. All incisions were sutured, wound clipped and sterile

glue applied (vetbond).

17-beta estradiol silastic capsule preparation and administration

KC mice were castrated or ovariectomized at age 6–7 weeks. The first 17-beta estradiol silastic

capsule (or sham implant) was implanted 14 days later, and replaced every 4 weeks up to age 9

months. Silastic tubing (Silastic Laboratory Tubing, 1.58 mm inside diameter × 3.18 mm
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outside diameter, catalog no. 508–008, Dow Corning) was cut to 4.8mm. The tubing was

sealed at one end with medical grade adhesive. The 4.8mm of the capsules was filled with

17-beta estradiol (E2) (17-beta estradiol,�99% pure, catalog no. 50-28-2). Silastic capsules

were sealed with silastic medical adhesive, type A (product no. A-100, Dow Corning, pur-

chased from Factor II). 17-beta Estradiol-filled silastic capsules have been shown to effectively

increase estrogen levels in C57BL/6J mice when implanted as previously described [20, 21].

Before implantation the capsules were soaked in sterile saline overnight at 37˚C. Mice were

anesthetized with isoflurane for silastic capsule implantation and given slow-release buprenor-

phine (0.5 mg/kg sc). The back was shaved using clippers and sterilized with iodine scrub. An

incision was made on the caudal aspect of the back just to the right of midline. Capsules were

inserted parallel to the spine, and the incision was closed with wound clips.

Statistical analysis

Comparisons of tumor development between groups was accomplished using the Fisher’s

Exact test. The qPCR data was analyzed using an unpaired, two-tailed t-test with Welch’s cor-

rection to evaluate possible expression differences of Pdx1 and Cre in the sample groups. Data

was considered significant with a p-value<0.05.

Results

Development of anal tumors in KC mice

Of the 30 KC mice (16 KC males and 14 KC females) initially evaluated, 16.7% (5/30) devel-

oped pancreatic ductal adenocarcinoma (PDAC), which is consistent with previously pub-

lished incidence in KC mice by age 9 months (S1A Fig) [8]. There were no statistically

significant differences between development of PDAC precursor lesions (PanIN-1, PanIN-2,

or PanIN-3) or PDAC in male and female KC mice (S1B Fig). Furthermore, 66.7% (20/30) of

the KC mice possessed at least one external tumor on the body surface. Concordant with previ-

ous publications, roughly 36% of KC mice developed a facial lesion identified as facial papil-

loma [8, 22]. Notably, anal tumors were also observed and identified as invasive anal

squamous cell carcinoma (anal SCC) on histopathologic analysis (Fig 1). The tumors became

macroscopically visible after 5 months, were clearly evident by 6 months, and of significant

size by 9 months (Fig 2). Mice with anal tumors displayed no increase in lethality, with normal

mobility and weight gain up until the time of euthanasia (age 9 months). All anal SCC tumors

were located at or just distal to the anorectal junction. All the tumors were characterized as

grade 1. The neoplastic cells were well differentiated and easily recognized as squamous epithe-

lium, infiltrating within a desmoplastic stroma with focal keratinization. Anal SCCs were local-

ized to the anus, with no evidence of metastasis to distant organs. The pancreas, stomach,

small intestine, colon, spleen, thymus, lungs and liver underwent gross analysis, but no evi-

dence of metastasis from anal SCC tumors were found. Additionally, the stomach, spleen, pan-

creas, small intestine, and liver underwent histopathologic analysis with no evidence of

metastatic spread. Only KC mice developed tumors (i.e. only mice possessing activated Kras-
mutation), while age-matched male and female control mice did not develop external tumors

(Table 1).

Sex significantly influences anal SCC tumor development in KC mice

A significantly higher rate of external tumors was observed in female KC mice compared to

male KC mice (100% vs 38%, p = 0.005). While there was no difference in the incidence of

facial papilloma between the female and male KC mice (29% vs 38%, p = 0.65), there was a
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stark difference in anal SCC incidence, which occurred exclusively in female KC mice (100%

vs 0%, p = 0.00001) (Table 1). In addition to the sex-dependency of anal SCC development,

there was complete penetrance (n = 14/14) of anal SCC in female KC mice. These findings

were confirmed by histopathologic analysis, where excised anal tissue from wild type males,

wild type females, and KC males demonstrated normal microscopic anal histology in compari-

son to the anal SCC seen in KC females (Fig 1). These findings demonstrate anal SCC develop-

ment is dependent on sex.

Fig 1. Anal tumor development in KC mice. At age 9 months, anorectal tissue was excised for histological analysis. In male (A) and female (B) C57BL/6J wild type

mice, normal anorectal histology was present. Additionally, 9-month-old KC male mice (C) demonstrated normal anorectal histology. In contrast, large perianal tumors

were grossly evident in 9-month-old female KC mice with invasive anal SCC present on histologic examination. This is indicated by the bracket (D). Scale bars equal

200 μm.

https://doi.org/10.1371/journal.pone.0259245.g001
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Anal carcinogenesis in KC mice was not due to papillomavirus infection

Mouse papillomavirus (MmuPV1) has been associated with the development of anal disease

and cancer in mice [14, 23]. The animal facility where the mice are housed is routinely

screened for MmuPV1 and it has not been detected in our colony, and immunocompetent

C57BL/6J mice are known to rapidly clear MmuPV1 before tumor development occurs [23].

Furthermore, the anal tumors that developed in the KC mice were negative for characteristic

features of papillomavirus-induced anal SCC during histopathologic evaluation. The overlying

squamous mucosa did not exhibit koilocytosis, binucleation or raisanoid nuclei to suggest

viral cytopathic effect from histopathology of KC mouse anus (Fig 3A) [24]. Representative

anal SCC tumors in KC mice were evaluated for MmuPV1 viral transcripts using RNAScope

and for MmuPV1 DNA using PCR [14]. No MmuPV1 signal was detected by RNAScope (Fig

3A), and no MmuPV1 DNA was detected within the anal tumors of the KC mice (Fig 3B).

Together, these data show that the anal SCC in this study was not driven by papillomavirus

infection.

KrasG12D mutation is present in anal tissue of KC mice. The absence of anal SCC in any

control mice combined with the presence of anal tumors only in KC mice indicated Kras-
mutation was likely responsible for the observed anal SCC. To confirm, we assessed anal tissue

for expression of Pdx1 mRNA, Cre mRNA, and activated KrasG12D mutation (genomic DNA)

in both male and female mice. In the KC model, the Pdx1 promoter mediates the expression of

Cre recombinase in both male and female anal tissues. We compared Pdx1 mRNA levels in

male and female WT and KC mouse anus at nine months of age (Fig 4A and 4B), and found

similar levels of Pdx1 expression amongst the WT male and female mice (Fig 4A). The

Fig 2. Anal tumor progression over time. In female KC mice, anal tumors are visible as an area of congestion at 4 months of age, with mild erythema around the anal

region. By age 5 months, an anal tumor is generally evident. By 9 months of age, the anal tumors are significant in size. Despite the large size, the mice are able to

maintain weight, consume food, and defecate normally. No mice experienced obstructive symptoms.

https://doi.org/10.1371/journal.pone.0259245.g002

Table 1. Sex-dependent incidence of skin and anal lesions.

Group Mouse Facial Papilloma Anal SCC

Control C57Bl6 Male (n = 12) 0 / 12 (0%) 0 / 12 (0%)

C57Bl6 Female (n = 11) 0 / 11 (0%) 0 / 11 (0%)

KrasG12D Male (n = 18) 0 / 18 (0%) 0 / 18 (0%)

KrasG12D Female (n = 9) 0 / 9 (0%) 0 / 9 (0%)

Pdx1-Cre Male (n = 10) 0 / 10 (0%) 0 / 10 (0%)

Pdx1-Cre Female (n = 23) 0 / 23 (0%) 0 / 23 (0%)

KC Mice KC Male (n = 16) 6 / 16 (38%) 0 / 16 (0%)

KC Female (n = 14) 4 / 14 (29%) 14 / 14 (100%)

https://doi.org/10.1371/journal.pone.0259245.t001

PLOS ONE Sex-differences in mutant-Kras induced anal SCC

PLOS ONE | https://doi.org/10.1371/journal.pone.0259245 November 4, 2021 8 / 22

https://doi.org/10.1371/journal.pone.0259245.g002
https://doi.org/10.1371/journal.pone.0259245.t001
https://doi.org/10.1371/journal.pone.0259245


presence of Pdx1 in anal tissue has also been identified in prior investigations [25]. At nine

months, expression of Pdx1 in KC female anus / anal tumor was significantly higher than KC

male anus (Fig 4B). We concordantly found Cre-recombinase expression was significantly

higher in KC females compared to KC males (Fig 4C). WT mice did not express Cre-recombi-

nase due to the absence of Pdx1-Cre transgene. The difference in Pdx1 and Cre mRNA expres-

sion at nine months of age was likely related to evaluation of KC female anus / tumor (tumor

tissue harboring more Pdx1-Cre expressing cells) versus non-tumor anal tissue of males. Thus,

we assessed Pdx1 and Cre expression at five months, prior to onset of macroscopic tumor and

found no differences in levels of Cre and Pdx1 expression between the groups of mice (Fig 4D–

4F). To substantiate our expression data, we crossed the KC mice to Ai14 mice to generate the

AiKC ‘marker’ mouse model (Rosa26LSL-tdTomato; LSLKrasG12D; Pdx1-Cre). AiKC mice harbor

the LSL-tdTomato red fluorescent gene in the Rosa26 locus, and in the presence of Cre-recom-

binase, the stop sequence is excised allowing for expression of tdTomato protein, localizing

Pdx1 and Cre expression and serving as a marker for expression of activated KrasG12D gene.

Both male and female AiKC mice (Fig 5) displayed tdTomato in the anal canal epithelium con-

firming Pdx1 and Cre expression and providing an expected localization for mutant KrasG12D

expression. Concordantly, isolation of genomic DNA from anal tissue of male and female KC

mice demonstrated the activated KrasG12D mutation (Fig 6 and S2 Fig), which was absent in

WT mice. When excising the anus from female KC mice, the specimen was removed en bloc
with the large anal tumor, and DNA isolation revealed clear presence of the activated KrasG12D

mutation (Fig 6, S2 Fig). The male KC anal tissue appeared grossly and histologically normal,

yet genomic DNA isolated from whole anal tissue demonstrated the same activated KrasG12D

mutation (Fig 6, S2 Fig). As a follow-up, the anus from KC mice at the earliest time point

allowable (age 6–8 weeks) was excised and genomic DNA isolated (S3 Fig). Activated

KrasG12D-mutation was present in both sexes indicating early expression of the oncogene. This

was concordant with the clear evidence of tdTomato (Pdx1/Cre) expression at age 12 weeks in

the male and female AiKC mice. Interestingly, we were unable to detect a mutant-Kras band

(or only a faint band) in one male KC mouse (Fig 6), which was likely due to detection error

Fig 3. Anal squamous cell carcinomas in KC mice were negative for MmuPV1 infection. (A) No viral signatures were detected in

representative anal tumors from KC mice stained via RNAScope ISH with a probe specific to the MmuPV1 E4 region of the genome.

MmuPV1-infected and mock-infected Nod-scid IL2Rγnull (NSG) mouse anal tissues were included as positive and negative controls, respectively.

Scale bars equal 100 μm. (B) DNA was recovered from FFPE slides of representative KC female anal squamous cell carcinomas and

MmuPV1-infected and mock-infected anal tissues, and PCR was performed using primers specific to the MmuPV1 genome. KC lesions were

negative for MmuPV1 DNA.

https://doi.org/10.1371/journal.pone.0259245.g003
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from the excised anal samples. Thus, to confirm, we used FFPE sections generated from the

9-month male KC mice (cohort used to evaluate for tumor formation) to specifically evaluate

genomic DNA from the anal canal epithelium. These sections should harbor the activated

KrasG12D mutation based on results of tdTomato staining (AiKC mice), and notably, we found

that all male mice express mutant KrasG12D (S4 Fig). Together, these data demonstrate the

presence of activated KrasG12D mutation in both male and female KC anus, yet an absence of

tumor formation in male KC mice.

Sex hormone dependence of anal SCC formation. To discern why only female KC mice

develop anal tumors despite the presence of activated KrasG12D mutation in both male and

female KC mice, we assessed sex hormone dependence. The roles of male and female sex hor-

mones in the development of these tumors were judged by castration of male mice (n = 11)

and ovariectomy of female mice (n = 13) at 6–7 weeks of age, according to standardized proto-

col [18, 19]. Castration dramatically lowers the amount of testosterone that is produced in

male mice [18] and, similarly, ovariectomy significantly lowers the amount of estrogen/proges-

terone produced in female mice [19, 26]. Castrated KC males displayed an unchanged pheno-

type compared to intact KC males, with none of the mice developing anal SCC (0/11 KC

castrated males vs 0/16 KC intact males, p = 1) (Table 2). In contrast, ovariectomized KC

female mice exhibited a striking change compared to intact KC female mice, with only 15% of

the ovariectomized cohort developing macroscopic anal lesions (2/13 ovariectomized KC

females vs 14/14 intact KC females (P<0.0001)) (Table 2). This was confirmed on microscopic

Fig 4. Pdx1 expression and Cre-recombinase expression in mouse anus. Anal tissue was excised from male and

female wild type mice and male and female KC mice at 9 and 5 months of age. mRNA was isolated and RT-PCR

performed to evaluate for Pdx1 and Cre-recombinase expression. Male and female C57BL/6J WT mice demonstrate

Pdx1 expression in anal tissue at both 5 and 9 months, as did male and female KC mice (A, B, D, E). At 9 months age,

KC females express significantly higher amounts of Cre mRNA (C) due to the presence of tumor tissue. At 5 months,

male and female KC mice express similar amounts of Pdx1 and Cre mRNA (E, F).

https://doi.org/10.1371/journal.pone.0259245.g004
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Fig 5. Tdtomato expression indicates Pdx1-Cre expression and mutant Kras expression in both male and female mice. Anal tissue was excised from 3 month old

Ai14; LSL-KrasG12D; Pdx1-Cre (AiKC) female (A, B, C) and male (D, E, F) mice, fixed and frozen embedded and sectioned for H&E analysis (A and D). Additional

adjacent sections were prepared for immunohistochemistry (IHC) to identify tdTomato protein at 4x and 10x (B, C, E and F). Scale bars equal 100 μm. Positive IHC

signal for tdTomato reveals the location of Cre expression (Pdx1-Cre), which serves as a marker for the location of mutant KrasG12D expression.

https://doi.org/10.1371/journal.pone.0259245.g005

Fig 6. Activated KrasG12D is present in the anal SCC anal tumor tissue. The activated KrasG12D mutation is detected

in the female anal tumor tissue, and the male anal tissues. Activated Kras refers to the successful removal of the Lox-
stop-Lox codon preceding the KrasG12D. The activated mutation is present in the pancreas due to extensive Pdx1
expression, and absent in tail samples, which lack Pdx1 expression. Positive and negative controls are shown in S2 Fig.

https://doi.org/10.1371/journal.pone.0259245.g006
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analysis, in which the eleven ovariectomized KC female mice without macroscopic tumors

demonstrated normal anal histology (i.e. no microscopic tumors or dysplasia) (Fig 7). This

remarkable finding indicates that female sex hormones are crucial for KrasG12D-driven anal

SCC development in KC mice.

Estrogen dependence of anal SCC formation. Estrogen has a known role in the develop-

ment of several tumors [27–32] and a correlation with Kras-mutant cancer [29–32]. Thus, we

tested whether the anal SCC tumor development in a papillomavirus-negative context was

driven by estrogen. Ovariectomized and castrated KC mice were dosed with physiologic levels

of 17-β-estradiol (N = 5 for ovariectomized and N = 4 for castrated) or sham dosed as a control

(N = 6 for ovariectomized and N = 5 for castrated). To confirm successful E2 administration,

uterine weights were assessed (S5 Fig) [21]. E2 dosed females should remain in proestrus and

thus have normal uterine weights while the sham dosed mice will have significantly lower uter-

ine weights (S5A Fig) [21]. This standard approach enables accurate determination of estrogen

reduction as opposed to a single time point (serum) which can vary substantially even in wild

type (intact) mice [21]. Sham dosed mice demonstrated significant decrease in uterine weights

confirming successful reduction in estrogen levels, while all E2 dosed female KC mice pos-

sessed normal uterine weights (i.e. intact) revealing appropriate and sufficient exogenous

estrogen administration (S5A Fig). In the sham-dosed ovariectomized KC female group only

33% (2/6) developed a tumor (Table 3), concordant with results seen in the untreated ovariec-

tomized mice (33% vs 15%, p-value = 0.56) (Table 2). Meanwhile, in the beta-estradiol (E2)

dosed ovariectomized KC female mice, 100% (5/5) developed macroscopically visible anal

tumors by 4 months of age (Table 3), ‘rescuing’ the tumor phenotype and again demonstrating

stark contrast to ovariectomized mice (100% vs 15%, p-value = 0.001). In the sham-dosed cas-

trated KC male group, 0% (0/5) developed a tumor (Table 3), consistent with the results seen

in the untreated castrated KC male mice (0/5 vs 0/11, p-value = 1). In contrast, 75% (3/4) of

E2-dosed castrated KC male mice developed anal SCC that was macroscopically visible by 8

months of age and confirmed on histopathologic analysis (Fig 8). This remarkable and signifi-

cant increase in tumor formation in E2-dosed KC males (75% vs 0%, p-value = 0.0088), when

coalesced with the novel data from KC females, demonstrates an estrogen mediated sex-

dependent development of Kras-mutant anal SCC.

Estrogen receptor present in male and female anus and female anal tumors

Estrogen signaling is mediated through two distinct receptors, ERα and ERβ [33]. Estrogen

signaling through ERα has been shown to increase cellular proliferation, particularly within

the mammary gland and uterus, while ERβ has been shown to counteract the proliferative

effects of ERα [33]. Given the proliferation-inducing role of ERα, we expected that the anal

Table 2. Sex-dependent incidence of skin and anal lesions after castration or ovariectomy.

Group Mouse Facial Papilloma Anal SCC

Castrated/Ovariectomized Controls C57Bl6 Male (n = 2) 0 / 2 (0%) 0 / 2 (0%)

C57Bl6 Female (n = 2) 0 / 2 (0%) 0 / 2 (0%)

KrasG12D Male (n = 2) 0 / 2 (0%) 0 / 2 (0%)

KrasG12D Female (n = 2) 0 / 2 (0%) 0 / 2 (0%)

Pdx1-Cre Male (n = 2) 0 / 2 (0%) 0 / 2 (0%)

Pdx1-Cre Female (n = 2) 0 / 2 (0%) 0 / 2 (0%)

Castrated/Ovariectomized KC Mice Castrated KC Male (n = 11) 4 / 11 (33%) 0 / 11 (0%)

Ovariectomized KC Female (n = 13) 4 / 13 (30%) 2 / 13 (15%)

https://doi.org/10.1371/journal.pone.0259245.t002
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Fig 7. Castrated and ovariectomized KC mice and assessment for anal tumor. Male KC mice were castrated and female

KC mice were ovariectomized at 6–7 weeks of age, and the anal tissue evaluated at age 9 months. Macroscopic

examination revealed no abnormalities in castrated KC males and most ovariectomized KC females (representative

images, A and C). Concordantly, histopathologic examination revealed no microscopic tumor formation in male KC mice

or macroscopically normal ovariectomized KC female mice (representative images B and D). Scale bars equal 100 μm.

https://doi.org/10.1371/journal.pone.0259245.g007

Table 3. Incidence of anal SCC in beta-estradiol dosed KC mice.

Group Mouse Anal SCC

Intact KC Mice Intact KC Male (n = 16) 0 / 16 (0%)

Intact KC Female (n = 14) 14 / 14

(100%)

Castrated/Ovariectomized KC Mice Castrated KC Male (n = 11) 0 / 11 (0%)

Ovariectomized KC Female (n = 13) 2 / 13 (15%)

Dosed and Castrated/Ovariectomized KC

Mice

Sham Dosed Castrated KC Male (n = 5) 0 / 5 (0%)

Beta-Estradiol Dosed Castrated KC Male (n = 4) 3 / 4 (75%)

Sham Dosed Ovariectomized KC Female (n = 6) 2 / 6 (33%)

Beta-Estradiol Dosed Ovariectomized KC Female

(n = 6)

5 / 5 (100%)

https://doi.org/10.1371/journal.pone.0259245.t003
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epithelium and anal tumors would display ERα expression. To investigate, we performed fluo-

rescent IHC using an antibody specific for ERα [15] in the male and female anus. In particular,

we assessed ERα in intact KC females and found robust presence of ERα in the anal tissue

including the tumor (Fig 9). Moreover, we analyzed normal anus of ovariectomized KC

females (no tumor) and KC males and again identified strong presence of ERα in the anal tis-

sue, indicating exogenous estrogen in male (E2 dosed) and endogenous estrogen in female KC

mice can bind receptor to induce tumor formation (i.e. receptor is not just expressed in

tumor). Together, these results suggest that estrogen binding to ERα may act to potentiate

mutant-KrasG12D induced development of anal SCC in KC mice (Fig 9).

Fig 8. Estrogen dosed castrated KC male develop anal SCC. Castrated KC male mice and ovariectomized KC female mice were treated with 17-beta estradiol (E2) or

sham (sesame oil). Sham dosed KC males did not develop anal SCC (A), while E2 dosing induced anal SCC in KC males (B, shown by bracket). Similarly, sham dosed

KC females did not develop anal SCC (C) while E2 dosing rescued the anal SCC phenotype in KC females (D, shown by bracket). Scale bars equal 200 μm.

https://doi.org/10.1371/journal.pone.0259245.g008
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Fig 9. Estrogen Receptor alpha (ERα) is present in the KC anal tissue. The presence of ERα was detected using immunofluorescence IHC. ERα was found to be

present in the anal SCC of intact KC female mice (I), in the anal epithelium of ovariectomized KC female anus lacking tumor formation (II) and in the KC male anus

(III). Panels A and B show the fluorescent staining of the receptor at 10x and 40x respectively. Panel C in each group shows the tissue with only the use of the secondary

antibody confirming no off target staining. Group IV shows ERα staining of mouse arcuate nucleus as the positive control [15].

https://doi.org/10.1371/journal.pone.0259245.g009
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Discussion

In this study, we identified that LSL-KrasG12D; Pdx1-Cre (KC) mice showed female-specific

anal SCC development. Although this is a highly utilized genetically engineered mouse model

in the study of PDAC, this novel phenotype has likely been overlooked for several reasons.

While earlier studies of KC mice included only males, more recent investigations have

included both male and female Kras-mutant mice to assess the development of PDAC. How-

ever, these studies focused on concomitant genetic mutations (e.g., Trp53, Ink4a/Arf) [9, 34]

or the influence of environmental changes (e.g., high-fat diet) [35] in addition to the Pdx1-Cre
driven KrasG12D-mutation, which facilitate the onset of PDAC and consequent death at an

early age (roughly four months for LSL-KrasG12D/+; Trp53-/-; Pdx1-Cre mice in our laboratory).

Thus, because these tumors were only identifiable starting at 5–6 months age, studies with

combination genetic mutations or environmental changes that caused earlier evaluation /

demise in male and female KC mice may have conceivably missed the onset of anal SCC

growth in female mice.

Approximately 85–95% of anal SCC development in humans is due to HPV infection,

while the remaining 5–15% of cases occur from an unknown etiology [4]. Although mice can

be infected in the anal tract with the mouse papillomavirus MmuPV1 [14, 23], the KC mice in

this study did not develop anal SCC as a result of MmuPV1 or HPV infection. Immunocompe-

tent mice, such as the KC mice, have been shown to rapidly clear MmuPV1 in the anal tract

[23]. Furthermore, there was no evidence of papillomavirus in the colony of this study, on his-

topathologic analysis, using RNA Scope or via PCR analysis of the anal SCC that developed

within the KC mice. This is an important finding when considering that roughly 5–15% of

anal SCC patients do not harbor papillomavirus as the underlying etiology and suggests this is

a potential model of interest in studying the etiology of non-papillomavirus induced anal SCC.

In this study, the development of anal SCC in the KC mice is due to the activation of the

KrasG12D mutation in the anal tissue, which subsequently drives tumor formation. In the KC

mouse model, the activation of the KrasG12D mutation is controlled by cells expressing Cre-

recombinase from the Pdx-1 promoter [8]. Although only female KC mice develop anal SCC,

both sexes of KC mice were shown to have equivalent expression of Pdx1 and Cre in the anal

epithelium at age 5 months. Furthermore, the expression of tdTomato was clearly evident in

both male and female AiKC mouse anus, which reveals the location of Pdx1-mediated excision

of lox-stop and consequent tdTomato expression (surrogate for location of Kras-mutation).

Along with the observation that only KC mice formed anal SCC, this data shows that the devel-

opment of anal SCC is driven by the expression of Pdx-1 and Cre in the anal tissue resulting in

activation of the mutated KrasG12D gene. While we are not the first group to describe Pdx1
expression outside the pancreas leading to the development of SCC tumors [25], to our knowl-

edge, we are the first group to identify both Pdx1 and activated Kras-mutation in anal tissue of

KC mice and resultant anal SCC formation. Furthermore, the evidence presented disputes the

possibility that sex-bias differences in anal tumor formation was simply due to the absence of

Pdx1, Cre or activated KrasG12D expression in male anal tissue.

Notably, the activated Kras-mutation did not appear to be present (or very faintly present)

in all male anal samples retrieved by whole-excision and analyzed by PCR (one sample of the 9

month cohort). This was likely due to detection error when isolating DNA from whole male

anus (i.e. hair follicles, glands, skin, colon), which prompted PCR analysis of genomic DNA

from FFPE anus samples (containing anal epithelium) to confirm the presence of activated

Kras-mutation in KC male anus. Importantly, the mice in the current study were back-crossed

15 times into the C57BL/6J background. It is conceivable that this highly pure background

could be contributing to the unique appearance of anal SCC.
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To understand the female sex predilection for development of anal SCC, we evaluated the

roles of sex hormones, as these are likely candidates contributing towards the observed pheno-

type. We castrated male mice to achieve significant reduction in circulating testosterone and

ovariectomized female mice to reduce systemic production of female sex hormones. This stan-

dard approach is the most accurate method to determine sex-hormone dependence [18–21].

Castration did not alter the anal phenotype of male KC mice suggesting that the lack of testos-

terone does not modify the development of anal SCC. In contrast, only two out of thirteen

ovariectomized mice developed anal SCC suggesting the tumor development was almost

entirely dependent on female physiologic levels of estrogen/progesterone.

To further evaluate the involvement of the female sex hormones, we dosed ovariectomized

KC female mice and castrated KC male mice with estrogen to see if this would result in the

tumor phenotype. We chose to evaluate estrogen because of the strong correlation with other

Kras-driven cancers. For example, a study done by Hammond et al. [29] used LSL-KrasG12D

mice (K mice in that study) to investigate the sex-differences seen in the development of lung

adenocarcinomas. The methodology in this study included ovariectomy in female K mice fol-

lowed by activation of the KrasG12D -mutation through intra-nasal exposure of an adenoviral

vector expressing Cre recombinase (AdeCre). The authors found a significant reduction in

lung tumor burden (quantity and size) compared to intact females. Concordant with the cur-

rent study, they successfully rescued the phenotype through estrogen administration using

silastic capsules [29]. Furthermore, studies have shown estrogen mediates the development of

mutant-Kras-driven endometrial cancer, ovarian cancer and vaginal SCC [30–32]. It has been

shown that ERα is present in 4% of human anal SCC samples [27] and that estrogen is essential

for activating cell proliferation of human epithelial SCC cell lines [36]. Thus, from these data,

it is feasible that estrogens can ultimately influence Kras-induced non-papillomavirus anal

SCC development, resulting in the sex-dependent development of anal SCC phenotype in

female KC mice. Notably, in our study, ovariectomized KC mice that were dosed with physio-

logic levels of beta-estradiol (E2) developed anal SCC at 4 months of age, ‘rescuing’ the tumor

phenotype. Furthermore, E2 dosed castrated KC male mice (equivalent dose as females) also

developed anal SCC, albeit with a relatively delayed macroscopic onset (8 months) compared

to E2 dosed females. This delayed onset despite equivalent E2 dosing may be due to differences

in the number of ERα expressing cells or amount of ERα present in anal tissue, and will be

evaluated in future studies. Regardless, the data presented strongly suggests that the develop-

ment of anal SCC in KC mice is Kras-driven and estrogen mediated.

It is important to note that following reduction of estrogen (ovariectomy), 15% (2/13) of

female KC mice and 2/6 (33%) sham dosed female KC mice still developed tumors. To confirm

that our ovariectomized KC female mice did experience a significant reduction in circulating

estrogen, and that the E2 dosed mice possessed sufficient levels of circulating estrogen, we

used a standardized approach of uterine weights. This methodology is more accurate than ‘sin-

gle time point’ levels of estrogen in circulating blood, due to the substantial variation of circu-

lating estrogen in normal females [21]. In contrast, uterine weights reflect the steady levels of

estrogen stimulation over an extended period. These techniques helped to confirm successful

reduction of (ovariectomy) and rescue of (E2 dosed) circulating estrogen. Although our study

revealed a clear correlation between estrogen and tumor formation, and a dramatic change in

tumor phenotype with reduction of estrogen, it remains unclear why few ovariectomized KC

mice still developed tumors; this may have been related to tumor initiation prior to the onset

of ovariectomy. In follow up studies, we will use ERα knock out mice (B6.129P2-Esr1tm1Ksk/J)

crossed to KC mice to investigate whether innate absence of estrogen ability to bind ERα pre-

vents tumor formation. It is also currently unknown how estrogen and mutant-Kras synergis-

tically drive anal tumor formation. Interestingly, one group has developed a non-HPV model
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of anal carcinogenesis, using tamoxifen-inducible deletions of Pten and Tgfbr1 [37]. The

authors found that anal SCC development was contingent upon STAT3 activation [37]. Can-

cers in other organ systems (e.g. pancreas cancer, lung cancer) have shown an interdepen-

dence between KrasG12D mutation and heightened STAT3 activity [38, 39], and it has also been

shown that estradiol functions to increase STAT3 activation [40]. For example, estradiol was

shown to increase STAT3 activation in female rat brain which results in neuroprotection

against ischemic brain injury [40]. The association between estrogen and STAT3 activation

along with the association between STAT3 activity and mutant KrasG12D-induced cancer for-

mation suggests a possible mechanism behind the phenotype of sex-dependent anal SCC

development in KC mice. Subsequent analyses will aim to clarify these questions and study

limitations, as well as focus on elucidating the specific underlying mechanism by which estro-

gen enhances Kras-mutant anal SCC development.

Our study clearly shows the sex-dependent development of anal SCC is tied to presence of

physiologic levels of estrogen in female mice and characterizes a clinically relevant subtype of

anal SCC. The finding that the Kras-mutation is largely dependent upon estrogen to induce

tumor development is an exciting result that may have direct clinical applicability for patients

with non-HPV anal SCC that have poorly understood pathogenesis and are known to exhibit

resistance to standard of care therapy [5]. Additionally, with the previously unidentified obser-

vation of Pdx1-driven Kras-mutation present in anal tissue of KC mice, the novel phenotype

described in this study may also provide a new mouse model for evaluation of the non-papillo-

mavirus subtype of anal SCC.

Supporting information

S1 Fig. The incidence of pancreas pathology of male and female mice. A) The incidence of

pancreatic precursor lesions (PanIN-1, PanIN-2, PanIN-3) and PDAC in all the KC mice

match what was previously reported in this model. B) There is no statistically significant differ-

ences in development of pancreatic pathology between male (n = 16) and female KC (n = 14)

mice. Both males and females show a 100% incidence of PanIN-1 (p-value = 1). PanIN-1,

PanIN-2, PanIN-3 and PDAC male vs female incidence with their p-vales are as follows: 100%

vs 100% (p = 1), 6.25% vs 7.15% (P > 0.99), 0% vs 21.43% (P = 0.09) and 6.25% vs 28.57%

(P = 0.16).

(TIF)

S2 Fig. Genotyping for mutated KrasG12D gene in 9 month old male and female KC mice.

Full gel images of mutated Kras genotyping in 9 month old male and female anus (i), pancreas

(ii) and tail (iii) next to the cropped image used in the manuscript text (A). The ‘+’ and ‘-‘ indi-

cate the positive and negative control bands on each gel. The positive control is DNA from

LSL Kras/+; Mx-1 cre/+ mouse bone marrow containing the activated KrasG12D gene (Control

(+)) and the negative control is DNA from the pancreas of a C57BL/6J mice (Control (-)).

(TIF)

S3 Fig. Genotyping for mutated KrasG12D gene in 8 week old male and female KC mice. A)

Full gel images taken of the PCR product. This shows the male KC anus with the activated

mutant Kras gene at an early age (8 weeks old). Despite the active mutant Kras gene being

present, no males develop anal SCC. The full gel images for the anus (i), pancreas (ii) and tail

(iii) are to the right of the full image. The ‘+’ and ‘-‘ indicate the positive and negative control

bands on each gel. The positive control is DNA from LSL Kras/+; Mx-1 cre/+ mouse bone mar-

row containing the activated KrasG12D gene (Control (+)) and the negative control is DNA
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from the pancreas of a C57BL/6J mice (Control (-)).

(TIF)

S4 Fig. Anus from male KC mice displays the activated KrasG12D mutation. Genomic DNA

was isolated from the available FFPE samples from age 9 month male KC mice and analyzed

using PCR for the activated KrasG12D mutation. All male anus showed the presence of the acti-

vated KrasG12D mutation within the anal tissue (A). The full gel is shown in panel B.

(TIF)

S5 Fig. E2 dosed females show increased uterine weights consistent with E2 dosing. The E2

dosed female mice have a significantly increased uterine weight compared to the sham dosed

mice indicating successful E2 administration.

(TIF)

S1 Raw images.

(PDF)
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