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Energy refinement and analysis 
of structures in the QM9 database 
via a highly accurate quantum 
chemical method
Hyungjun Kim   1, Ji Young Park   2 & Sunghwan Choi   3

A wide variety of data-driven approaches have been introduced in the field of quantum chemistry. To 
extend the applicable range and improve the prediction power of those approaches, highly accurate 
quantum chemical benchmarks that cover extremely large chemical spaces are required. Here, we 
report ~134 k quantum chemical calculations performed with G4MP2, the fourth generation of the G-n 
series in which second-order perturbation theory is employed. A single composite method calculation 
executes several low-level calculations to reproduce the results of high-level ab initio calculations 
with the aim of saving computational costs. Therefore, our database reports the results of the various 
methods (e.g., density functional theory, Hartree-Fock, Møller–Plesset perturbation theory, and 
coupled-cluster theory). Additionally, we examined the structure information of both the QM9 and the 
revised databases via chemical graph analysis. Our database can be applied to refine and improve the 
quality of data-driven quantum chemical prediction. Furthermore, we reported the raw outputs of all 
calculations performed in this work for other potential applications.

Background & Summary
A large number of chemical databases enable new strategies to solve chemical problems that are difficult to 
address by existing chemical principles1–9. In particular, in the field of functional material/drug design10,11 and 
the investigation of reaction pathways12, data-driven approaches such as data mining and machine learning tech-
niques open up a new era beyond traditional quantum chemistry approaches. To enable the further development 
of such promising applications, quantum chemistry databases that cover a wide range of chemical space with a 
high accuracy comparable to that of experimental observations are desired13–17.

For these purposes, many databases containing quantum chemical calculations have been published. Most of 
the simulations in those databases were performed with density functional theory (DFT) because of its reasonable 
accuracy/cost ratio. However, the applicability of DFT throughout the entire chemical universe is questioned18,19. 
In addition, covering the chemical universe with databases relying on a single methodology may introduce a bias 
to predictive models.

Despite tremendous improvements in computing power, constructing a large quantum chemical database by 
a highly accurate method is still a challenging and time-consuming problem. The computational cost of the sim-
plest ab initio calculation, Hartree-Fock (HF), increases with ~O(N4), where N is the number of basis functions. 
The computational complexity becomes even worse for high-level calculations. Due to this rapid increase in com-
putational cost, the size of existing databases constructed with high-level calculations is too small to cover general 
chemical applications14. For example, the G3/05 test set, which is used for verifying the Gaussian-4 theory using 
reduced order perturbation theory (G4MP2) method, contains only 236 experimentally obtained enthalpies of 
formation, 88 ionization potentials, 58 electron affinities, and 8 proton affinities of organic molecules20,21. To the 
authors’ knowledge, the largest database built with a composite method includes 16k isomers of C7H10O2, which 
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is only approximately 10% of the database employed in this study. These accumulated data were used to predict 
the electronic correlation energy by using the kernel regression method22.

To determine the accurate structure-property relationship via data-driven approaches, systematic and thor-
ough sampling for a large chemical space is essential. The series of Generated Database-n (GDB-n) which include 
all possible molecules of up to n nonhydrogen atoms were proposed by the enumeration of chemical graphs23–25. 
The database called QM9, which is a subset of GDB-17, contains all molecules (~134 k) consisting of at most 9 
nonhydrogen atoms (carbon, nitrogen, oxygen, and fluorine). For the QM9 set, the geometries and thermody-
namic/electronic/energetic properties computed by DFT were reported in a previous report14. Although this 
database has served as the reference chemical space for some chemical problems, the QM9 set is subject the 
following limitations: (1) A single computational condition was employed, which prohibits investigation into the 
correlation and difference among various computational conditions. (2) The ability of the B3LYP functional to 
reproduce high-level ab initio calculations is not verified. (3) Only postprocessed information is available, which 
may limit other interesting approaches.

In this work, we reported the QM9-G4MP2 database, which contains the G4MP2 energies of the refined 
molecular structures in the QM9 set26 as well as the energies from all methods invoked by the G4MP2 calculations 
(e.g., DFT, HF, Møller–Plesset perturbation theory and coupled-cluster single and double excitations with pertur-
bative triple correction methods). All the raw outputs of the G4MP2 calculations are also published to allow the 
research community to obtain information that we do not address in this work. These data could prompt other 
applications, for instance, improving the quality of data-driven approaches by feeding high-quality data to exist-
ing models as well as designing new architectures for predictive models to learn quantum chemical properties.

Methods
Composite methods target highly accurate thermochemical properties (deviation from the experiments less 
than 1 kcal/mol) within manageable time by performing a series of low-level calculations. This approach is 
based on the fact that extending correlation energy and basis set effects are additive to a certain degree. The 
G4MP2 method consists of geometry optimization with B3LYP/6-31 G(2df,p) and single point calculations with 
CCSD(T,FC)/6-31 G(d), MP2(FC)/G3MP2largeXP, RHF/mod-aug-cc-pVTZ and RHF/mod-aug-cc-pVQZ. The 
philosophy of Gaussian methods and technical details of the G4MP2 method can be found in the work of Curtiss 
and his coworkers20,21.

The geometries of the QM9 set molecules were reoptimized to ensure convergence to a minimum. All calcu-
lations were performed with the Gaussian 16 package (A.03 version), while the results of the QM9 set were com-
puted with Gaussian 09. To obtain atomization energies (AEs), G4MP2 calculations for H, C, N, O, and F atoms 
were performed. Both the charge and spin multiplicities for all systems are the same as those of the QM9 set.

Data Records
All raw data, python scripts to construct a database and perform analysis addressed in this paper, and the results 
of postprocessing can be downloaded from Figshare27. Other information that is not included in our table can 
be obtained by parsing the raw outputs named dsgdb9nsd_index.log, stored in the output folder. Here, the order 
of the index is the same as that in the QM9. atom_ref folder containing the output of five (C, H, N, O, F) atoms. 
Note that not all calculations are performed in identical computational environments. Comparison of the elapsed 
time among calculations performed in different systems does not represent their relative computational costs. The 
result.csv file contains energies computed from different combinations of computational methods and basis sets. 
It can be generated by running a parase.py script in the same folders. The details of the columns in the result.csv  
file are explained in Table 1. The csv file contains energies for only 133858 cases because the energy values for the 
molecules whose calculations failed to converge are not included. The indices for 27 structures where we could 
not obtain converged energies are stored in index_not_converged.txt. The usage of published scripts and a descrip-
tion of each file in database can be found in the Usage Notes section.

Technical Validation
The geometry optimization procedure of the G4MP2 calculations is performed with the B3LYP/6-31G(2df,p) 
condition. To validate the consistency and integrity of the molecular structures in the quantum chemical data-
base, we compare the total energy of B3LYP/6-31G(2df,p) from the QM9-G4MP2 and the QM9 sets, denoted as 

−EB LYP
QM G MP

3
9 4 2 and EQM9, respectively. Most of the geometry optimization was performed within the first few steps; 

therefore, this simple energy difference can quantify the subtle changes in the molecular structure. Since the total 
energy referred as B3LYP/6-31G(2df,p) in the QM9-G4MP2 database does not include zero-point energy, for the 
comparison, the reference total energy(EQM9) is derived by subtracting the zero-point energy from the internal 
energy at 0 K.

Figure 1 plots the distribution of deviations between EQM9 and −EB LYP
QM G MP

3
9 4 2. In the QM9 set, both the internal 

energy and ZPVE are given to six decimal places. Therefore, cases with less than 10−6 Hartree differences would 
be considered the same value. One possible reason our energies have discrepancies with the energies of the QM9 
set is the use of different computation options (e.g., opt = diloose and int = ntultrafine) in some cases of the QM9 
set to accelerate convergence. Although discordance greater than the numerical tolerance was observed, chemi-
cally meaningful differences (>1 kcal/mol) were observed in only a small fraction of molecules (~0.017%).

To quantify the structure difference, we calculate the distances of all atomic pairs across the entire molecular set. 
For convenience, dQM9 and dQM9–G4MP2 indicate the sets of distances between all atomic pairs present in the QM9 
and the QM9-G4MP2 databases, respectively. Figure 2 depicts the correlation plot between dQM9 and dQM9−G4MP2  
for the cases shorter than 2.15 Å. The specific value of 2.15 Å is the maximum distance at which a chemical bond 
can be formed between an atomic pair consisting of C, H, O, N, and F atoms. Therefore, Fig. 2 plots the distances 
of all atomic pairs that are able to form covalent bonds in the QM9 and QM9-G4MP2 structures. The solid black 
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line (y = x line) represents the specific atomic pair where no bond distance change during geometry optimizations 
is observed. The points above and below the line indicate that the distances are elongated and shortened by the 
additional optimization, respectively. Most of the points in Fig. 2 are included in the red zone, which indicates a 
discrepancy of less than 0.1 Å.

Figure 3 summarizes the geometries and indices that undergo large structure/energy changes by further relax-
ation. These values are divided into two sets, for changes in molecular structure larger than the criteria of 0.1 Å in 
bond distance in energy (black upper box) and for energy differences (red lower box) larger than the criteria of 
1 kcal/mol (=1.59 mHartree).

The 20 geometries in the black box contain atomic pairs with changes larger than 0.1 Å, which correspond 
to the points outside the red zone in Fig. 2. None of these 20 cases involve bond formation/breaking due to the 

index index of QM9-G4(MP2) which is the same as that of QM9

B3LYP/6-31 g(2df,p) Total energy of B3LYP/6-31 g(2df,p)

HF/6-31 g(d) Total energy of HF/6-31 g(d)

MP2/6-31 g(d) Total energy of MP2/6-31 g(d)

MP3/6-31 g(d) Total energy of MP3/6-31 g(d)

MP4D/6-31 g(d) Total energy of MP4D/6-31 g(d)

MP4DQ/6-31 g(d) Total energy of MP4DQ/6-31 g(d)

MP4SDTQ/6-31 g(d) Total energy of MP4SDTQ/6-31 g(d)

MP4SDQ/6-31 g(d) Total energy of MP4SDQ/6-31 g(d)

CCSD/6-31 g(d) Total energy of CCSD/6-31 g(d)

CCSD(T)/6-31 g(d) Total energy of CCSD(T)/6-31 g(d)

HF/G3MP2largeXP Total energy of HF/G3MP2largeXP

MP2/G3MP2largeXP Total energy of MP2/G3MP2largeXP

HF/mod-aug-cc-pVTZ Total energy of HF/mod-aug-cc-pVTZ

HF/mod-aug-cc-pVQZ Total energy of HF/mod-aug-cc-pVQZ

G4MP2 Internal energy at 0 K of G4MP2

Table 1.  A description of column keys for the CSV file containing the data set.

Fig. 1  Histogram of the differences in total energy, − −E EQM
B LYP
QM G MP9
3

9 4 2 . The green vertical line indicates 10−6, 
which is the maximal number of digits that the QM9 set offers. Deviations below 10−6 Hartree error are 
numerically meaningless.
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additional optimization, which means the atomic connectivity is not changed, because the criterion (2.15 Å) is 
long enough to cover all chemically bonded atomic pairs as well as some nonbonded ones.

For all 23 cases in the red box in Fig. 2, the −EB LYP
QM G MP

3
9 4 2 values are smaller than the corresponding EQM9 values. 

This finding means that the newly found conformations in the QM9-G4MP2 set are more stable and likely closer 
to the global minimum than the QM9 conformations. While the index of 117523 has the largest discrepancy of 
~20 kcal/mol, all other cases show 3~5 kcal/mol energy differences. The relatively small energy difference of 
3~5 kcal/mol can be sufficiently induced by conformational changes alone, even without connectivity changes. 
The largest deviation (20 kcal/mol) is observed for the trimolecular systems, which may have many local minima 
due to complex intermolecular interactions, thus introducing large deviations among conformers.

By definition of the GDB, every structure in the GDB set should be uniquely determined (i.e., there should be 
no duplicated structures in the GDB set) and should be a single molecule. In Fig. 3, we can find two unexpected 
types of geometries: 1) duplicated structures and 2) multimolecular systems. The cases 53769 and 97313 contain 
identical chemical structures, and the case indexed 117523 contains more than one molecule in a single system.

We applied chemical graph representations to both the QM9 and QM9-G4MP2 sets to count the number of 
duplicate structures and multimolecular systems. Herein, the nodes and edges of graphs represent atoms and 
chemical bonds. The edges in graphical representations (=chemical bonds) are formed only when the distance of 
atomic pairs is shorter than the known covalent bond length with a 15% margin28. Through isomorphic relations 
among graphs, we can determine whether chemical structures are the same. Additionally, the number of com-
ponents of chemical graphs corresponds to the number of molecules in the chemical graph, and it is possible to 
check the identity of chemical structures.

The indices of 252 duplicated systems in the QM9 and QM9-G4MP2 sets could be identified with the script 
named count_duplicate.py, and its output can be found in index_duplicated_structure.txt. Moreover, 229 and 227 
systems in the QM9 and QM9-G4MP2 sets, respectively, include more than one molecule. This difference (229 
and 227) is caused by the exclusion of the cases indexed 21725 and 87037 from QM9-G4MP2 in the graph anal-
ysis due to the abnormal termination of the G4MP2 calculations. We confirmed this analysis by parsing InChI, 
which distinguishes molecules using dot(.). Therefore, the presence of dot(.) means that the system consists of 
more than one molecule. The InChI of the QM9 set contains dots for the 229 cases with exactly the same mole-
cules found by count_duplicate.py. The indices for these 229 cases are listed in index_multi_mol.txt.

These duplicates and multimolecular structures could be caused by the automated structure generation procedure 
of the QM9 set. Because the initial geometries for QM9-G4MP2 geometry optimization are adopted from the QM9 
set, the two types of unwanted cases mentioned above are also observed in the QM9-G4MP2 set. Although the QM9 
and QM9-G4MP2 sets do not completely cover the structure of the GDB set due to inappropriate structure optimiza-
tions, the number of problematic structures is only a tiny fraction (~0.01%) of the total size (~134 k) of the database. 
Therefore, both databases covering large samples of small organic molecules are still valid and irreplaceable.

Figure 4 represents the root-mean-square deviation (RMSD) of total energies and the corresponding AEs 
among computational methods invoked by G4MP2 calculations. The discrepancies among AEs are relatively 
smaller than those among the total energies, which means that differences arising from computational methods 
are decreased by the process of stoichiometric calculations. Thus, many other analyses on the QM9-G4MP2 data-
base can be performed by parsing the outputs of Gaussian 16.

Fig. 2  Correlation plot of distances of atomic pairs in the QM9 set (dQM9) and the QM9-G4MP2 (dQM9−G4MP2).
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Usage Notes
The QM9-G4MP2 database is provided in a compressed file format. The data_publication_main.tar.gz file contains 
all scripts for validation, atomic results and index files (index_not_converged.txt, index_duplicated_structure.txt,  
and index_multi_mol.txt). Files starting with ‘output’ contain log files of G4MP2 calculations for molecules. To 
run scripts with the default options, all outputs whose name ends with log should be positioned in data_publica-
tion/output folder, and for the scripts that perform comparisons to the QM9 database, the xyz files from the QM9 
database should be placed in data_publication/ref/dsgdb9nsd/. All scripts require the high-level mathematical 

Fig. 3  Molecular structures with discrepancies of more than 1 kcal/mol in total energies or more than or 0.1 Å 
in distances of atomic pairs between the QM9 and QM9-G4MP2 sets. The QM9 and QM9-G4MP2 structures 
are presented with a 50% transparent and an opaque model, respectively.
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Fig. 4  Heatmaps of the root-mean-square deviation between different computational conditions for total 
electronic energies (in Hartree, top) and atomization energies (in kcal/mol, bottom) of the QM9-G4MP2 sets. 
The labels of each axis represent the computational conditions invoked by the G4MP2 calculations. The order of 
computational conditions is given in the order printed in the raw outputs of the G4MP2 calculations.
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library Numpy. Some scripts require the QM9 database, which can be downloaded from figshare26. The README.
md file stored in the same directory contains additional information for each script.

parse.py: This script parses all G4MP2 outputs in a directory and generates a CSV file that stores a series of 
energy values obtained from the lines starting with “\1\1”, which are printed at the end of each computation. 
All energy values of molecules whose calculations do not end normally are not included, and their indices are 
printed out during running of the script. Pandas is required to run it. It runs in 2~3 hours on an ordinary personal 
computer.

compare_geom.py: This script calculates and stores the distances between all atomic pairs in the geometries of 
both the QM9 set and our database. The output of this script can be loaded by pickle.load in python. The indices 
for distances are presented in the lexicographic sort order by the atomic indices.

compare_energy.py: This script extracts the energies of the QM9 set and calculates − −E EQM
B LYP
QM G MP9

3
9 4 2. The 

output energies are stored in Hartree units. Using numpy.loadtxt(), the output file can be loaded.
calculate_atomization.py: This script calculates AEs from −EB LYP

QM G MP
3

9 4 2. To run this script, calculation results 
for atomic systems are required. Therefore, parse.py in the atom_ref folder should be executed before this script.

count_mol.py: This script counts molecules in the structures belonging to QM9 and QM9-G4MP2 sets and 
prints the indices of systems including multiple molecules. A library for the analysis of graphs, NetworkX, is 
required to run it.

count_duplicates.py: This script counts duplicated structures in QM9 and QM9-G4MP2 sets. It takes ~2 days 
on an ordinary personal computer. A library for analysis of graphs, named NetworkX, is required to run it.

Explanations for all the options of each script can be checked through–help option.

Code Availability
The QM9-G4MP2 database contains raw outputs and scripts to parse the data addressed in this paper. All scripts 
are released with the BSD license. Other details on the scripts are discussed in the Usage Notes.
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