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Abstract: Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and frontotemporal dementia
(FTD) represent the three major neurodegenerative dementias characterized by abnormal brain
protein accumulation. In this study, we investigated extracellular vesicles (EVs) and neurotrophic
factors in the cerebrospinal fluid (CSF) of 120 subjects: 36 with AD, 30 with DLB, 34 with FTD and
20 controls. Specifically, CSF EVs were analyzed by Nanoparticle Tracking Analysis and neurotrophic
factors were measured with ELISA. We found higher EV concentration and lower EV size in AD
and DLB groups compared to the controls. Classification tree analysis demonstrated EV size as the
best parameter able to discriminate the patients from the controls (96.7% vs. 3.3%, respectively). The
diagnostic performance of the EV concentration/size ratio resulted in a fair discrimination level
with an area under the curve of 0.74. Moreover, the EV concentration/size ratio was associated with
the p-Tau181/Aβ42 ratio in AD patients. In addition, we described altered levels of cystatin C and
progranulin in the DLB and AD groups. We did not find any correlation between neurotrophic factors
and EV parameters. In conclusion, the results of this study suggest a common involvement of the
endosomal pathway in neurodegenerative dementias, giving important insight into the molecular
mechanisms underlying these pathologies.

Keywords: Alzheimer’s disease; dementia with Lewy bodies; frontotemporal dementia; extracellular
vesicle; neurodegeneration; cystatin C; progranulin; nanoparticle tracking analysis; CSF; endo-
lysosomal pathway

1. Introduction

Major neurodegenerative dementias are multifactorial conditions that share key un-
derlying pathophysiological processes. A variety of triggers encompassing genetic, envi-
ronmental, vascular, metabolic and inflammatory factors converge to activate common
neurodegenerative mechanisms that take place in the brain of individuals affected by major
neurodegenerative dementias and can partially explain their overlap [1]. Abnormal protein
accumulation in the brain and inclusions that impair neuronal communication leading to
cellular death constitute the main common neurodegenerative mechanisms [2,3].
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Alzheimer’s disease (AD) represents the most common form of dementia in the elderly
and is characterized by intra- and extra-cellular amyloid-β (Aβ) peptide aggregates form-
ing the amyloid plaques and by phosphorylated tau protein accumulation in neurofibrillary
tangles, pathognomonic of the disease [4,5]. These inclusions cause inflammatory and
oxidative damage that are crucial for AD onset and progression [6]. Dementia with Lewy
bodies (DLB) is one of the most common dementias after AD [7] and shares neuropatho-
logical characteristics with AD, such as amyloid plaques [8], but the main feature is the
presence of α-synuclein inclusions in neurons, neurites, glia and presynaptic terminals.
These inclusions cause the formation and the spreading of Lewy bodies widely in various
brain areas [9]. Frontotemporal dementia (FTD), another major dementia, is typified by
early-onset and by several protein inclusions such as tau, ubiquitin, Fused-in-Sarcoma
(FUS) and TAR DNA-binding protein 43 (TDP-43) [10,11].

In recent years, extracellular vesicles (EVs) have been reported as a new concept in
the biomarker field. Serving as transfer vehicles between cells of molecules, they represent
a promising source of biomarkers for a number of diseases, including neurodegenerative
disorders [12,13]. EVs consist of a heterogeneous family of small, cell-derived, membranous
particles, including exosomes and microvesicles, the most studied subtypes of EVs [14].
Exosomes are carriers of misfolded neurotoxic proteins, such as Aβ, α-synuclein and tau
proteins [15–18] and can, thus, be involved in the mechanisms underlying common patho-
physiological processes at the basis of the major dementia overlap. Conversely, several
studies have shown potential protective roles of EVs in neurodegenerative diseases by the
removal of deleterious material derived from suffering tissues, or transporting neuropro-
tective/neurotrophic factors to distant regions, extending their effects and lifespan [19].
Cystatin C (CysC) is one of the neurotrophic factors associated with exosomes [20] exerting
a protective role in response to neurotoxic conditions [21]. The co-localization of CysC and
Aβ have been reported in both preclinical models and in brain amyloid plaques of AD
patients, supporting the concept of the protective role of EV [22–24]. Similarly, progranulin
(PGRN) is a neurotrophic factor associated with neurodegenerative diseases sustaining
neuron survival, growth and anti-inflammatory processes [25,26]. Furthermore, in a re-
cent study on human fibroblasts [27], altered levels of PGRN have been shown to cause a
modification in EV intercellular communication supporting a possible disruption of the
endo-lysosomal pathway. Brain-derived neurotrophic factor (BDNF) and glial-derived
neurotrophic factor (GDNF) play an important role in the pathophysiology of neurode-
generative diseases, demonstrating a potential for therapeutic applications [28–30]: in a
preclinical model of Parkinson’s disease, systemic administration of GDNF-expressing
macrophages significantly improved the lifespan of mice [31]. In our previous study [32],
we have provided evidence of a decrease in the concentration and an increase in the size of
plasma EVs in AD, DLB and FTD, supporting the concept that an alteration in the inter-
cellular communication mediated by EVs could represent a common molecular pathway
underlying neurodegenerative dementias.

In this current study, we extended our investigation to the cerebrospinal fluid (CSF)
compartment with the aim of investigating in more depth the role of EVs and neurotrophic
factors in the three most common form of dementia.

2. Materials and Methods
2.1. Subjects

Human CSF samples from n = 36 AD, n = 30 DLB, n = 34 sporadic FTD patients
and n = 20 samples from subjects with subjective memory complaints and a MMSE score
>26, as control group (CTRL), were included in this retrospective study. All participants
underwent CSF drawn by lumbar puncture and CSF samples were collected and stored
at −80 ◦C following standard procedures. Patients were enrolled at the MAC Memory
Clinic of the IRCCS Fatebenefratelli, Brescia, and at the Neurology 5/Neuropathology Unit,
IRCCS Besta, Milan. Clinical diagnosis for probable AD, DLB and FTD was made according
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to international guidelines [33–37]. Participants provided written informed consent. The
study protocol was approved by the local ethics committee (Prot. N. 111/2017).

2.2. CSF EV Isolation and Characterization

EV isolation was performed with the Total Exosome Isolation Kit (from other body flu-
ids) (InvitrogenTM, Waltham, MA, USA) after optimization according to the manufacturer’s
protocol. Briefly, 125 µL of CSF added with 75 µL of 0.2 µm filtered 1× phosphate-buffered
saline (PBS) were centrifugated at 2000× g for 30 min at +4 ◦C, and subsequently 10,000× g
at +4 ◦C for 30 min, and then transferred into new tubes, mixed with 200 µL of Exosome
Precipitation Reagent (InvitrogenTM, Waltham, MA, USA) and incubated for 1 h at +2–8 ◦C.
After incubation, samples were centrifugated at 10,000× g for 1 h at +4 ◦C. EV pellets were
resuspended in 100 µL of 0.2 µm filtered 1× PBS and stored at +4 ◦C until nanoparticle
tracking analysis (NTA) was performed. As the negative control, an aliquot of 100 µL
of 1× PBS was processed as described above. For EV characterization, a representative
CSF EV pellet was lysed with 30 µL of ice-cold Exosome Resuspension Buffer (Total Ex-
osome RNA and Protein Isolation Kit, InvitrogenTM, Waltham, MA, USA) and stored at
−20 ◦C. Alix and Calnexin expression were analyzed in EVs by Western blotting analysis
according to standard protocols. Briefly, lysed EVs (40 µg) were separated using BoltTM

4–12% Bis-Tris Plus Gels (InvitrogenTM, Waltham, MA, USA) with MOPS SDS running
buffer (InvitrogenTM, Waltham, MA, USA). Samples were electro-transferred onto nitrocel-
lulose membranes (Thermo Fisher Scientific, Waltham, MA, USA) for 90 min at 90 V, the
membranes were immunoblotted with primary antibodies overnight at +4 ◦C (anti-Alix,
Abcam, Cambridge, UK) or for 2 h at +37 ◦C (anti-Calnexin, BD Biosciences, Franklin
Lakes, NJ, USA) and then incubated with horseradish peroxidase-conjugated secondary
antibodies (InvitrogenTM, Waltham, MA, USA) for 1 h at +37 ◦C. Immuno-positive bands
were detected by ultra-sensitive enhanced chemiluminescence (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions.

2.3. Nanoparticle Tracking Analysis (NTA)

EVs derived from CSF samples were analyzed with the NanoSight NS300 Instrument
(Malvern, Worchestershire, UK). To gain an optimal reading range from 20–150 parti-
cles/frame, EV suspensions were diluted with 0.2 µm filtered 1X PBS. For each sample,
5 videos of 60 s were recorded, and the relative data were analyzed using NanoSight NTA
Software 3.2 (Malvern, Worchestershire, UK). The instrument settings were optimized
and kept constant between samples. Data collected consisted of particle concentration
(particles/mL), average size (nm) and particle size distribution (D-values; D10, D50 and
D90). Finally, raw concentration data (particles/mL) obtained from the instrument were
normalized to calculate the EV concentration in CSF samples.

2.4. Biochemical Analyses

Cystatin C CSF concentration was measured using the Human Cystatin C Quantikine®

ELISA kit (R&D Systems®, Minneapolis, MN, USA) according to standard protocols;
samples were diluted at 1:80. The mean intra-assay coefficient of variation (%CV) was
<5% and the mean inter-assay CV% was <4%. BDNF and GDNF CSF concentrations were
measured with Human Premixed Multiplex-Magnetic Luminex® Assays (R&D Systems®,
Minneapolis, MN, USA) following the manufacturer’s protocol; samples were diluted at
1:1. PGRN CSF concentration was measured with the Progranulin (human) ELISA kit
(AdipoGen®, San Diego, CA, USA) following the manufacturer’s protocol; samples were
diluted at 1:10. The mean intra-assay %CV was <3% and the mean inter-assay CV% was
<5%. Aβ 40, Aβ 42, p-Tau 181 and Tau CSF concentrations were measured using Innotest
ELISA kits (Fujirebio, Tokyo, Japan) following the manufacturer’s protocol. All samples
were analyzed in duplicate.
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2.5. Statistical Analysis

Normality assumption of continuous variables was evaluated with graphical inspec-
tion and the Kolmogorov–Smirnov test. The linear model or generalized linear model (for
normal or non-normal distributed variable, respectively) adjusted for age were used for
the comparison across the four subject groups. Bonferroni post-hoc tests were applied.
The chi-square test was used to assess the association between the demographic charac-
teristics (categorical variables) of the subjects within the four groups. A classification tree
(CT) [38] was applied to detect the best (in terms of classification performance) predictors
for discriminating the controls versus patients group. The CT method was carried out
on the diagnostic group as a categorical dependent variable depending on categorical
and/or quantitative covariates. The output of the CT was given by different classification
pathways (defined by estimated covariate cut-offs), and for each of them the probability
of the most likely diagnostic group was provided. In addition, diagnostic performance of
EV concentration and EV size in discriminating across the groups was assessed by area
under the curve (AUC) obtained by receiver operating characteristic (ROC). Finally, partial
correlation (age controlled) analyses were performed on the EV concentration/size ratio,
neurotrophic factors and CSF core biomarkers for AD. All analyses were performed by
SPSS software and significance set at 0.05.

3. Results
3.1. CSF EV Size and Concentration Are Altered in Dementia Patients

Clinical and demographic variables of the participants under study are shown in
Table 1. Groups did not differ for sex but differed for age, with the FTD patients being
younger than the other groups. Isolated CSF EVs were Alix+ (a cytosolic protein recov-
ered in EVs) and Calnexin- (an endoplasmic reticulum residential protein, absent in EVs)
(Figure S1). CSF EV concentration was increased in patients (PTS) compared to CTRL
(p = 0.002) despite not reaching the significance level in the FTD group (Figure 1a) (p = 0.001,
CTRL vs. AD, DLB, p < 0.01). EV size had an opposite trend, being lower in PTS than
in CTRL (p < 0.001) even though not significant in the FTD group (Figure 1b) (p = 0.021,
CTRL vs. AD, DLB, p < 0.05). EV concentration and size distribution are depicted in the
Supplementary Material (Figures S2 and S3). A Spearman’s correlation test confirmed
a negative association between EV concentration and EV size (p < 0.001, r = −0.39). EV
concentration/size ratio (Figure 1c) was increased in PTS compared to CTRL (p < 0.001),
specifically in AD and DLB (p < 0.001, CTRL vs. AD, DLB, p < 0.01).

Table 1. Clinical, demographic, and biological variables of patients and controls.

CTRL (n = 20) AD (n = 36) DLB (n = 30) FTD (n = 34) p-Value

Sex (M:F) £ 9:11 17:19 15:15 15:19 0.969
Age, years $ 69.1 ± 8.7 70.4 ± 9.3 73.7 ± 5.6 65.2 ± 8.2 <0.001

Disease onset, years $ - 66.5 ± 8.9 70.8 ± 7.1 62.3 ± 8.0 0.003
Education, years $ 7.7 ± 3.6 6.8 ± 3.5 8.0 ± 3.9 9.0 ± 5.0 0.210

MMSE $ 28.1 ± 1.7 19.0 ± 5.3 22.5 ± 6.3 18.5 ± 7.1 <0.001
Aβ 42, pg/mL $ 553.61 ± 207.81 366.75 ± 138.86 463.48 ± 229.50 498.22 ± 265.40 0.007 #

Aβ 40, pg/mL $ 2314.64 ± 1366.98 3048.80 ± 1427.30 2494.66 ± 1321.17 1254.12 ± 513.79 <0.001 #

p-Tau 181, pg/mL $ % 48.80 ± 16.5 82.76 ± 32.90 52.40 ± 16.23 65.32 ± 38.83 <0.001 #

Tau, pg/mL $ % 258.98 ± 152.13 531.23 ± 205.97 306.57 ± 155.88 457.01 ± 318.16 <0.001 #

Aβ 42/Aβ 40 ratio $ 0.33 ± 0.13 0.10 ± 0.04 0.23 ± 0.10 0.33 ± 0.16 <0.001 #

p-Tau 181/Aβ 42 ratio $ % 0.11 ± 0.08 0.27 ± 0.21 0.15 ± 0.09 0.19 ± 0.17 <0.001 #

EV Concentration, EVs/mL $ 3.02 × 108 ± 8.43 × 107 5.02 × 108 ± 3.50 × 108 5.27 × 108 ± 5.16 × 108 3.96 × 108 ± 1.66 × 108 0.001 #

EV Size, nm $ 120.67 ± 6.32 114.55 ± 6.67 114.45 ± 8.20 116.28 ± 9.06 0.021 #

EV concentration/size ratio $ 2.52 × 106 ± 7.64 × 105 4.43 × 106 ± 3.17 × 106 4.74 × 106 ± 5.06 × 106 3.47 × 106 ± 1.59 × 106 <0.001 #

Cystatin C, ng/mL $ % 4749.02 ± 1078.63 5203.86 ± 2138.29 3723.72 ± 1576.36 5113.22 ± 1729.21 <0.001 #

PGRN, ng/mL & % 5.27 ± 0.95 5.76 ± 1.29 4.87 ± 1.25 5.10 ± 1.10 0.006 #

CTRL, controls; AD, Alzheimer’s disease patients; DLB, dementia with Lewy bodies patients; FTD, frontotemporal
dementia patients; MMSE, Mini-Mental State Examination score. £ Chi-squared test; # Model with Age as covariate;
& Modelled with linear model; $ Modelled with generalized linear model; % Age is significant for this model.
Means ± standard deviation.
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3.3. EV Parameters Are Able to Discern Patients from Controls 

Figure 1. EV size and concentration are altered in AD and DLB CSF. (a) NTA analysis of EV concen-
tration in CSF samples. A statistically significant increase in EV concentration was observed in AD
and DLB groups compared to CTRL group. (b) EV size was significantly decreased in AD and DLB
compared to CTRL group. (c) EV concentration/size ratio was increased in AD and DLB compared to
CTRL group. Average ± SEM; * p < 0.05, ** p < 0.01. Bar plots represent raw data while the post-hoc
p-values were obtained by generalized linear model adjusted for age.

3.2. Cystatin C and Progranulin CSF Are Altered in DLB and AD

Cystatin C concentration was decreased in DLB samples compared to all other groups
(Figure 2a) (p < 0.001, DLB vs. AD, FTD, p < 0.001; DLB vs. CTRL, p < 0.05). Progranulin
concentration was increased in AD samples compared to DLB samples (Figure 2b) (p = 0.006,
AD vs. DLB, p < 0.01). BDNF and GDNF were not detectable in any CSF samples.
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3.3. EV Parameters Are Able to Discern Patients from Controls 

Figure 2. Neurotrophic factors levels in CSF. (a) Measurement of Cystatin C in CSF. A statistically
significant decrease was observed in DLB compared to all other groups. (b) PGRN levels in CSF.
PGRN was significantly increased in AD compared to DLB group. Average ± SEM; * p < 0.05,
** p < 0.01, *** p < 0.001. Bar plots represent raw data while the post-hoc p-values were obtained by
generalized linear model adjusted for age.

3.3. EV Parameters Are Able to Discern Patients from Controls

In order to evaluate the capacity of demographic, EV and neurotrophic factors vari-
ables to classify subjects into patients or controls, different CTs were performed, including
the group of patients separately (AD, DLB and FTD) or collapsed in PTS. The best CT (in
terms of smaller classification error) was obtained with PTS and CTRL groups revealing EV
parameters as the best predictors: EV size smaller than 114.9 nm was able to classify the pa-
tients from the controls (96.7% vs. 3.3%) (Figure 3). To estimate the diagnostic performance
of the EV concentration/size ratio to discriminate PTS from CTRL we performed ROC
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analyses: considering the whole patient group, the AUC was 0.74, with a 75.0% specificity
and a 69.0% sensitivity with a cut-off point of 2.90 × 106. Considering each diagnostic
group, we calculated an AUC of 0.73 for AD, 0.82 for DLB and 0.68 for FTD (Figure S4).
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(nm); CSFEVs concentration (p/mL), EV concentration (EVs/mL).

3.4. EV Parameters Are Related to CSF Core Biomarkers for AD

To evaluate the interaction of the biological variables under study and the diagnostic
groups, partial correlation analyses were performed among the CSF EV concentration/size
ratio, CysC and PGRN (neurotrophic factor), Aβ 40, Aβ 42, p-Tau 181, Tau, Aβ 42/Aβ

40 and p-Tau 181/Aβ 42 (core biomarkers for AD). The analyses were carried out for the
entire study group as well as in PTS, in each diagnostic group (AD, DLB, FTD) and in
CTRL. A positive correlation was found in PTS between EV concentration/size and p-Tau
181/Aβ 42 ratios (age adjusted; r = 0.230, p = 0.031). In the stratified analysis, the AD group
resulted in being the only group with EV concentration/size and p-Tau 181/Aβ 42 ratios
significantly correlated (age adjusted, AD: r = 0.358, p = 0.035). CysC and PGRN were not
correlated with EV parameters.

4. Discussion

Emerging data argue for an interdependence between the production of EVs and
the endosomal pathway in the brain [19]. We recently reported that genes controlling
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key endo-lysosomal processes (i.e., protein sorting/transport, clathrin-coated vesicles
uncoating, lysosomal enzymatic activity regulation) might be involved in AD, FTLD and
DLB pathogenesis, thus, suggesting an etiological link behind these diseases [39]. In this
study, we demonstrated alterations of EVs and neurotrophic factors in CSF of patients
with neurodegenerative dementias. We analyzed CSF EVs in patients affected by AD,
DLB and FTD, and we found an altered EV profile in the patients’ CSF. Specifically, EV
concentrations were higher in AD and DLB while CSF EV size was lower in AD and
DLB compared to the controls. EV size was the EV variable with the best capacity to
discriminate the patients affected by dementia from the controls: in CT analysis, the EV
size resulted in the most predictive variable able to classify the patients from the controls
(96.7% vs. 3.3%, respectively). The EV concentration/size ratio could discriminate the
patients affected by dementia from the controls, reaching a fair discrimination level (AUC
0.74), with a 75.0% specificity and a 69.0% sensitivity with a cut-off point of 2.90 × 106.
According to the Working Group on “Molecular and Biochemical Markers of AD”, in
order to be clinically useful, a diagnostic marker should have sensitivity and specificity
approaching or exceeding 80–85% [40]. Thus, the specificity and sensitivity of the CSF EV
concentration/size ratio presented in this study resulted in being suboptimal.

We previously described plasma EV alterations in neurodegenerative dementias with a
significant reduction in EV concentration and larger EVs in AD, DLB and FTD patients [32];
herein, we observed an inverse alteration of EV variables in CSF with a higher EV con-
centration and smaller EV size in patients. Furthermore, in plasma, EV concentration
was 3 orders of magnitude higher than in CSF, and the diagnostic performance of the EV
concentration/size ratio was higher (AUC 0.86) with a sensitivity of 83.3% and a specificity
of 86.7%. EV transfer from the peripheral circulatory system to the central nervous system
is rare under physiological conditions; however, inflammatory processes may compromise
the blood–brain barrier (BBB) allowing EV transport from the periphery to the brain: for
example, EVs derived from erythrocytes can cross the BBB, contain a large amount of α-
synuclein and may contribute to Parkinson pathology [41]. Thus, the observed EV increase
in the CSF could be due to an altered brain–periphery communication and reflect biological
processes of neurodegeneration occurring in the brain.

Current results of the association of the EV concentration/size ratio with the p-Tau
181/Aβ 42 ratio, as CSF biomarkers of AD [42], are in this direction. The EV concentra-
tion/size ratio with the p-Tau 181/Aβ 42 ratio correlation was found for the entire PTS
group but the stratified analysis for dementia diagnostic categories revealed that this effect
was driven by the AD group. In general, our results show a slight difference in EV variables
in FTD with respect to AD and DLB.

In line with our results, EVs, and specifically microvesicles released by reactive mi-
croglia, were demonstrated to be increased in subjects with mild cognitive impairment
(MCI) and in AD, compared to the controls. Moreover, EVs were associated with CSF
biomarkers of AD; specifically, a negative correlation between EV concentration and CSF
Aβ1-42 levels was found in the MCI group, while CSF Tau levels (t-Tau and p-Tau) were
positively correlated with EV concentration both in MCI and AD [43,44]. Moreover, CSF
EV were associated with brain atrophy and white matter tract damage, thus, suggesting
that the release of EV by microglia might participate in AD neurodegeneration. A num-
ber of studies have shown that EV secretion of aggregation-prone proteins such as Aβ,
α-synuclein, Tau or prion protein take places in neurodegenerative dementias [45–48].
Aside from the common mechanisms of aggregation-prone proteins spreading within the
brain, EVs have been proposed to contribute to trans-synaptic Tau transmission and the
propagation of Tau pathology in AD, from the entorhinal cortex to the hippocampus and
the surrounding areas [49]. The fascinating hypothesis that EVs may constitute a prion-like
mechanism for the spreading of disease proteins is indeed counterbalanced by evidence
indicating that EV, and specifically exosomes, may act as scavengers of neurotoxic soluble
Aβ [50]. Thus, whether exosomes and EV increase or decrease the detrimental action of Aβ

is still a matter of debate [51].
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We then investigated whether an alteration of neurotrophic factors in CSF might also
be detected in AD, DLB and FTD, and if their levels could be related to EV release. We
observed a decrease in CysC in dementia patients and more specifically in DLB patients; in
line with our results, lower CysC CSF levels have been previously shown to be associated
with DLB [8,52]. Regarding PGRN, AD patients showed an increased value of PGRN
compared to the DLB group; AD had the highest levels of PGRN despite not reaching a
statistical threshold compared to the other groups. The absence of a statistical significance
between groups may be due to the small number of cases used in the analysis, representing
a limitation in this study. Of note, PGRN CSF concentration has been shown to be increased
with microglia activation in AD [53,54] and in the progression of the disease [55]. In
the present study, we did not find any correlation between neurotrophic factors and EV
concentration and size. In contrast, in plasma, we described a positive correlation of CysC
with EV release in patients [32], suggesting that this neuroprotective factor, as well as an
anti-amyloidogenic protein, might affect EV release. In line with this observation, it has
been previously demonstrated in mice models that CysC enhances brain EV secretion,
resulting in a protective effect [21]. The present study, investigating the correlation of EVs
and CysC in the CSF of patients, did not confirm this paradigm.

In conclusion, we confirmed a common involvement of the endosomal pathway in
neurodegenerative dementias, as suggested by the alterations of CSF EVs in AD and DLB.
However, the role of the EVs has to be understood in more depth since the literature
is still contradictory about their protective/pathogenic function in neurodegeneration.
Since we described blood EVs (EV concentration/size) as a cross-disease biomarker with
high diagnostic performance, more studies are needed in order to clarify the molecular
mechanism underlying the observed effect at the peripheral level and the relationship with
the inverse alteration observed at central level in CSF. Thus, although CSF EV variables
show a fair diagnostic performance, plasma EVs could represent a better biomarker due
the more feasible access for sampling and the better diagnostic accuracy. However, the
results of this study indicate CSF EVs as a promising source for further investigation into
the interaction of EVs and aggregation-prone proteins to give insight into the molecular
mechanisms underlying the pathology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11030462/s1, Figure S1: CSF EV characterization, Figure S2:
EV concentration distribution, Figure S3: EV size distribution, Figure S4: ROC analysis on EV
concentration/size ratio.
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