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Abstract
Planning forest management relies on predicting insect outbreaks such as moun-
tain pine beetle, particularly in the intermediate- term future, e.g., 5- year. Machine- 
learning algorithms are potential solutions to this challenging problem due to their 
many successes across a variety of prediction tasks. However, there are many subtle 
challenges in applying them: identifying the best learning models and the best subset 
of available covariates (including time lags) and properly evaluating the models to 
avoid misleading performance- measures. We systematically address these issues in 
predicting the chance of a mountain pine beetle outbreak in the Cypress Hills area 
and seek models with the best performance at predicting future 1- , 3- , 5-  and 7- 
year infestations. We train nine machine- learning models, including two generalized 
boosted regression trees (GBM) that predict future 1-  and 3- year infestations with 
92% and 88% AUC, and two novel mixed models that predict future 5-  and 7- year 
infestations with 86% and 84% AUC, respectively. We also consider forming the train 
and test datasets by splitting the original dataset randomly rather than using the ap-
propriate year- based approach and show that this may obtain models that score high 
on the test dataset but low in practice, resulting in inaccurate performance evalua-
tions. For example, a k- nearest neighbor model with the actual performance of 68% 
AUC, scores the misleadingly high 78% on a test dataset obtained from a random 
split, but the more accurate 66% on a year- based split. We then investigate how 
the prediction accuracy varies with respect to the provided history length of the 
covariates and find that neural network and naive Bayes, predict more accurately 
as history- length increases, particularly for future 1-  and 3- year predictions, and 
roughly the same holds with GBM. Our approach is applicable to other invasive spe-
cies. The resulting predictors can be used in planning forest and pest management 
and planning sampling locations in field studies.
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1  | INTRODUC TION

Forest insect outbreaks can cause huge damage to the environ-
ment and economy (Dale et al., 2001; Venier & Holmes, 2010; 
Walton, 2013). Forest management is, thus, crucial, and includes both 
prevention and direct control. In Canada, forest management agree-
ment plans are made for five years (Government of Alberta, 2019), 
and they need an additional year or two for preparation. Therefore, 
predicting seven years in the future is a reasonable time horizon for 
planning prevention measures. Making short- term predictions, e.g., 
future 1- year (for a 1- year life- cycle insect), via statistical models, 
such as generalized linear models (GLM) (Oliver et al., 2008; Smolik 
et al., 2010), is usually straightforward, given the temporal auto-
correlation present in ecological systems (Boyce et al., 2010; Otis 
& White, 1999). Making long- term predictions, e.g., future 30- year, 
is, on the other hand, sometimes feasible via the asymptotic analysis 
of ecological dynamical systems as they are often attracted to an 
expected outcome (Ferrari et al., 2014; Hastings et al., 1993; Ramazi 
et al., 2016; Schaffer & Kot, 1985). However, to the best of our 
knowledge, except for a few works (e.g., de la Fuente et al., 2018), 
methods for making accurate intermediate- term predictions remain 
mainly untouched, which yields a challenge to ecological modelers. 
The time scale is too long for the ecological transients to be linked 
to environmental variability via statistical analyses, yet it is too short 
for dynamical systems to approach their attractor.

Researchers have, hence, looked to other approaches, especially 
those in machine learning due to their many successes in a variety 
of areas. Examples of models include decision trees (Broennimann & 
Guisan, 2008; Hestir et al., 2008), support vector machines (SVM) 
(Atkinson et al., 2013), k- nearest neighbors (KNN), Bayesian net-
works (Bressan et al., 2009), and neural networks (NN) (Worner 
et al., 2014). However, there are several challenges faced upon pre-
dicting future infestations that are rarely addressed in the literature.

First, and foremost, is the identification of proper model evaluation. 
The typical approach in machine learning is to randomly partition the 
dataset into a training subset, for parameter estimation, and a disjoint 
testing, for performance evaluation. It turns out that this, however, can 
easily result in sub- optimal predictors, with misleadingly estimates of 
accuracy. However, this issue can be solved by choosing an alterna-
tive partition of data into training and testing components that better 
reflects the structure of the task at hand. We now consider a detailed 
example where we illustrate the issues at hand. Suppose that we would 
like to predict the presence of infestation at a particular area at year 
2024. The available data, is limited to be up to at most the present 
year, say 2019. So the task is to learn a model that can use data up 
until year T, to predict infestation at year T + 5. Correspondingly, the 
model evaluation must reflect the performance on this particular task 
–  i.e., predicting 5 years in the future. Namely, if the available data for 
learning the model is from years 2010 to 2019, then the training data-
set must include years 2010 to say T = 2014 and the test must include 
only T + 5 = 2019. Thus, there should be a 5- year gap between the 
training and testing datasets. If, instead, we were to randomly split the 
dataset, and both train and test contain observations from the same 

year, then the evaluation would represent how well the model predicts 
current infestations rather than those in future, that is usually a more 
complex task.

The second challenge is feature (covariate) selection. Given a 
fixed training set, the addition of more features does not neces-
sarily result in a more accurate predictor. However, by exhaustive 
searches through possible covariate combinations, such as the ex-
haustive enumeration of subset (Sokal & Rohlf, 1995) or the step AIC 
(Venables & Ripley, 2002) we increase the chance of overfitting pa-
rameters to the training dataset, and thus, of failing to make accurate 
predictions on the test dataset.

The third challenge is the history- length to include for the co-
variates. Prediction accuracy may improve by using past information 
(history) regarding the features, e.g., precipitation several years be-
fore the year of interest (Preisler et al., 2012). However, is it best to 
add as much history as possible? The drawback is that adding lon-
ger history for each feature also increases exponentially the total 
number of feature combinations to choose from in model selection, 
potentially making model selection unwieldy.

We address these three issues with the case study of a mountain 
pine beetle (MPB) outbreak in the Cypress Hills area in Canada. We 
have recently investigated the impact of, and relations between, some 
potential covariates of the MPB infestation using Bayesian networks 
(Ramazi et al., 2021). Predicting future MPB infestation, however, 
requires different tools and analysis, which is what we investigate 
here. In particular, our objectives are to [noitemsep,nolistsep].

1. accurately predict infestation locations at short and intermedi-
ate time scales (1, 3, 5, and 7 years in the future) using the 
machine- learning models generalized boosted classification tree 
(GBM), GLM, SVM, Bayesian networks including Naive Bayes 
(NB) and those obtained by structure learning, KNN, NN, and 
a mixed model in the form of a GLM of the aforementioned 
models,

2. systematically choose from the available covariates,
3. examine whether providing more history regarding covariates ac-

tually improves future predictions,
4. examine whether the “actual performance” of a model is better 

estimated by a test dataset obtained from an appropriate year- 
based split of the original dataset rather than a test dataset ob-
tained from a random split of the original dataset.

We distinguish our work from studies predicting the geographical 
extent of species invasions (Broennimann & Guisan, 2008) in large 
scales, as we focus on a small area, with finer ranges of covariates as 
in (Aukema et al., 2008; Preisler et al., 2012; Sambaraju et al., 2012).

1.1 | Mountain pine beetle biology

The mountain pine beetle is an eruptive bark beetle that infests pine 
forests in western North America. Beetles usually attack susceptible 
pines within a few hundred meters of their emergence site (Carroll & 
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Safranyik, 2004). However, in rare occasions, they have been reported 
to engage in a long- distance dispersal behaviour by getting caught 
in the wind above the tree canopy and dispersing passively hun-
dreds or thousands of kilometers (Chen & Jackson, 2017; Safranyik & 
Carroll, 2006). Trees use a defense mechanism consisting of toxic resin 
exuding from the galleries dug by the beetles (Erbilgin et al., 2017; 
Raffa & Berryman, 1983). Therefore, a water- deficit during the tree 
growing season decrease its defenses abilities against mountain pine 
beetle (Lusebrink et al., 2016). Summer and winter temperatures af-
fect larvae development and survival in the tree as well as adult emer-
gence and dispersal (Safranyik & Carroll, 2006). The orientation of 
the slope –  i.e., the aspect –  would have a similar effect by creating 
different micro- climates, thereby affecting beetle development and 
survival. Lastly, by controlling infestations, managers modify dispersal 
and survival rates. Thus, the proximity of managed infestations will 
likely modify the probability of infestation at a certain location.

2  | MATERIAL S AND METHODS

2.1 | Raw data

We use mountain pine beetle infestation data from the Cypress Hills 
interprovincial park collected by the Saskatchewan Forest Service 
between 2006 and 2018 in association with topography, weather, 
and vegetation variables (Table 1). The variables and data collection 
and processing are described in details in (Kunegel- Lion et al., 2020a) 
and the dataset is available from Dryad at https://doi.org/10.5061/
dryad.70rxw dbt9 (Kunegel- Lion et al., 2020b).

2.2 | Analysis overview

We approach the problem by taking the following steps (Figure 1). 
First, we define the target variable and choose the covariates based 
on the biology of the problem. Next, we perform a year- based parti-
tioning of the dataset to obtain the training and validation datasets. 
Then we rank the covariates using the mRMR method on the training 
dataset. We construct feature sets based on the ranked covariates and 
their historical values and refine the datasets accordingly. Next, we 
train several learners, including the generalized linear model, on the 
training dataset and perform year- based cross- validation to find the 
feature set that performs best during the cross- validation. Finally, we 
re- train the learners with their best feature sets on the whole training 
dataset and compare their performances on the test dataset to obtain 
the best learner. In what follows, we explain these steps in detail.

2.3 | Target variable, covariates, and features

We divide the Cypress Hills park area (Figure S1) into a total of 
N = 238,121 squares, each of size 100m × 100m, referred to as 

pixels, and label them by integers 1, 2,…. Let Ig,t ∈ {0, 1} denote the 
presence of infestation at a pixel g at fall of year t , which is defined 
to be 1 if there is an infested tree and 0 otherwise. Given a pixel g 
and year t , the target variable is the presence of infestation at pixel 
g, r  years in the future, i.e., Ig,t+r, for r = 1, 3, 5 and 7. We consider 
the following covariate set, consisting of 14 covariates defined in 
Table 1:

All covariates except for minimum temperature and outbreak 
phase are taken from (Ramazi et al., 2021). Each covariate is associ-
ated with a pixel g and/or a time t. All covariates in �g,t are measured 
during fall of year t − 1 to summer of year t, except for IMissed

g,t
, which is 

determined only after the survey in fall of year t. We, therefore, refer 
to the covariates in �g,t as those measured at yeart.

We are interested in predicting infestations r years into the fu-
ture based on h years of data. Thus, the prediction for Ig,t+r, uses 
the covariates measured at years t, t − 1,…, t − h + 1, i.e., �g,t, 
�g,t−1,…,�g,t−h+1, for h ∈ {1,…, 5}. That is, using data of a specific 
pixel, say pixel 17, from 2010 to 2012, predict whether that pixel 
will be infested at 2015 –  i.e., given �17,2010,�17,2011,�17,2012, pre-
dict I17,2015 (so g = 17, t = 2012, r = 3, and h = 3). We define the set of 
features as ℱh

g,t
: = 𝒳g,t ∪𝒳g,t−1 ∪… ∪𝒳g,t−h+1. Note that we are dis-

tinguishing ‘covariates’ from ‘features’: covariates are only those in 
�g,t, but both the covariates and their historical values are referred 
to as features. ‘The best’ predictive model may only use a subset of 
these features, as discussed in the following sections. The variable h 
determines the total number of years used for prediction, which we 
refer to as the history- length and have limited it to be no more than 
5 years. Clearly, historical values of the non- temporal covariates 
– i.e., Ng , Eg and Bg (Table 1)–  are the same as their current values.

2.4 | Partitioning the data into train and test

Having the goal of estimating infestations in future years, we set the 
testing dataset �test to be the data with the target variable from the 
last two available years –  i.e., (t + r) ∈ {2017, 2018} –  and let the 
training dataset �train to be the data with the target variable from the 
remaining years –  i.e., (t + r) ∈ {2005 + h + r,…, 2015, 2016}; n.b., 
they are yearly disjoint. The datasets are clearly different for each 
history- length h (Figure 2). Correspondingly, given each history- 
length h and future- prediction- length r , we will have the train and 
test datasets �r,h

train
 and �r,h

test
. In both the training and testing datasets, 

the covariates for each instance at year t are measured up to h − 1 
years before, i.e., t − h + 1, t − h + 2,…, t, and the target variable is 
measured at year t + r. Hence, the training dataset is formed by the 
union of ‘blocks of instances’ at years t = 2006 + h − 1,…, 2016 − r, 
and the testing dataset is formed by those at years t = 2017 − r and 
2018 − r.

(1)

�g,t =

{
Ng , Eg ,Bg ,Dg,t , T

min
g,t

, Tmax
g,t

,Wg,t ,Rg,t ,Cg,t ,Ot , I
Missed
�g ,t

, I
Managed

�g ,t
, IMissed
g,t

, I
Managed

g,t

}
.

https://doi.org/10.5061/dryad.70rxwdbt9
https://doi.org/10.5061/dryad.70rxwdbt9
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2.5 | Feature selection

To find that set of features resulting in the highest prediction accu-
racy over the underlying distribution, one may exhaustively search 
through all possible combinations of the features in the training data-
set. Namely, to predict Ig,t+r, we can choose from the 14 × h features 
in ℱh

t
: 14 covariates in �g,t, each with a history- length of h years. For 

h = 5, this results in a total of 214× 5 = 1e21 combinations of features, 
which is not only infeasible to search through, but also quite likely to 
result in overfitting the training dataset.

We limit our search over the features as follows. First, given 
the target variable Ig,t+r, we rank the covariates in �g,t based on 
all pixels g and all years t  in �r,h

train
, using the minimum redundancy 

maximum relevance (mRMR) method (Ding & Peng, 2005), which 
prioritizes covariates that have a strong correlation to the target 
variable (maximum relevance), but are mutually far from each 
other (minimum redundancy). We use the package mRMRe in R 
(De Jay et al., 2013). This results in an ordering X1

t
≻ X2

t
≻ … ≻ X14

t
 

of the covariates, where Xi
t
‘s are the elements of �g,t in (1) (the 

notation g is omitted from Xi
t
 for simplicity), and A ≻ B implies 

that A is ranked over B in the mRMR ranking (see Eq. S1 for an 
example). The ranking can be different for each future- number- 
of- years r .

Second, we consider the following 14 covariate sets:

{
X1
t

}

⏟⏟⏟
�

1
g,t

,
{
X1
t
,X2

t

}

⏟⏞⏟⏞⏟
�

2
g,t

,
{
X1
t
,X2

t
,X3

t

}

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
�

3
g,t

…,
{
X1
t
,X2

t
,…,X14

t

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�

14
g,t

=�g,t

.

TA B L E  1   Description of the covariates

Symbol Description Unit

Ng Northerness defined as the cos of the angle of the average compass direction that the slopes at pixel g face

Eg Easterness defined as the sin of the angle of the average compass direction that the slopes at pixel g face

Bg Distance from the centre of pixel g to the border of the whole area of interest that was initially infested (the dotted red 
line in Figure S1)

km

Dg,t Degree days (sum of daily temperatures above 5.5°C) from fall of year t − 1 to summer of year t

Tmin
g,t

Lowest minimum daily temperature in winter of year t °C

Tmax
g,t

Highest maximum daily temperature in July and August of year t °C

Wg,t Average daily wind speed in July and August of year t km/hr

Rg,t Average daily relative humidity in spring of year t %

Cg,t Cold tolerance defined as an index in 
[
0, 1

]
 representing the ability of the larvae to survive the cold season of year t , as 

defined in (Régnière & Bentz, 2007)

I
Managed

g,t
Managed last year infestation defined to be 1 if pixel g includes at least one tree that was infested and managed 

(controlled) at year t − 1, and 0 otherwise (Figure S2)

IMissed
g,t

Missed last year infestation defined to be 1 if pixel g includes at least one tree that was infested and missed (unmanaged 
and not controlled) at year t − 1, and 0 otherwise (Figure S2)

IMissed
�g ,t

Missed neighbors’ last year infestation represents the mountain pine beetles’ ability to disperse at short distances within 
a stand, defined as IMissed

�g ,t
=

∑
3
i = 1

1

2i

∑
g�∈�i

g
IMissed
g� ,t

IMissed
�g ,t

∈
[
0, 6

]
 where �i

g
 are those pixels that are essentially at a distance 

of i × 100m from g (Figure S3); for those pixels on or close to the boundary of the park, �i
g
 includes only neighbors 

within the park

I
Managed

�g ,t
Managed neighbors’ last year infestation defined similarly to IMissed

�g ,t
, with the difference that IMissed

g′ ,t
 is replaced by IManaged

g′ ,t

Ot Phase of the mountain pine beetle outbreak at year t − 1, defined to be 1 (increase), 2 (peak), or 3 (decline)

F I G U R E  1   Flowchart representing the method steps. Each 
square represents a step. Text in italic is the output of the step and 
used in the following steps
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Third, for each of the above 14 combinations, we provide up to 
5 years of history- length. Therefore, given a number- of- covariates 
c ∈ {1,…, 14} and history- length h ∈ {1,…, 5}, we obtain a feature 
set ℱr,h,c

g,t
: = 𝒳

c
g,t

∪… ∪𝒳
c
g,t − h+ 1

, containing a total of c × h features 
(Table 2). Overall, for each feature r years, we will be training our 
predictive models on a total of 14 × 5 = 70 combinations of features. 
Note this is significantly smaller than the complete set of 214× 5 possible 
subsets.

Fourth, we construct a dataset specific to each of the feature 
sets as follows. The dataset corresponding to feature- set ℱr,h,c

g,t
, de-

noted by �r,h,c, consists of c × h columns –  one for each feature –  plus 
one column for the target variable Ig,t+r, over all pixels g = 1,…,N, 
and all years t = 2006 + h − 1, 2006 + h, 2006 + h + 1,…, 2018 − r, 
resulting in a total of N × (14 − r − h) rows (Figure 2). The train and 
test datasets �r,h,c

train
 and �r,h,c

test
 are obtained correspondingly from �r,h

train
 

and �r,h

test
.

2.6 | Learning algorithms

We use the following learners to obtain the predictive models 
(Table 3): SVM, GLM, GBM, NB, Chow- Liu (CL) algorithm for finding 
a Bayesian network, incremental association Markov blanket (IAMB) 
algorithm for finding a Bayesian network, KNN, NN, and a mixed 
model (MM) in the form of a logistic regression of the infestation 
probabilities provided by each of the 8 previous models.

2.7 | Train and evaluation

For the training phase, we use cross- validation on the train dataset. 
The data corresponding to each year is considered as a fold, and 

each time the predictive model is trained on all but one fold, and 
then evaluated on that held- out fold (Figure 3). We evaluate each 
learner ℒ based on the average area under receiver operating charac-
teristic curve (AUC) (Metz, 1978; Bradley, 1997) of the models that ℒ 
learned over the folds. Then for each future- prediction- length r and 
learner ℒ, we find the number- of- covariates c and history- length h 
that produced the highest cross- validated AUC on the training data-
set –  call them c ∗ and h ∗. Next, based on the learner ℒ, we learn a 
model on the whole training dataset �c ∗ ,h ∗ ,r

train
 and test it on the test 

dataset �c ∗ ,h ∗ ,r

test
 to obtain the AUC score s

ℒ
.

2.8 | Estimating the ‘actual performance’

The test dataset is to represent that unavailable dataset that our 
final model will be applied to in practice. Hence, the performance of 
the learner over the test dataset –  i.e., s

ℒ
 –  may roughly be thought 

of its actual performance. To estimate this performance, we compare 
the following three AUC scores of the learner on the training dataset 
�c ∗ ,h ∗ ,r: (i) srandom

ℒ
: obtained by randomly partitioning the train data-

set into another train (70%) and test (30%), training the learner ℒ on 
the train and testing it on the test; (ii) saverage - fold

ℒ
: the cross- validated 

AUC explained above; (iii) slast - fold
ℒ

: the AUC on the fold correspond-
ing to the final year in the training dataset.

3  | RESULTS

The mRMR method orders the covariates as in Table 4 (the phase 
covariate Ot is excluded for r = 7 as it is set to 3 in all data instances).

On the train dataset, and for r = 1 and 3, most learners achieve 
their highest cross- validated AUC when they use most of the 

F I G U R E  2   Dataset partition for 
r = 5 years in the future. The boxes 
indicate which years the covariates are 
measured (t − h + 1,…, t), and the arrows 
point to the year at which we predict 
infestation (t + r). So the length of each 
box represents h and the length from 
the box to the arrow represents r . Green 
solid lines represent the training dataset 
whereas blue dashed lines represent the 
testing dataset. From top to bottom: 1- , 2- , 
4- , and 5- year history- length
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covariates, e.g., c ∗ = 12 (Table 5 –  see also Figure S5 to S8 for the 
cross- validated AUC of each learned model over all number- of- 
covariates c and history- lengths h). This optimal number of features 
decreases as the prediction- length r increases. For r = 1, 3, 5, the 
cross- validated AUC of NN increase with history length, and nearly 

the same holds with GBM and NB for r = 1, 3. However, the trend is 
often the opposite with GLM and roughly KNN. For r = 7, the AUC 
of almost all models, except for NB, decreases with history- length.

On the test dataset, a GBM with 12 covariates and 5 years 
of history outperforms others in predicting future 1-  and 3- year 

f 1- year history 2- year history … 5- year history

1
{
X1
t

} {
X1
t
,X1

t − 1

}
…

{
X1
t
,…,X1

t − 4

}

2
{
X1
t
,X2

t

} {
X1
t
,X2

t
,X1

t − 1
,X2

t − 1

}
…

{
X1
t
,X2

t
,…,X1

t − 4
,X2

t − 4

}

⁝ ⁝ ⁝ ⋱ ⁝

14
{
X1
t
,…,X14

t

} {
X1
t
,…,X14

t
,…,X1

t − 1
,…,X14

t − 1

}
…

{
X1
t
,…,X14

t
,…,X1

t − 4
,…,X14

t − 4

}

TA B L E  2   The covariate set ℱr,h,c

g,t
 for 

history- length h and number- of- features c

TA B L E  3   Description of the algorithms

Name Description
R Package 
information

Support vector machine (SVM) Constructs a hyper- plane in the covariate space to classify the target variable (Cortes 
& Vapnik, 1995). A linear SVM classifies the presence of MPB as P

(
Ig,t+r

)
= 1 if 

� ⋅ X + �0 ≥ 0 and P
(
Ig,t+r

)
= 0 if � ⋅ X + 𝜃0 < 0, where X =

[
Xi
]
,Xi ∈ ℱ

f ,h

t
, is the 

covariate vector for the specific number of features f  and history length h, and 
� ∈ ℝ

f × h and �0 ∈ ℝ are parameters. A probability outcome in 
[
0, 1

]
 can be obtained 

rather than the binary 0 or 1, based on the distance of � ⋅ X to zero.

parallelSVM 
function, with the 
probability option, 
from the package 
parallelSVM 
(Rosiers, 2015)

Generalized linear model (GLM) Generalizes the linear model for response variables with a non- normal error 
distribution. Sine the response variable is binary, we use a binomial error 
distribution, which makes the GLM a logistic regression. The probability of MPB 
presence P

(
Ig,t+r

) is then modeled by exp(� ⋅X+ �0)
1+ exp(� ⋅X+ �0)

.

glm function of the 
package stats (R 
Core Team, 2018)

Generalized boosted 
(classification) model (GBM)

Reduces a loss function between the observed and predicted target values using 
Friedman's Gradient Boosting Machine (Ridgeway, 2006) on a certain number of 
classification trees.

gbm function of 
the package gbm 
(Ridgeway, 2006) 
using 10,000 trees

Naive Bayes network (NB) Formed by one target node (Ig,t+r), linked to all covariates (Koller & Friedman, 2009) 
(Figure S3b). We use discrete variables for this and the following two Bayesian 
networks. We discretize the values of each non- binary covariate into five equal 
levels.

package bnlearn 
(Scutari, 2010)

Chow- Liu (CL) A Bayesian network in the form of an undirected spanning tree of the variables 
that minimizes the Kullback- Leibler (KL) distance (over all tree structures) from the 
actual distribution (Chow & Liu, 1968) (Figure S3a). Note that target node Ig,t can be 
anywhere in this tree structure.

package bnlearn 
(Scutari, 2010)

Incremental association Markov 
blanket (IAMB)

A Bayesian network obtained by detecting Markov blankets with an attempt to avoid 
false positives, i.e., fault infestation predictions (Tsamardinos et al., 2003).

package bnlearn 
(Scutari, 2010)

k- nearest neighbors (KNN) A non- parametric method that classifies the target variable of an instance in the test/
validation dataset based on the classes (values) of the target variables of k other 
(training set) instances that share the most similar features –  referred to as the 
neighbors (Altman, 1992). Similarity is often measured by the simple l2- norm P ⋅ P2. 
A probabilistic classification can be achieved based on the portion of neighbors who 
agree on the same class.

knn function with 
k = 15 from the 
package class 
(Venables & Ripley, 
2002)

(Artificial) neural network (NN) A network of the so- called neurons that change and then output the inputs the 
receive based on their activation function (Haykin, 1994). We train a neural network 
with one hidden layer with the number of nodes equal to half of the total number of 
used covariates, and the sigmoid activation function.

nn.train function 
of the package 
deepnet (Rong, 
2014)

Mixed model (MM) We construct a mixed model of all the previous ones in the form of a GLM of their 
outputs: P

�
Ig,t+r

�
=

exp(
∑

8
i = 1

�iPi (Ig,t+r )+ �0)
1+ exp(

∑
8
i = 1

�iPi (Ig,t+r )+ �0)
, where P1,…,P8 are the probabilities 

produced by models 1,…, 8 above, and �i8
i = 0

s are the parameters to be learned.
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infestations with AUC scores of 0.92 and 0.88 (Table 5). An MM with 
5 covariates and 2 years of history and another with 4 covariates 
and 1 year of history, best predict future 5- year (0.86 AUC) and 7
- year (0.84 AUC) infestations. Overall, and all prediction lengths (r
) considered, GBM is ranked first on the test dataset (Table S1), and 
MM and NB are the next best predictors.

The AUC score of each learner on the test dataset together with 
its three estimations are shown in Figure 4. For almost any future 
prediction- length r , the score s

ℒ
 of the top- two learners on the test 

dataset is best estimated by slast - fold
ℒ

. Moreover, the absolute AUC 
estimation error of each estimator and over all learners –  i.e., 
∑

ℒ
��̂sℒ − s

ℒ
��, where ŝ

ℒ
∈

{
srandom
ℒ

, slast - fold
ℒ

, s
average - fold

ℒ

}
 –  is always 

lowest for the last- fold, except for r = 3, where the random- fold has 
the lowest error (Figure 5).

Using the data prior to and including 2013, most learners pre-
dict the south- west border and some areas in the center of the two 
portions of the park as infested at year 2018 (Figure 6). The actual 
infestation map at year 2018 confirms these infestations (Figure 7a). 
For management purposes, the probabilistic infestation maps can be 
turned into binary infestation maps using a cut- off threshold. The 
highest- scoring learner at predicting future 5- year infestations, i.e., 
MM, predicts more pixels than observed as infested when Youden's 
optimal cut- off threshold is used (Youden, 1950) (Figure 7b). This 
threshold maximizes the summation of sensitivity and specificity 
(Metz, 1978). If we put more weight on specificity, say 10 times 
more than sensitivity, then the number of pixels that are predicted 
infected will be closer to that of the observed (Figure 7c).

4  | DISCUSSION

The spectacular results of machine learning in many areas (Makridakis 
et al., 2018; Olden et al., 2008) makes it a tempting choice for pre-
dicting future infestations. Achieving accurate results, however, 
require thoughtful use and implementation of the even standard 
models (Olden et al., 2008) as this often requires identifying the 
most effective base learner, as well as the features to use (here, 
which covariates, over what specific history length). Also, one needs 

to properly evaluate the models to avoid misleading performance 
evaluations (Mouton et al., 2010), as unfortunately often practiced. 
We have addressed these problems for a controlled mountain pine 
beetle outbreak in the Cypress Hills area, and trained two GBMs 
predicting future 1-  and 3- year infestations with 92% and 88% AUC, 
and two novel mixed models predicting future 5-  and 7- year infesta-
tions with 86% and 84% AUC, respectively.

The trained models seem to greatly outperform the existing 
models in the literature. For example, the GBM scores 88% AUC on 
predicting future 3- year infestations, whereas the logistic regression 
model in (Aukema et al., 2008) scores 30.5% on accuracy with zero 
false negatives.

One common approach to predicting future infestations, say 
50- year, using temporal environmental covariates such as climate 
variables is to first predict future values of those covariates, then 
use those values to predict future infestations (Broennimann & 
Guisan, 2008). Two separate models are used for these two phases. 
For example, to predict infestations at year 2050 based on tempera-
ture and humidity at year 2000, first, a model  is used to predict 
temperature and humidity at year 2050 and then a model  is used to 
predict infestations at 2050 based on the predicted temperature and 
humidity at 2050. However, more accurate results may be achieved 
by predicting future infestations directly based on the current values 
of the temporal covariates by a single model . The reason is that 
infestations at year 2050 may not depend on the exact values of 
temperature and humidity at 2050, but a specific function of them 
and perhaps other variables, which may be better estimated directly 
from temperature and humidity at year 2000. This particularly holds 
if model  is complex enough to implicitly perform what models  
and  can do consecutively.

4.1 | mRMR ranking

Although unfamiliar to many ecologists (but see Hejazi & Cai, 2009; 
Li et al., 2018), the mRMR ranking method has potential to reduce 
model complexity by identifying the most relevant set of features in 
a dataset. Managed neighbors’ last year infestation IManaged

�g ,t
 is ranked 

F I G U R E  3   Dataset partition for 
cross- validation. The boxes indicate which 
years the covariates are measured, and 
the arrows point to the year at which 
we predict infestation. Green solid lines 
represent the training set, whereas blue 
dashed lines represent the test set. Red 
hatched boxes represent which year in 
the training set was held out for cross- 
validation. The top, middle and bottom 
represent the three different folds used in 
the cross- validation process
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first by mRMR for predicting future 1-  and 3- year infestations. This 
means that managed last- year infestations at the neighboring pixels 
has the greatest correlation with the presence of short- term future 
infestation. This is in line with studies reporting strong spatial and 
temporal dependencies in small scales (Aukema et al., 2008; Preisler 
et al., 2012). Even though the infestations at the neighboring pixels 
are managed, they are still the most informative covariate for future 
infestations, perhaps because they are the best indicator of suitable 
MPB habitats. However, for intermediate- term predictions –  i.e., 5 
and 7 years –  distance to infested border ℬg is a more- informative 
covariate, because future 5- year infestation patterns will not be 
similar to how they were last year and mainly influenced by the 
source of the infestation.

For future 1- year infestations, the second ranked covariate, de-
gree days Dg,t, has the greatest correlation with the target Ig,t+1 after 
removing its correlation with IManaged

�g ,t
. However, it cannot be inferred 

that models trained with these two covariates outperform those 
trained with any other two covariates, because not every model 
suffers from correlated covariates, but may even benefit; namely, 
correlation does not imply dependence but could be simply some 
residual information. Similarly, wind speed Wg,t is the second most- 
informative covariate in predicting future 3- year infestations but 

is covered by other covariates or insufficiently correlated with the 
target variable for future 5-  and 7- year infestations. Note that the 
mRMR ranking differs from rankings based on the maximum like-
lihood estimate of the covariates or standard errors of the covari-
ates as they do not incorporate the minimum redundancy Sambaraju 
et al. (2012). This may explain the inconsistency with Aukema 
et al. (2008) that does not find degree days a significant predictor.

Ranked poorly in all prediction- lengths, temperature covariates 
Tmin
g,t

 and Tmax
g,t

 almost do not increase our knowledge about future in-
festations, beyond what the other covariates provide. However, this 
does not imply that they are least correlated with the target variable 
Ig,t+r but that their information is better covered by the covariates 
that appear early in the ranking.

Interestingly, the simplest covariate, outbreak phase Ot, is the 
most informative in predicting future 5- year infestations, after Bg. 
That is, the current phase of the outbreak has the highest correla-
tion with the presence of infestation over all pixels, after removing 
its correlation with Bg. However, almost none of the models imme-
diately benefit from this covariate after it is added to Bg during the 
training phase. In a similar fashion, (Kunegel- Lion & Lewis, 2020) 
found that the predicting future 1- year infestations does depend on 
the outbreak phase.

TA B L E  4   mRMR ranking results with respect to the target variable Ig,t+r. The numbers and cell shades represent the ordering of the 
covariates according to the mRMR method: 1 (black) is the covariate with the highest rank and 14 (lighter gray) is the covariate with the 
lowest rank

TA B L E  5   Performance of the learners

length of future 
prediction (r)

Learners with 
s
average− fold

�
≥ 0.8

Learner with the highest AUC on the 
test dataset (s�) c ∗ h ∗

AUC on the test 
dataset (s�)

1 year GBM, NN, MM GBM 12 5 0.92

3 years GBM, NB, NN, MM GBM 14 5 0.88

5 years GBM, KNN, MM MM 5 2 0.86

7 years KNN, MM MM 4 1 0.84
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4.2 | Number of optimal covariates

The number of features resulting in the highest cross- validated AUC 
on the training dataset generally decreases as the prediction- length 
increases. For r = 1 and 3, the best predictors use almost all of the 
available covariates and history- length, confirming the success of 
the all- inclusive model in (Aukema et al., 2008). However, for r = 7, 
the top predictors use only one year of history length, and the best 
predictor, MM, uses four covariates. Interestingly, this means that 
if we know the distance of a given pixel to the infested border and 

last year infestation status of the pixel and its neighbors, then we 
can predict whether the pixel will be infested in the future seven 
years, with 0.84 AUC. None of the climate covariates, nor the geo-
graphic covariates northerness and easterness are required. Studies 
on other species (de la Fuente et al., 2018) also found that informa-
tion on previous infestations without using environmental covari-
ates is sufficient to make accurate predictions. Our results, however, 
do not contrast studies claiming a strong relationship between cli-
mate covariates and concurrent or near- future infestations (Preisler 
et al., 2012).

F I G U R E  4   The actual AUC score on 
predicting infestations at years 2017 
and 2018, and its estimations based on 
different train- test partitioning. White, 
light gray, dark gray and black are the AUC 
scores on the test dataset (“actual,” s

ℒ
), 

cross- validated AUC on the train dataset 
(“average fold,” saverage− fold

ℒ
), AUC on the 

last year of the train dataset (“last fold,” 
slast− fold
ℒ

), and AUC on the test dataset 
obtained from a random partitioning of 
the training dataset into another train and 
test (“random split,” srandom

ℒ
). The learners 

are those listed in Table 3 and are ordered 
from right to left on the x- axis based on 
their scores on the test dataset –  i.e., s

ℒ
 

(the white bars). (a)– (d) are future 1- , 3- , 
5- , and 7- year predictions. The estimated 
AUC based on the last- fold partitioning 
best matches the actual AUC for the top- 
two learners (except for GBM at future 
3- year predictions)

(a) (b)

(c) (d)

F I G U R E  5   Absolute estimation error of the AUC score on years 2017 and 2018, accumulated over the learners. Light gray, dark gray and 
black are 

∑
ℒ

���
S
average - fold

ℒ
− S

ℒ

���
, 
∑

ℒ

���
Slast - fold
ℒ

− S
ℒ

���
, and 

∑
ℒ

���
Srandom
ℒ

− S
ℒ

���
. (a)– (d) are for future 1- , 3- , 5- , and 7- year predictions. Overall, last- 

fold partitioning best estimates the actual AUC score over all learners
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We also observe that some learners, such as GBM, generally 
tend to use more covariates. One may, therefore, try to provide as 
many covariates and history- length as possible when using such 
learners, especially for short- term future predictions as in (Aukema 
et al., 2008).

4.3 | History- length selection

Unlike studies that decide a priori on the amount of lag for the covar-
iates (Aukema et al., 2008), we investigate the lag time that results 
in the highest performance of the learners using the data. The pre-
diction accuracy of NN, GBM, and NB increases as we increase the 
history- length of their covariates for future 1- , 3- , and roughly 5- year 
infestations. We refer to models with this property as history- friendly 
since increasing the history length does not lead them to overfit, and 
hence, one may freely do so with the hope of achieving a more ac-
curate model. Interestingly, these three models are highly nonlinear, 
and the linear model SVM, and even generalized linear model GLM, 
do not exhibit this characteristic for this specific task. Hence, some 

degree of non- linearity is required for being history- friendly, at least 
on our dataset. Likewise, MM is not history friendly, perhaps partly 
because it is a GLM- combination of the other models. On the other 
hand, the failure of KNN in exploiting history implies that providing 
history leads to instances that are similar to the instance in ques-
tion but have a different infestation value, where similarity is with 
respect to geometric distance in the feature space.

4.4 | Model comparison

Overall, the simple boosted decision tree outperforms all other 
learners, including the complex NN, in short- term predictions, and 
performs fairly well for long- term predictions.

The second- best learner is the most complicated, MM, which 
outperforms others in predicting intermediate- term infestations. 
We do expect MM to excel at the training phase, but not necessarily 
at the test, due to the possibility of overfitting the training dataset. 
This is particularly true for predicting future 3- year infestations, as 
MM is the best predictor at train but ranked 6th during the test.

F I G U R E  6   Comparison of infestation 
maps of year 2018 predicted by each of 
the learners using data prior to year 2013 
(future 5- year prediction). Each learner 
assigns an infestation probability to every 
pixel which is represented on a log scale 
from extremely low (blue) to high (red) (a) (b)

(c)

(e)

(g) (h)

(i)

(f)

(d)



13024  |     RAMAZI et Al.

The third- best predictor is NB, which has a unique advantage 
over all other models that it can still predict infestation when the 
values of one or more of the covariates are missing. Thus, if missing 
values is a concern, perhaps the best model is NB.

KNN performs well only in predicting future 5-  and 7- years. 
Hence, by directly comparing the instance in question with those 
that had similar features in the past years, we can accurately predict 
intermediate- term infestations. The same does not hold for 1- year 
predictions, implying the existence of pixels with similar features, 
yet different infestation statuses.

The one- layer neural network is the second- best predictor in 
predicting future 1-  and 3- year infestations. Therefore, both the sim-
ple GBM and complicated NN are capable of accurately predicting 
short- term future infestations. However, due to its simplicity, one 
may subjectively find GBM more reliable than the neural network, 
and hence, pick it as the best predictor. The incapability of NN in 
predicting the intermediate- term future may imply the need for a 
more sophisticated NN structure.

The poor performance of SVM and GLM is an indicator of the 
dataset not being linearly separable, and also a sign of caution for 
applying the commonly used GLM for prediction purposes.

Given the success of NB, the failure of the searching- algorithm 
IAMB implies that ‘the right’ Markov blankets are not easy to find. 
Similarly, the failure of CL implies that tree structures with the mini-
mum KL difference are not promising predictors for our dataset.

4.5 | Model evaluation

How do we decide which learner to use for predicting a real- world 
process in the future? We never know the actual performance of a 
trained model in predicting the future, unless we wait for the fu-
ture to arrive! We can only estimate the actual performance. This 
is typically done by randomly partitioning the available dataset into 
training and test datasets, training the model on the training data-
set, and taking its score on the test dataset as an estimation of its 

F I G U R E  7   (a) Observed infestations, 
(b) predicted infestations using a cut- off 
threshold of 0.011, and (c) predicted 
infestations using a cut- off threshold of 
0.130, for the year 2018 (future 5- year 
infestations). The infestation probabilities 
are calculated using the learner with the 
highest AUC (i.e., MM) on predicting 
future 5- year infestations on the test 
dataset (Figure 6i). Then the binary 
predictions in (b) are generated using the 
optimal cut- off threshold derived from 
Youden's index, which maximizes the 
summation of sensitivity and specificity. 
The binary predictions in (c) are generated 
similarly to (b) but when specificity is 
weighted 10 times more than sensitivity. 
As the cut- off threshold increases, fewer 
pixels are predicted as infested

(a)

(b)

(c)
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actual performance (Broennimann & Guisan, 2008). One essential 
contribution of this paper is to show that this random split may lead 
to models that perform well in simulations, but poorly in practice, or 
vice- versa. For example, compared to its actual performance on the 
held- out test dataset, KNN performs 10% higher at AUC under the 
evaluation provided by a random split. The same holds for any other 
partitioning, where the train and test include instances at the same 
year (de la Fuente et al., 2018).

A random split is plausible, provided that the instances are in-
dependent and identically distributed (iid). However, the data in a 
temporal process is not iid, as data at time t + 1 depends on data 
at time t; namely, future instances depend on current ones. This 
conclusion agrees with (Bahn & McGill, 2013), which found that the 
predictive accuracy decreases with increases in the independence 
between training and test sets. For the same reason, performing 
cross- validation may not well represent the actual performance 
either.

To obtain a proper estimation, we need to mimic how the model 
will be used in practice. Namely, in a real- world scenario, the data 
from the future is not available, and hence, the model can never be 
trained on it. So instances from later years must not be included in 
the training dataset and should form the validation. We call this a 
year- based or, in general, a temporal split of the dataset. Although this 
type of partitioning has been appropriately implemented in some 
studies (Aukema et al., 2008; Meentemeyer et al., 2011), it has not 
been addressed in detail in the literature as most data in machine 
learning are iid, and hence, do not encounter these challenges. In our 
MPB case study, the evaluations obtained from a year- based split 
best estimate the performance of the top models. Nevertheless, the 
random split does not always result in a worse estimation.

Indeed, a proper estimation of the actual performance requires 
further restrictions on the training dataset. If we were in 2013 and 
wanted to predict the year 2018, the information for 2018 would not 
be available, nor would any information for years 2014– 2017. Hence, 

F I G U R E  8   Dataset partition for r = 5 years in the future, honoring the “temporal gap”. The figure differs from Figure 2 only by coloring 
the “gap instances” as yellow, to indicate that they should not be used during the training nor the validation phases –  which significantly 
decreases the size of the training dataset. In particular, the bottom two subfigures corresponding to h = 4 and h = 5 result in zero training 
instances
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the training data (for training this “2013- model- for- predicting- 2018
”) should not include any of the instances whose target variables are 
at years 2014, 2015, 2016, and 2017. They should not be used during 
the validation phase either. That is, there should be a “temporal gap” 
between the training and testing datasets (Ramazi et al., 2021). More 
generally, when predicting year t + r from year t, all data instances 
with target variables at and prior to year t form the training data-
set, the data instance whose target variable is at year t + r forms the 
testing dataset, and the instances in between (i.e., in years t + 1,..., 
t + r − 1), form the gap and may not be used. Such partitioning, how-
ever, may result in few, or even zero, training instances. For example, 
in the case of r = 5 and h = 1 in our case study, all instances whose 
target variable is at a year later than 2013 should be eliminated from 
the training dataset (Figure 8). In case of r = 5 and h = 4 or h = 5, this 
results in zero training instances. We have, therefore, not used this 
restrictive yet appropriate partitioning. However, future studies may 
investigate this issue for the case of r = 1 and r = 3.

4.6 | Future work

Further studies are required to find conditions under which learners 
predict more accurately on a randomly- obtained test dataset than a 
year- based one. It is also of great interest to examine the newly intro-
duced mixed model for prediction lengths longer than seven years. 
One may try to further explore this model by constructing a neural- 
network mixture of the other models instead of the GLM mixture.
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