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ABSTRACT
a-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell
adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms
transcribed from three distinct genes. While most of a-catenin research has focused on the
developmentally essential founding member, aE-catenin, this review discusses recent studies on
aT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to
cardiac, allergic and neurological diseases.
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Introduction

The cadherin-catenin complex is widely viewed as a
linchpin of tissue cohesion and organization. This com-
plex contains a transmembrane cadherin extracellular
domain that engages an identical cadherin on adjacent
cells. The cadherin cytoplasmic domain associates with
catenins that either stabilize cell surface cadherins (e.g.,
p120ctn) or physically links cadherins to the underlying
cytoskeleton (e.g., b-catenin and a-catenin to actin fila-
ments; p120ctn to microtubules) to bring about robust
intercellular adhesion.1,2 For historical reasons, the most
well studied cadherin-catenin complex comprises cad-
herin and catenins typically found in epithelia across tis-
sue types—an Epithelial-cadherin (E-cadherin), paired
with the more ubiquitously expressed p120ctn, b-catenin
and “epithelial” a-catenin (aE-catenin, or aE-cat). This
“canonical” cadherin-catenin complex, however, belies
known gene complexity at each protein position in the
cadherin-catenin complex (Fig. 1). Although fundamen-
tal paradigms of cell-cell adhesion have been gleaned
from this canonical cadherin-catenin complex, expan-
sion of the cadherin-catenin gene family evolved for a
reason— enabling cell and tissue specialization of the

basic epithelial adhesive paradigm, which favors organ-
ismal fitness. In this review, we focus on one of the more
recently evolved catenins, aT-catenin (aT-cat), as a
means to understand howmodest alterations in the cad-
herin-catenin adhesion system may be relevant to a
range of human diseases.

a-Catenins: Knock-out phenotypes reflect tissue
distribution

a-Catenins are b-catenin and actin-binding proteins,
where binding to both b-catenin and actin is required to
directly link the cadherin complex to cortical actin fila-
ments. They are found in nominally-defined epithelial
(E), neural (N), and testis (T) forms transcribed from
three distinct genes,3 where each is sufficient to rescue
cadherin-based adhesion in a-catenin-negative cell
lines.3-6 As is often the case with early nomenclature,
formal names can be misleading now that greater
resolving RNA sequencing technologies are available. In
this regard, the human genotype-tissue expression
(GTEx) database7 clearly shows that aE-cat (CTNNA1)
is not epithelial-restricted, but rather ubiquitously
expressed (Fig. 2a). These data are consistent with
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evidence that mouse knock-outs targeting Ctnna1
across a range of tissues can lead to penetrant loss of
cell-cell adhesion/tissue organization (e.g., whole
embryo,8 skin,9 brain10 and heart11). In contrast to the
ubiquity of aE-cat, aN-cat (CTNNA2) is largely
restricted to brain (Fig. 2b), consistent with evidence
that Ctnna2 knock-out mice display hypomorphic
brains and perinatal lethality.12,13 Remarkably, the more
recently evolved aT-cat (CTNNA3), named after its
expression in the testis and best known for its role in the
heart,14 is also abundantly expressed in the brain, spinal
cord, and peripheral nerve (Fig. 2c). Although Ctnna3
knock-out mice are viable and fertile,15 this curious tis-
sue distribution of CTNNA3, together with growing
linkages between CTNNA3 and diseases compatible
with this distribution (see below), raise the intriguing
notion that aT-cat/CTNNA3 may be the a-catenin
most relevant to a broad range of human diseases.

aE-cat: Founding member of the a-catenin family

Due to its ubiquity, molecular and structural analyses
are best known for aE-cat, the subject of recent excel-
lent reviews.16-18,19,20 The prevailing view of aE-cat in
the cadherin complex is as a mechanosensitive scaffold
protein that features a series of six, bundled a-helical
domain-regions.21-25 There are two key aspects to its
mechanosensitivity. First, the C-terminal F-actin bind-
ing domain of aE-cat shows preferential binding to
actin filaments under tension in vitro,26 suggesting that
aE-cat may preferentially couple the cadherin/

b-catenin complex to actin filaments that are under
myosin-based cortical tension. Contractile actin struc-
tures are typically found at discreet plasma membrane
locations (e.g., zonula and focal adhesions), and the
precise nature of this force-activated binding event is
presently unclear. Second, the middle or M-region of
aE-cat undergoes force-dependent unfurling,23,27

exposing a cryptic site that favors recruitment of the
related actin-binding protein, vinculin. In epithelia,
vinculin recruitment to aE-cat occurs in regions of the
plasma membrane that are under elevated forces, such
as an apical adhesive zone known as the zonula adhe-
rens.23,24 Since a number of proteins interact with aE-
cat through its mechanosensitive M-region,17,28 it is
possible that some of these partners may be variably
recruited to aEcat under distinct force-activated
thresholds (Fig. 3).

Given the level of amino acid identity/similarity
between aE-cat and aT-cat (56.1%/73.7%) or aN-cat
(76.5%/83.1%)[3], we may reason that these related
a-catenins share an analogous mechanosensitivity.
Although biochemical and cellular characterization of
aN-cat and aT-cat lags behind aE-cat, recent studies
suggest that cadherin complexes containing these
a-catenins are indeed different. For example, aE-cat
recruits vinculin to adherens junctions more effec-
tively than aN-cat using an a-catenin negative epithe-
lial cell line, possibly due aE-cat’s higher affinity for
actin filaments in vitro.24 How such differences are
leveraged by epithelia (aE-cat) and neurons (aN-cat)
to suit their respective junction-coupling needs

Figure 1. Schematic representation of cadherin-catenin complexes with distinct a-catenin isoforms aE-cat, aN-cat and aT-cat. Note that
there is substantial isoform diversity at the other positions in the cadherin-catenin complex, such as »19 classical cadherins (i.e., cate-
nin-binding) encompassing both type I and type II forms,91 three p120ctns as well as the b-catenin homologue, plakoglobin (reviewed
in92). For simplicity, these other isoforms are not shown with the exception of aE-cat participating in an E-cadherin complex, and aT-cat
with an N-cadherin complex.
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Figure 2. a-Catenin isoform expression analysis across human tissues. Graphs exported from the human Genotype-Tissue Expression
(GTEx) portal using CTNNA1, CTNNA2 and CTNNA3 gene identifiers. Expression values shown as Transcripts Per Million (TPM) calculated
from a gene model with isoforms collapsed to a single gene. No other normalization steps were applied. Box plots are shown as median
and 25th and 75th percentiles; points are displayed as outliers if they are above or below 1.5 times the interquartile range. Number of
human tissue samples range from »100-500 per tissue and can be viewed via the portal.
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remains to be clarified. Moreover, in contrast to the
established allosteric behavior of aE-cat, where b-cate-
nin binding curiously limits aE-cat’s capacity to bind
actin filaments in solution,29,30 aT-cat can bind cad-
herin/b-catenin and actin filaments, simultaneously.31

Thus, while aE-cat within the cadherin/b-catenin
complex shows preferential binding to actin filaments
under tension,26 aT-cat behaves as a constitutively
active, actin-binding protein that can physically cou-
ple cadherin/b-catenin to actin in the absence of ten-
sion,31 which may be relevant to aT-cat’s unique
junctional and tissue-specific role (see below). In addi-
tion to differences in actin-binding between aE- and
aT-cat proteins, recruitment of ligand-binding part-
ners through the M-domain also appears distinct, as
loss of aE-cat in heart reduces vinculin recruitment to
cardiac cell-cell junctions,11 whereas loss of aT-cat
reduces plakophilin-2 (PKP2) recruitment15,32 (also
below). Lastly, it is worth noting that all three a-cate-
nins show a capacity to form homodimers in vitro
that are incompatible with cadherin/b-catenin bind-
ing, and which allows for robust F-actin binding and
bundling activity.30,31,33,34 However, recently mea-
sured kinetic parameters suggest that only aE-cat may
be able to sustain the homodimeric state at physiologi-
cal concentration in cells,33 where homodimerization
contributes to membrane protrusive activities required

for cell migration and nascent contact formation.35,36

Together, these data suggest that mechanosensor, M-
domain-binding-partner and homodimerization abili-
ties of aT-cat are distinct from aE-cat, which may be
relevant to the tissue-restricted functions of aT-cat.

aT-cat in the heart and cardiomyopathy

aT-cat was named for its localization in peritubular
myoid cells of the testis,32 but is currently best known
for its role in the heart. This is largely because aT-cat
null mice show no obvious fertility defects, but rather
develop a dilated cardiomyopathy (DCM) after 3–6
months of age.15 Although mutations in aT-cat have
not yet been found associated with DCM in
humans,37,38 two mutations (detailed below) have
been implicated in the development of arrythmogenic
right ventricle cardiomyopathy (ARVC).39 As recent
evidence indicates that the left ventricle is often
affected in historically defined ARVC patients, this
biventricular disease is now referred to as arrhythmo-
genic cardiomyopathy (ACM).40

ACM disease is typically caused by mutations in
proteins that comprise desmosomes, a type of cad-
herin-based intercellular adhesion that employs pla-
que proteins (plakoglobin, plakophilins, desmoplakin)
to link to the intermediate filament cytoskeleton.41

Figure 3. Mechanosensor model of aE-cat in cell-cell adhesion. The actin-binding domain (ABD) of aE-cat (green) preferentially associ-
ates with actin filaments under tension (high tension versus low tension). This leads to unfurling of the M-domain (M1), which allows
vinculin binding and adherens junction reinforcement.
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Desmosomes are particularly important in tissues that
withstand substantial mechanical strain, such as heart
and skin.42,43 In this regard, aT-cat prominently local-
izes to a specialized cell-cell junction in cardiomyo-
cytes, known as the intercalated disc (ICD), which
contains distinct adherens junction, desmosome and
gap junction structures.44,45 In the hearts of higher
vertebrates, the ICD largely comprises a hybrid adhe-
rens junction/desmosome structure known as the area
composita,46,47 where this hybrid junction is consid-
ered optimized to withstand the increased mechanical
load of the four-chamber mammalian heart.48-50

Although the unique strength and molecular mechan-
ics of this junction type remains poorly understood,
aT-cat may be a key integrator of the area composita,
as it directly binds the desmosome component plako-
philin-2 (PKP2)51 while also participating in the cad-
herin/b-catenin complex, presumably reinforcing
adherens junction and desmosome alignment (Fig. 4).
Indeed, while aT-cat knock-out hearts develop nor-
mally due to compensation by the related aE-cat, over
time, these mice show reduced localization of PKP2
and the Connexin 43 gap junction component at
intercalated disks.15 Reduced area composita, hybrid-
junction coupling (via PKP2) likely contributes to the
decreased cardiac contractility and ejection fraction of
aT-cat null mice, whereas reduced gap junction cou-
pling (via Connexin 43) increases sensitivity to ven-
tricular arrhythmia following ischemic injury.15

Evidence that PKP2 mutations are also associated
with ACM,52 suggest that a particular aspect of aT-
cat/PKP2 coupling may be important for normal right
ventricle structure and function. For example, PKP2
interacts with aT-cat (but not aE-cat) via the M-
domain.39,51 As discussed above, both aE-cat M- and
actin-binding domains require force-dependent con-
formation regulatory events for their respective
binding activities, whereas aT-cat appears less mecha-
nosensitive, being more available to its binding-part-
ners.20,31 These or other differences may explain why
aT-cat is dispensable for normal heart development
(due to compensation by aE-cat), but important for
cardiac function with age. Indeed, as the mechanical
load on the heart increases after birth and the ICD
matures, aT-cat’s role as molecular integrator of the
area composita appears critical, as evidenced by the
earlier onset of cardiomyopathy in aT-cat mutant
mice compared to aE-cat conditional KO mice (3 ver-
sus 8 months of age, respectively).11,15

Recent biochemical and cell culture studies now ratio-
nalize how aT-cat heterozygous mutations may function
as dominant inhibitors of cardiomyocyte function in
ACM: One mutation (V94D) blocks b-catenin binding39

and favors aT-cat homodimerzation,31 leading to altered
junctional localization in cardiomyocyte junctions31; the
second mutation deletes a leucine in the critical actin-
binding domain (L765del) and induces protein dimeriza-
tion/ aggregation.31,39 Although formal evidence for these
mutations causing ACM awaits testing in mouse models,
it appears that bothaT-cat pathogenicmutations enhance
the intrinsic homodimerization and/or aggregation poten-
tial of aT-cat, which may prevent normal cadherin/cate-
nin/actin coupling and other possible maladaptation.
Lastly, it is worth noting that requirement of a-catenin-
based cell-cell adhesion to heart structure and function is
not absolute, but contextual, and based on developmental
timing or degree of tissue injury. For example, the early
loss of both aE- and aT-cat in mice is incompatible with
heart development but tolerated when induced perina-
tally.53 Remarkably, the loss of both catenins appears ben-
eficial when removed in adult hearts subjected to ischemic
injury, in part due to elevated YAP signaling that favors
proliferation.53 Such complexities raise the counterintui-
tive possibility that attenuating the function of proteins
collectively required for tissue development may be bene-
ficial during adult tissue repair after injury.

aT-cat linkages to allergic disease

One of the more surprising developments in the a-cat-
enin field are the number of independent genetic asso-
ciation studies linking aT-cat (CTNNA3) with asthma
and food allergy. Genome-wide association studies
have linked several non-coding CTNNA3 polymor-
phisms with two distinct forms of asthma, occupa-
tional asthma induced by chemical exposure54,55 and
steroid resistant atopic asthma.56,57 One study identi-
fied copy number deletions in CTNNA3 associated
with pediatric food allergy.58 The surprise with these
associations is that the restricted distribution of aT-
cat expression in human tissues (Fig. 2, brain/periph-
eral nerve, heart, skeletal muscle and testis) suggests
that either rare, contextually activated or non-canoni-
cal cell-types contribute to allergic disease.

Using the viable and fertile aT-cat knock-out mouse
described above, our team has validated these aT-cat
linkages to asthma using both chemical and house
dust-mite models of asthma.59,60 Curiously, full loss of
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aT-cat strongly suppresses airway hyperreactivity, a hall-
mark of asthma, but the aT-cat-expressing cell type that
drives allergic airway responses remains to be deter-
mined. Remarkably, the only lung cells that obviously
express aT-cat are cardiomyocytes that line the pulmo-
nary vasculature.60,61 However, anatomical differences in
human versus rodent pulmonary veins, their proximity
to airways and relative degree of cardiomyocyte
ensheathment has raised doubt that cardiomyocytes are
the aT-cat-expressing cell type that drives asthma.61,62

An appealing cell-type to consider for linkages between
an adhesion protein and allergic diseases are immune
cells. Although low levels of aT-cat RNA have been
detected in EBV-transformed peripheral blood cells and

lymphoid cancer lines54,56,58 (https://www.proteinatlas.
org/ENSG00000183230-CTNNA3/cell), evidence for
protein detection is generally lacking, with exception
of one study suggesting that aT-cat may contribute to
the upregulation of basophil-activation markers,
CD203c and CD63.58 Indeed, immune cells generally
do not express cadherins or a-catenin adhesion com-
ponents, but Th2-cytokines can robustly upregulate
E-cadherin and aE-cat in dendritic cells and alterna-
tively activated macrophages.63-67 We find no evidence
that aT-cat is upregulated under these same condi-
tions (not shown). Thus, future work will be required
to further validate and understand these intriguing
connections between aT-cat and allergic disease.

Figure 4. Model of aT-cat in cardiomyocyte cell-cell adhesion. aT-cat (orange) can interact with b-cat, actin and the desmosomal com-
ponent, PKP2, via its central M-domain (end of M2 and M3), which allows for the alignment and reinforcement of a hybrid adherens
junction-desmosome structure known as the area composita region of the intercalated disk. The intermediate filament-binding protein,
desmoplakin (DSP), is also shown.
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aT-cat in the nervous system and disease

Early studies documented aT-cat protein expression in
brain,3 but functional significance of this expression
has lagged presumably because of difficulties interro-
gating behavioral defects in mice. Moreover, identifica-
tion of aT-cat-expressing cell types in the brain has
been somewhat limited by the lack of robust tools (e.g.,
fluorescent membrane-anchored reporter mouse). For
example, while an early study suggested that aT-cat
protein may be expressed in murine cortical neurons,68

aT-cat is more prominently detected in ependymal cell
junctions that line ventricles, as well as cells within the
molecular layer of the cerebellum.69 In human tissue,
RNA sequencing data reveal that aT-cat expression is
highest in brain and spinal cord (Fig. 2), the latter of
which is likely due to the presence of a central canal
lined by aT-cat-positive ependymal cells. The unique
functional role of aT-cat in this specialized epithelium
remains unclear, however, as aT-cat knock-out mice
show no obvious defect in ventricle structure, possibly
due to compensatory upregulation of aE-cat.69

Despite the absence of an obvious neurological phe-
notype in aT-cat null mice (Frans Van Roy, personal
communication), a number of linkage studies raise the
possibility that aT-cat may contribute to disease in
humans. Specifically, the aT-cat gene, CTNNA3, is
located near a common fragile site on chromosome
10,70 and has been linked to late onset Alzheimer’s dis-
ease in females71 (reviewed in72). CTNNA3 is also
linked to autism in two large cohorts of European
ancestry with replication in two other cohorts,73 and
rare deletions in aT-cat were identified in individuals
with autism spectrum disorder.74,75 While transcrip-
tomic analysis of WT and aT-cat knock-mouse cere-
bella suggest alteration of pathways linked to
Alzheimer’s and autism,69 future work will be required
to define the cell type and unique junctional-speciali-
zation supported by aT-cat function. Indeed, available
online transcriptomic datasets of human and mouse
brain cell populations suggest that oligodendrocytes
may be a major aT-cat-expressing cell type in brain.76

aT-cat associations with cancer

Among the a-catenin family members, aE-cat is best
appreciated for playing a contributing role in tumori-
genesis in large part because it plays an integral part
in epithelial cell-cell adhesion with E-cadherin
(CDH1), a bona fide tumor-suppressor gene.77,78 Since

aT-cat mRNA and protein are generally absent from
epithelial tissues (Fig. 2; see also Human Atlas), there
was an early expectation that it might not contribute
to cancer. However, a number of recent studies sug-
gest that we may need to keep an open mind on this
front. For example, a recent proximity proteomics
study revealed aT-cat as the 9th most abundant pro-
tein at E-cadherin contacts in non-transformed Madin
Darby Canine Kidney epithelial cells,79 raising the
possibility that low levels of aT-cat mRNA may be
uncorrelated from its polypeptide abundance.
Remarkably, CTNNA3 is one of the largest genes in
the genome (i.e., spanning 1.78 Megabases) and proxi-
mal to a common fragile site (FRAD10D).80 In this
regard, monoallelic or reduced expression of CTNNA3
is associated with urothelial carcinoma of the blad-
der,81 pancreatic cancer associated with Schwachman-
Diamond Syndrome,82 oropharyngeal squamous cell
carcinoma83 and hepatocellular carcinoma.84 In addi-
tion, deletion, truncation and missense mutations
were identified in CTNNA3 in NSCLCs85 and laryn-
geal carcinoma.86 In some of these studies, aT-cat was
knocked-down and phenotypes typically associated
with cancer were modestly enhanced (e.g., prolifera-
tion, invasion, migration).84,86 Intriguingly, SNPs in
CTNNA3 were associated with radiation induced
brain cancers87 and focal loss of CTNNA3 was associ-
ated with a hybrid neurofibroma/ schwannoma,88 per-
haps consistent with the prominent expression of
CTNNA3 in brain and peripheral nerve (Fig. 2). While
these studies are suggestive, future work that makes
use of validated, isoform-specific aT-cat antibodies
and aT-cat knock-out/floxed mice15,53 will be required
to determine the extent to which aT-cat is a bona fide
tumor suppressor protein, particularly since the rela-
tionship between cell-cell adhesion and cancer is not
universally suppressive.89

Revised evolutionary perspective

Comparison of the three a-catenin genes reveals that
aT-cat is the most recently evolved, likely arising from
an amniote-specific duplication of the aN-cat gene.90

Evidence that aT-cat emerged with the development
of terrestrial vertebrates that have a four-chambered
heart, together with it being linked to ACM disease
and required for normal cardiac function during
murine lifespan, has led to the notion that aT-cat
evolved to address the unique mechanical demands of
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the heart.15,31,39 However, recent transcriptomic stud-
ies reveal that aT-cat is also abundantly expressed in
the nervous system (Fig. 2).76 This not only strength-
ens the plausibility of recent genetic linkages between
aT-cat and neurological diseases,69-76 but suggests
that aT-cat evolved to meet the demands of two very
different tissue systems (i.e., brain/peripheral nerves
and heart). The mechano-organizational features that
aT-cat uniquely brings to adherens junctions across
these systems will require further study. Thus, while
most of a-catenin research has focused on the devel-
opmentally essential founding member, aE-cat, the
developmentally dispensable aT-cat may be worthy of
greater attention, emerging as a broadly disease-
relevant a-catenin.
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