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Septins are a family of GTP-binding proteins that associate with cellular membranes and

the cytoskeleton. Their ability to polymerize into filamentous structures permits them to

serve as diffusion barriers for membrane proteins and as multi-molecular scaffolds that

recruit components of signaling pathways. At the cellular level, septins contribute to the

regulation of numerous processes, including cytokinesis, cell polarity, cell migration, and

many others. In this review, we discuss emerging evidence for roles of mammalian septins

in the biogenesis and function of flagella and cilia, and how this may impact human

diseases such as ciliopathies.
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INTRODUCTION

Septins are a family of poorly-characterized filamentous GTP-binding components of the
cytoskeleton that orchestrate a variety of cellular processes including cytokinesis, cell migration, cell
polarity, and cell-pathogen interactions (Fung et al., 2014). They were initially discovered in yeast
in 1971 (Hartwell, 1971), and have since been identified in many eukaryotes (Onishi and Pringle,
2016). The number of septin genes varies widely amongst species, for example Caenorhabditis
elegans has only two (UNC-59 and UNC-61) while there are thirteen in humans (SEPT1–SEPT12,
SEPT14). In mammals, this complexity is further increased by use of alternative promoters and
splicing, producing many different isoforms (for example see McIlhatton et al., 2001), making it
challenging to fully understand the cell and molecular biology of these proteins.

Structurally, all mammalian septins contain a central GTP-binding domain, have variable N
and C-termini, and the C-termini have different numbers of coiled-coil domains. Based on these
features and sequence similarities, mammalian septin genes can be categorized into four subgroups
(SEPT1, 2, 4, 5; SEPT6, 8, 10, 11, 14; SEPT7; SEPT3, 9, 12). Most cell types express at least one
member of each group and these proteins assemble into ordered apolar complexes (Fung et al.,
2014).

At the cellular level, septins are often found in structures withmicron-scalemembrane curvature
(Bridges et al., 2016) such as the cytokinetic furrow in dividing cells (Maddox et al., 2007; Estey
et al., 2010), the base of dendritic spines in neurons (Tada et al., 2007), the base of phagocytic cups
(Huang et al., 2008), the annulus of sperm tails (Kwitny et al., 2010) and the base of primary cilia
(Hu et al., 2010). In the following sections, we summarize what is known about septin function in
general, discuss the evidence for their presence in flagella and different types of cilia, and speculate
about their possible roles.
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KNOWN FUNCTIONS OF SEPTINS

The involvement of septins in myriad cellular processes indicates
that they may have more than one function. Perhaps the best-
studied example of multi-functionality occurs in yeast cytokinesis
where septins form a ring from which the bud emerges (Longtine
and Bi, 2003). Here, their filamentous nature allows them to
function as a macromolecular scaffold to facilitate protein-
protein interactions, where they recruit nearly 100 proteins,
including bud-specific machinery and regulators of the actin
cytoskeleton to the bud site (Gladfelter et al., 2001). This septin
ring also acts as a diffusion barrier, limiting the lateral diffusion of
membrane proteins between the mother and the bud (Takizawa
et al., 2000).

Septins also bind to membranes, particularly to negatively
charged lipids such as PIP2 (Zhang et al., 1999). This ability
appears to also be influenced by the curvature of the membrane
itself (Bridges et al., 2016) suggesting septins preferentially
assemble onmembrane surfaces of defined shape and charge. The
binding of septins to membranes has been shown to promote
membrane tubulation in vitro (Tanaka-Takiguchi et al., 2009),
promote the retraction of blebs from the cell membrane (Gilden
et al., 2012) and stabilize the plasma membrane to allow directed
cell migration in T cells (Tooley et al., 2009).

Other functions ascribed to septins include their ability
to affect the organization and dynamics of other cytoskeletal
elements. For example, Drosophila septins were shown to bundle
and curve actin filaments (Mavrakis et al., 2014). Septins have also
been implicated in altering microtubule dynamics by binding to,
and inhibiting the activity of, the microtubule stabilizing protein
MAP4 (Kremer et al., 2005). Interaction of microtubules with
septins appears to influence microtubule growth by suppressing
catastrophe at growing plus ends (Bowen et al., 2011) causing
microtubules to track along septin filaments.

FLAGELLA AND CILIA

In vertebrates there are two types of cilia: (a) motile cilia,
which are structurally identical to flagella, and (b) non-motile
cilia, also called primary cilia. Diseases resulting from defects
in cilia are collectively called ciliopathies, although the nature
of the disease depends on the type of cilia affected. Flagella
and cilia are microtubule-based organelles protruding from
the cell surface. The term “flagellum” is used when a single
motile cilium is used by cells for locomotion (for example, on
mammalian sperm; Figure 1A). Motile cilia are more frequently
found in large clusters on the cell surface and are involved
in moving the extracellular fluid, rather than moving the cell
itself. They are found lining the airway tract ependyma in the
brain and the oviducts. Defects in motile cilia lead to ciliary
dyskinesia and sterility. In contrast is the single motile primary
cilia covering the node of the vertebral embryos, where a single
cilium per cell moves in a circular manner to create the left-right
asymmetry essential for correct positioning of visceral organs in
the developing embryo (Baker and Beales, 2009). Defects in nodal
cilia result in situs inversus, or loss of the typical asymmetry of the
organs.

Rather than motile cilia, most cells have a single “primary”
immotile cilium protruding from the membrane. Once thought
to be extraneous structures (Webber and Lee, 1975), they
are now considered important sensory organelles that act as
cellular antennas to transmit extracellular cues into the cell.
They are sites for the regulation of several developmental
signaling pathways such as non-canonical Wnt and Sonic
hedgehog pathways (Sasai and Briscoe, 2012). Diseases associated
with loss of primary cilia include Meckel–Gruber Syndrome,
Bardet–Biedl syndrome, Joubert syndrome and Polycystic kidney
disease. These multisystem disorders frequently include retinal
degeneration and cyst formation in liver and kidneys but
interestingly may also include situs inversus, suggesting that
genetic alterations resulting in the expression of dysfunctional
ciliary proteins may affect more than one type of cilium (Baker
and Beales, 2009).

In part, this is likely due to the fact that the structure of
cilia is conserved across different cell types and species. When
viewed in cross-section, cilia can be divided into three regions:
basal body, transition zone, and axoneme (Figure 1B). The basal
body is the region at the base of the cilium, which bears the
centriole from which the ciliary machinery arises. Here, the
9 triplet microtubules of the mother centriole are attached to
the periciliary membrane by transition fibers. The body of the
cilium, or axoneme, follows and contains 9 doublet microtubules.
In motile cilia, the microtubules are arranged in a “9+2”
arrangement where the 9 doublets surround a central pair of
singlet microtubules. In contrast, immotile primary cilia lack the
central pair with their “9+0” arrangement.

In both the motile and primary cilia, the proximal region of
the axoneme is known as the transition zone, and was shown to
contain Y-shaped structures linking the microtubules doublets to
the ciliary membrane (Reiter et al., 2012). This region is thought
to provide some sort of gating to control the movement of
proteins and lipids in and out of the cilia, which would explain the
unique profile in both the ciliary membrane and lumen. Most but
not all primary cilia, and somemotile cilia, also have an endocytic
membrane domain called the ciliary pocket near the base of the
cilium (Ghossoub et al., 2011).

Intriguingly, several zebrafish studies have indicated the
importance of septins for the proper formation and function
of cilia, where loss-of-function studies have generated several
phenotypes that resemble human ciliopathies (Dash et al., 2014).
Hence, an understanding of the role of septins in ciliogenesis at a
cellular level is critical to our understanding of ciliopathies.

LOCALIZATION OF SEPTINS IN CILIA

Often the subcellular distribution of a protein can give insights
into its function, so understanding septin localization in cilia is
critical. Surprisingly, however, even though septins are involved
in ciliogenesis in a variety of cell types and organisms, reports
vary regarding their location within cilia.

Septins were first seen in a cilium-related structure when they
were localized to the annulus of sperm flagella, a structure that
has been suggested to separate the membrane compartments of
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FIGURE 1 | Structures of flagella and cilia. (A) Schematic diagram showing the structure of sperm composed of head (and nucleus), middle piece (centriole and

annulus) and tail. The middle piece and tail are the prominent structure of flagellum that compose of a core of microtubules, whose movement is powered by flagellar

dynein. (B) Schematic side view of primary (left) and motile (right) cilia. Cross sections showing microtubule organization of the axoneme, transition zone and basal

body are indicated by arrow.

the posterior and anterior tail regions (Cesario et al., 1995; Ihara
et al., 2005; Kissel et al., 2005; Steels et al., 2007). Sperm from
SEPT4-null mice exhibit a defective morphology where a clear
annulus is missing, resulting in a fragile segment that causes the
sperm’s tail to have sharp bends, rendering the sperm immotile.
A defective sperm annulus and the bent tail phenotype are also
seen in sperm from infertile men with SEPT12 mutations and
in SEPT12-mutant mice, confirming the importance of septins
in sperm structural integrity and motility. In sperm from the
SEPT4-null mice, basigin, a membrane protein that moves freely
but is usually confined to anterior region of the tail, was found
distributed all over the tail’s plasma membrane, indicating that
the compartmentalizing forces had been lost with the loss of
the septin ring (Kwitny et al., 2010). The ring-like distribution
is not always the only septin pattern in sperm, as later studies

using human sperm showed septins, such as SEPT12, SEPT6 and
SEPT2, localized from the centriole to the annulus (Kuo et al.,
2015; Figure 2A).

The idea that septins might form a ring-like diffusion barrier
in cilia was supported by the observation that SEPT2 could
be seen as a ring at the base the primary cilia of mammalian
cells (Hu et al., 2010) although some signal was reported along
the axoneme (Figure 2B). In IMCD3 mouse kidney cells, the
SEPT2 ring was localized to the transition zone and depletion of
SEPT2 resulted in a significant shortening of the cilia. To test the
function of SEPT2 at the transition zone, Nelson and colleagues
designed GFP fusions of several ciliary transmembrane proteins,
including serotonin receptor 6, Smoothened, and fibrocystin,
and measured their fluorescence recovery after photobleaching
(FRAP). Little exchange of these proteins between ciliary and
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FIGURE 2 | Localization of septins in flagella and cilia. (A) Septins form a ring at the annulus of mouse sperm (Ihara et al., 2005), and a secondary signal was

also at the centriole in humans (Kuo et al., 2015) (B) In primary cilia, septins were detected as a ring at transition zone (Hu et al., 2010) or along the axoneme

(Ghossoub et al., 2013) (C) In airway epithelia, different septins are detected at the base, along the axoneme or both in motile cilia (Fliegauf et al., 2014). Images in this

figure are reproduced with permission from the relevant publishers.

non-ciliary pools was observed in control cells, despite both
pools being mobile (Hu et al., 2010). However, the short cilia
that formed upon depleting SEPT2 showed an increased entry
of ciliary transmembrane proteins suggesting loss of a diffusion
barrier.

Similarly, SEPT2 and SEPT7 had a ring-like appearance at the
base of motile cilia in Xenopus embryos, and knockdown resulted
in fewer and shorter cilia (Kim et al., 2010). Septin localization
at the base of motile cilia was controlled by Fritz, a protein
involved in organizing polarized cilia growth (Collier et al.,
2005). Polymorphisms in Fritz were found in patients of Bardet-
Biedl and Meckel-Gruber syndromes, suggesting a possible link
between septin regulation and certain ciliopathies (Kim et al.,
2010). It should be noted that SEPT7 was also present along the
axoneme and at the basal body of these cilia.

If a septin ring at the base of cilia formed the diffusion barrier,
and this barrier was needed for proper ciliogenesis, then septins
should always be present as rings at the base of cilia. However,
septins have more consistently been localized along the axoneme
of cilia in many cell types and animal models (Ghossoub et al.,
2013; Dash et al., 2014; Fliegauf et al., 2014; Zhai et al., 2014).
For example, using various human cells lines such as RPE1
(human retinal pigment epithelial cell line) and hFE (human
inner foreskin), Benmerah and colleagues found SEPT2, SEPT7
and SEPT9 to be co-localized along the axoneme in primary
cilia and to regulate ciliary length, yet no rings were reported.

Transiently expressed fluorescent septin fusion proteins also
localized to the axoneme and FRAP revealed that axonemal
SEPT2 was not exchanged with cytoplasmic septins, raising
the possibility that it might be a structural component of the
axoneme. In addition, they observed similar axonemal staining
in vivo including in human kidney tubular cells (Ghossoub et al.,
2013). This axonemal distribution is also supported by evidence
from proteomic and proximity ligation experiments (Ishikawa
et al., 2012; Mick et al., 2015).

While not always located at sites where diffusion barriers
would be predicted to exist, septins could be involved in diffusion
barrier formation. Indeed, Peterson and colleagues identified
a protein complex containing 9 proteins (including B9D1 and
TMEM231) that localized to the transition zone of primary
cilia (Chih et al., 2012). Generation of knockout mice lacking
either B9D1 or TMEM231 caused increased diffusion into the
cilium and impaired hedgehog signaling, suggesting that these
proteins comprised the diffusion barrier. Interestingly, depletion
of SEPT2 inhibited assembly and recruitment of the complex to
the transition zone.

Surprisingly, recent studies have shown that different septins
had distinct localizations in motile cilia of human respiratory
epithelial cells (Fliegauf et al., 2014). Some septins were found
both at the ciliary base and the axoneme (SEPT2, 7, 9),
while some were only at the base (SEPT6, 8) or the axoneme
(SEPT11) (Figure 2C). This raises the possibility that distinct
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septin complexes could carry out different functions within cilia
in the same cell.

In summary, the differential distribution of septins could arise
in several ways. Septins at the base may accumulate there because
they sense the micron-scale curvature of the ciliary membrane
at this site (Bridges et al., 2016). Alternatively, the formation
of ring-like structures of septins at the transition zone could be
due to the concentration of specific lipids (Vieira et al., 2006)
and/or other proteins at the base of cilia. With respect to septins
in the axoneme of motile and primary cilia in various human
cells, septins may play a structural role in the axonemal matrix
(Ghossoub et al., 2013; Fliegauf et al., 2014). Since FRAP and live
imaging of RPE1 cells showed no exchange between axonemal
and cytoplasmic pools of septins, normovement of septins within
the axoneme, septins are not components of the intraflagellar
transport system that moves proteins within cilia. However,
septin accumulation in the axoneme could be due to the fact
that septins directly bind microtubules (Bai et al., 2013) and the
microtubules within the cilium are very stable. It is also important
to consider that the apparently contradictory distributions of
septins in cilia could be due to technical factors such cell type,
specificity of antibody, fixation conditions, and maturation stage
of the cilia. This could particularly be the case for staining at
the base since many antibodies falsely stain centrosomes/basal
bodies.

WHAT COULD BE THE FUNCTION OF
SEPTINS IN PRIMARY CILIA?

The first function proposed for septins in cilia was as a diffusion
barrier. Although septins are not always located as a ring at
the base of cilia, several studies showed a loss of restricted
diffusion into the remnant cilia following septin loss. In addition,
loss of Hedgehog signaling following knockdown of septins
was observed in Xenopus, Zebrafish and mammalian cells (Hu
et al., 2010; Kim et al., 2010; Zhai et al., 2014). However,
several cautions are required in considering these results. First,
Hedgehog signaling depends on the presence and proper length
of cilia, and since these have been impacted by loss of septins,
so too may Hedgehog signaling. Second, the base of cilia has
been shown to have a unique lipid composition (Vieira et al.,
2006) that may itself contribute to restricted diffusion. It would
be important to know if the absence of septins alters this lipid
domain. Third, the remnant cilia that form in the absence of
septins may be abnormal in many contexts including improper
targeting of receptors to cilia or altered endocytosis. Changes in
trafficking or recycling could affect the distribution of receptors
in ways that resemble, but are distinct from, a simple passive
restriction of lateral diffusion in the plane of the membrane
(Trimble and Grinstein, 2015).

Depletion of septins consistently results in the loss or
shortening of cilia and loss of ciliary function. A major
consideration for all of these types of studies is whether the effect
is due to the function of the septin directly at the cilium, or
indirectly through one of its many effects on signaling pathways,
membrane traffic or the cytoskeleton. For example, soluble

tubulin levels are known to affect cilia length—more free tubulin
results in longer cilia while less free tubulin leads to shorter
cilia (Sharma et al., 2011). Septins have been shown to alter
tubulin dynamics such that depletion of septins increases the
numbers of stable (acetylated)microtubules (Kremer et al., 2005).
This increased microtubule stabilization presumably reduces free
tubulin levels globally in the cell, which could therefore be
responsible for reduced cilia length. Similarly, since septins have
widely accepted roles as scaffolding complexes, loss of signaling
events normally occurring on septin filaments could impact
signals required for cilia elongation. For example, the cilia and
basal bodies of the SEPT7b morphants were also disoriented
and resembled mutants in intraflagellar transport proteins (Jones
et al., 2008; Cao et al., 2010). In Xenopus embryos, SEPT7
functions together with the planar cell polarity (PCP) protein
Fritz to regulate ciliogenesis (Kim et al., 2010). Therefore, it is
possible the role of SEPT7 in ciliogenesis is linked to the PCP
pathway via Fritz (Park et al., 2015).

The function of PCP pathway in ciliogenesis is regulated
by the exocyst complex, where the PCP protein Disheveled
mediates recruitment of a sec8-positive vesicle to the basal
body (Park et al., 2008). Septins also interact and regulate the
exocyst complex by directing it to the correct location and
affect the activity of SNARE proteins important in membrane
fusion (Beites et al., 1999, 2005; Amin et al., 2008; Estey
et al., 2010), suggesting that changes in membrane traffic caused
by septins could also impact cilia growth and function. As
well, SEPT7 was shown to interact with Rab8 (Dash et al.,
2014), a small GTPase that functions in vesicle trafficking and
ciliogenesis (Nachury et al., 2007; Yoshimura et al., 2007).
Septins could also affect vesicle traffic via the cytoskeleton since
they associate with microtubules and guide the direction of
microtubule growth (Bowen et al., 2011; Nölke et al., 2016)
and may control vesicular transport along them (Spiliotis et al.,
2008).

CONCLUSIONS

In sum, despite ample evidence linking septin function to
ciliogenesis, there remain more questions than answers about
their roles in this process. Since septin depletion in vivo gives
phenotypes implicating nodal, motile and primary cilia, the
function of septins in ciliogenesis likely involves something
conserved among all cilia. Future work will be needed to decipher
the contributions of septins to ciliogenesis, and to examine their
possible contribution to ciliopathies.
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