
RESEARCH ARTICLE

Climate factors influence seasonal influenza

activity in Bangkok, Thailand

Nungruthai Suntronwong, Preeyaporn Vichaiwattana, Sirapa Klinfueng, Sumeth Korkong,

Thanunrat Thongmee, Sompong Vongpunsawad, Yong PoovorawanID*

Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn

University, Bangkok, Thailand

* yong.p@chula.ac.th

Abstract

Yearly increase in influenza activity is associated with cold and dry winter in the temperate

regions, while influenza patterns in tropical countries vary significantly by regional climates

and geographic locations. To examine the association between influenza activity in Thailand

and local climate factors including temperature, relative humidity, and rainfall, we analyzed

the influenza surveillance data from January 2010 to December 2018 obtained from a large

private hospital in Bangkok. We found that approximately one in five influenza-like illness

samples (21.6% or 6,678/30,852) tested positive for influenza virus. Influenza virus typing

showed that 34.2% were influenza A(H1N1)pdm09, 46.0% were influenza A(H3N2), and

19.8% were influenza B virus. There were two seasonal waves of increased influenza activ-

ity. Peak influenza A(H1N1)pdm09 activity occurred in February and again in August, while

influenza A(H3N2) and influenza B viruses were primarily detected in August and Septem-

ber. Time series analysis suggests that increased relative humidity was significantly associ-

ated with increased influenza activity in Bangkok. Months with peak influenza activity

generally followed the most humid months of the year. We performed the seasonal autore-

gressive integrated moving average (SARIMA) multivariate analysis of all influenza activity

on the 2011 to 2017 data to predict the influenza activity for 2018. The resulting model

closely resembled the actual observed overall influenza detected that year. Consequently,

the ability to predict seasonal pattern of influenza in a large tropical city such as Bangkok

may enable better public health planning and underscores the importance of annual influ-

enza vaccination prior to the rainy season.

Introduction

Influenza virus infection is a major cause of acute respiratory disease and contributes to signif-

icant morbidity and mortality each year [1]. Seasonal pattern of influenza varies throughout

the temperate, tropical and sub-tropical regions of the world [2]. In the temperate regions of

both northern and southern hemisphere, influenza activity peaks during the cold winter

months and is linked to increased person-to-person transmission in indoor close-contact set-

tings and low absolute humidity [3–8]. In tropical regions, different patterns of influenza
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activity are observed [9, 10]. Inter-tropical belt region shows highly heterogeneous timing of

influenza epidemics in which some countries have an annual peak coinciding with rainy sea-

son, biannual peaks of influenza activity, or no distinct seasonality at all.

Previous studies have examined the meteorological factors conducive to influenza transmis-

sion in different parts of the world. In temperate regions, a study in the U.K. suggests that both

influenza A and B viruses preferred low temperatures and dew points [11], while a study in

Canada observed that increased influenza A virus detection was associated with increased rela-

tive humidity and low temperature [12]. Results from studies in tropical regions, however, are

inconsistent depending on the location and the study period. In the tropical Republic of Côte

d’Ivoire, rainfall was a good predictor of influenza activity [13], while in Uganda, influenza A

(H1N1) but not influenza A(H3N2) and B activity was associated with lower precipitation

[14]. In Central America, the overall influenza activity was consistently associated with

increased specific humidity, but temperature and the amount of rainfall were associated with

influenza activity in only certain locations [15].

Influenza pattern in tropical Southeast Asia has been less well-studied compared to that in

industrialized countries. Although influenza outbreaks fluctuate seasonally, major influenza

activity often coincides with the rainy season in Cambodia, Laos PDR, Myanmar and the Phil-

ippines [16–19]. Thailand experiences primary influenza activity during the rainy season, with

an additional secondary peak of less magnitude at the beginning of the year [17, 20]. Mean-

while, some studies in Indonesia, Singapore, and Vietnam reported no consistent pattern of

influenza peak [17, 21, 22]. Circulating influenza virus strains in Southeast Asia have mostly

been A(H1N1)pdm09, A(H3N2), and influenza B virus [23]. Yet, few studies have examined

in-depth the seasonality of influenza with local climates. It was reported that increasing tem-

perature and humidity has been linked to increased influenza activity in the Philippines and

Vietnam [2, 24]. However, neither temperature nor humidity was positively associated with

influenza A and B virus in Singapore [25].

In Thailand, data from suspected influenza cases suggest that temperature and relative humid-

ity, but not rainfall, correlated with the overall influenza activity in central Thailand [26]. In that

study, information regarding individual influenza virus (sub)types were not available, and the

prediction models for influenza activity differed depending on geographical regions. It was possi-

ble that the diversity of regional climates, such as in the higher elevations of the north, the sea-

bound southern peninsula, and the low elevation of the central plain, may also complicate the

generalization of climate influence on influenza activity within the country. Bangkok is situated

in central Thailand adjacent to the Gulf of Thailand where the prevailing hot and humid weather

is disrupted by the cooler and drier air from the north a few weeks each year (typically between

December and February) [27]. Since fluctuating climate factors may influence the seasonality of

influenza activity in and around metropolitan Bangkok, we examined the multi-year incidence

of influenza virus infection and how different influenza virus (sub)types were associated with the

monthly meteorological factors of temperature, relative humidity, and rainfall. Using time series

analysis, we examined potential forecasting models for influenza activity. Improved understand-

ing of the seasonal pattern of influenza virus infection for a large urban area may guide public

health policies on the optimal timing of influenza vaccination in the country.

Materials and methods

Ethical approval

The study was approved by the Institutional Review Board of the Faculty of Medicine of Chu-

lalongkorn University (IRB No. 127/61). Consent was not obtained because the data were ana-

lyzed anonymously.
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Laboratory testing of influenza virus

From January 2010 to December 2018, 30,852 nasopharyngeal or throat swab samples from

patients with influenza-like illness (ILI) from Bangpakok 9 International Hospital (latitude

13.75˚N and 100.55˚E longitude) in Bangkok were analyzed as part of an ongoing influenza

surveillance [23, 28]. We defined ILI as fever>38˚C accompanied by cough and/or sore

throat. Respiratory specimens arrived with limited patient information and included only age

and gender. Samples were tested by using real-time reverse-transcription polymerase chain

reaction to identify influenza A(H1N1)pdm09, A(H3N2) and influenza B virus as previously

described [29].

Meteorological data

Data on the monthly average temperature (˚C), rainfall (cm3), and relative humidity (%) from

January 2010 to December 2018 were available from Wolfram Alpha database [27]. They were

recorded at VTBD (Don Mueang International Airport) in Bangkok (latitude 13.91˚N and

100.6˚E longitude).

Data analysis

Monthly incidence of influenza was compiled based on the sample collection date. Percentages

of monthly influenza virus-positive samples relative to all ILI samples each month were deter-

mined. Univariate analysis of the meteorological variables including average temperature, rela-

tive humidity and rainfall was done on data between influenza-active months and months

without influenza activity using Mann-Whitney U test. An influenza-active month was defined

as a month in which the proportion of the confirmed influenza cases was equal to or greater

than a fixed threshold of 10% [10, 30]. This was calculated by dividing the monthly confirmed

influenza cases by each year’s total number of influenza virus-positive samples [31].

To examine the seasonality of influenza, we applied a generalized linear model (GLM) with

Gaussian and Poisson distribution on the monthly values of climate variables and laboratory-

confirmed influenza cases, respectively [32]. A seasonal model in the waveform with a period

of 12 months was then established with the estimated parameters from the GLM [11, 33].

Cross-correlation analysis and forecasting model

We initially examined the relationships between each influenza virus (sub)type and all influ-

enza activity with respect to meteorological variables. The monthly confirmed cases of influ-

enza A(H1N1)pdm09, influenza A(H3N2), influenza B, and all influenza viruses were

considered as dependent variables. Monthly values of mean temperature, relative humidity,

and accumulated rainfalls were considered as independent variables. Cross-correlation analy-

sis was conducted to assess the relationship between virus incidence and various meteorologi-

cal factors, and for relationships among influenza A(H1N1)pdm09, influenza A(H3N2), and

influenza B virus with different lag times (defined as the difference between time of maximum

climate factor values and time of maximum influenza incidence) of between 1 to 4 months

[26].

We considered four forecast models for individual and all influenza viruses using depen-

dent variables from influenza A(H1N1)pdm09 (model 1), influenza A(H3N2) (model 2), influ-

enza B (model 3), and all influenza viruses (model 4). For each model, we also considered

potential association among different influenza viruses. Climate factors were considered as

independent variables or proxy predictors in forecasting future influenza activity. Time series

analysis was conduct to identify the best-fit model for each influenza (sub)type and for all
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influenza viruses in two ways. A univariate time series used past data as dependent variables to

predict the future, while multivariate time series used the combined data from dependent and

independent variables for prediction. The forecast model used data from January 2011 to

December 2017 to calibrate and estimate the parameters. The last 12 months of data were used

to test the forecasting ability. Data from 2010 were excluded due to bias from the influenza

pandemic of 2009.

The Auto-Regressive Integrated Moving Average (ARIMA) (p,d,q) model was used in this

study. The parameter p represents maximum lag in the auto-regression (AR). The non-sea-

sonal differencing (d) is the order of integration (I) and represents the number of differences

required to make the series stationary. The parameter q of the moving average (MA) repre-

sents the linear regression of the output value on the time series when compared with the cur-

rent and previous terms [34]. Additionally, seasonal autoregressive integrated moving average

model SARIMA (p,d,q)(P,D,Q)s was also used. The parameters P, D, Q, and s represent the

order of seasonal AR, the degree of seasonal differencing, the seasonal moving average, and

the season’s length, respectively [35].

Forecasting incidence by using ARIMA model involved four steps. First, we used the aug-

mented Dickey-Fuller (ADF) and the Kwiatkowski-Phillips Schmidt-Shin (KPSS) tests to

assess whether the individual time series was stationary. The log-transformation and/or

differencing was applied to render the data stationary when necessary. Second, autocorrelation

function (ACF) and partial autocorrelation function (PACF) were applied to estimate p and q

based on the cutoff time lag. The P and Q order was obtained from ACF and PACF peak at

time s lags. Third, residual diagnosis and Ljung-Box (modified Box-Pierce) test was used

to identify the possibility of the model and to diagnose white-noise. Finally, the Ljung-

Box portmanteau test was applied to determine whether there was a lack-of-fit of the residuals

of the time series. The null hypothesis was that the model does not exhibit lack-of-fit. It was

expected that the test failed to reject the null hypothesis and that the residuals series showed

white noise (p-value >0.5) [36].

The model goodness-of-fit took into account the root mean square error (RMSE), the mean

absolute percentage error (MAPE), and the corrected Akaike’s Information Criterion (AICc).

The lowest parameter values suggest the optimal model [37]. For multivariate model, only cli-

mate variables that provided significant lagged effect and presented the highest correlation

coefficient among lag 1 up to lag 4 were considered [26, 38]. All statistical analysis was per-

formed in SPSS version 23 (SPSS Inc., USA) and R version 3.6.0 (R Foundation, Vienna, Aus-

tria) [39]. Alpha of 0.05 denotes statistical significance.

Results

Influenza surveillance

In this study period, 6,678 (21.6%) of the ILI samples tested positive for influenza virus

(Table 1). Of these, 80.2% (5,357/6,678) were influenza A virus and 19.8% (1,321/6,678) were

influenza B virus. Influenza A virus subtypes identified were 34.2% A(H1N1)pdm09 and

46.0% A(H3N2). From 2010 to 2018, overall influenza cases generally peaked in and around

August to September, which coincided with the rainy season (Fig 1). Biannual frequency of

predominantly influenza A(H1N1)pdm09 virus was more apparent than that of influenza B

virus.

Climate factors and influenza activity

We hypothesized that certain climate factors were associated with increased influenza activity,

therefore we examined monthly variations in the average temperature, relative humidity, and
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rainfall with respect to the monthly number of confirmed influenza virus infection. Average

monthly temperature was typically highest from April to May (29–33˚C) and lowest in January

(23–28˚C) (Fig 2A). January was also the least humid month (65–73%), while the period from

September to October experienced the highest relative humidity (76–82%) and coincided

with the rainy season in Bangkok (Fig 2B). Increases in the relative humidity concurred with

increases in confirmed influenza A(H3N2) virus. Although the amount of rainfall varied

throughout the study period, most rainfall occurred in September (10–40 cm3) (Fig 2C).

However, the amount of rainfall did not correlate with the fluctuations of any influenza virus.

When we evaluated the influence of climate factors in the months with and without substantial

influenza activity, we found that only relative humidity significantly correlated with influenza

virus (S1 Table).

Table 1. Influenza virus-positive samples and monthly average meteorological factors.

Positives (%) Mean (SD)b

All influenza virus 6,678 (21.6)a 18.93 (10.20)

A(H1N1)pdm09 2,282 (34.2)c 5.8 (7.19)

A/H3N2 3,075 (46.0)c 9.13 (8.11)

B 1,321 (19.8)c 4 (4.26)

Meteorological factors

Temperature (˚C) - 28.73 (1.71)

Relative humidity (%) - 73.32 (4.96)

Rainfall (cm3) - 9.11 (9.46)

a All influenza virus-positive samples divided by all ILI samples submitted.
b Mean and standard deviation (SD) were calculated from the monthly percentage of influenza positives relative to all

monthly ILI samples.
c The number of specific influenza virus divided by all influenza virus-positive samples.

https://doi.org/10.1371/journal.pone.0239729.t001

Fig 1. Monthly distribution of influenza activity from January 2010 to December 2018. Bar graph represents the proportion of ILI samples tested positive

for seasonal influenza A(H1N1) (purple), influenza A(H3N2) (yellow), and influenza B (blue) virus each month.

https://doi.org/10.1371/journal.pone.0239729.g001
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Analysis by GLM suggests that increased influenza activity occurred twice a year (Fig 3).

The first and smaller wave of increased influenza activity was in February, which corresponds

to the beginning of hot and dry weather. The second and larger influenza wave occurred

between August and September, which coincides with the second half the rainy season. Both

periods represented increased influenza A(H1N1)pdm09 and influenza B virus activity. Mean-

while, influenza A(H3N2) activity was only associated with the second wave, which coincided

with higher relative humidity and rainfall and occurred approximately 5 months after the first

influenza A(H1N1)pdm09 peaked. As expected, GLM showed no association between influ-

enza activity and temperature.

Fig 2. Incidence of influenza virus relative to meteorological factors. Monthly mean temperature (A), relative

humidity (B), or rainfall (C) (shaded gray) are shown with the confirmed cases of influenza A(H1N1)pdm09 virus

(purple), influenza A(H3N2) virus (yellow), influenza B virus (blue), and all influenza viruses (dashed line). Scale on

the right Y-axis denotes the percentage of the influenza virus-positive samples each month. Dotted horizontal line

indicates the overall average temperature (28.73˚C), relative humidity (73.32%), and rainfall (9.11 cm3) over nine years

(left Y-axis).

https://doi.org/10.1371/journal.pone.0239729.g002
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Identifying the ARIMA(X) model

We next examined the time delay in the association between climate factors and the incidence

of influenza. This was defined as the time difference in months between the peak of a climate

Fig 3. Incidence of yearly influenza and the periodic fluctuation of meteorological variables. Generalized linear

models depict the incidence of influenza virus each month (colored waves) relative to the monthly mean values of

climate factors (shaded). The left Y-axis represents the z-score of the (A) mean temperature (Temp), (B) relative

humidity (RH), and (C) rainfall (RF). The right Y-axis represents the differences in the viral incidence for all influenza

viruses (red dashed line), influenza A(H1N1)pdm09 virus (purple line), influenza A(H3N2) virus (yellow line), or

influenza B virus (blue line). The highest point on the wave indicates the time of year influenza virus detection peaked.

https://doi.org/10.1371/journal.pone.0239729.g003
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factor and the peak of an influenza virus activity (e.g., lag 1 represents 1 month difference). We

found that there was no significant association between influenza A(H1N1)pdm09 activity

with any meteorological variables (Fig 4A). Influenza A(H3N2) showed a moderately positive

correlation with the mean temperature of lag 4 (r = 0.65, p<0.001), and with relative humidity

and rainfall of lag 1 (r = 0.47 and r = 0.44, respectively) (p<0.001) (Fig 4B). Additionally, influ-

enza B was positively correlated with temperature at lag 4 (r = 0.37, p<0.05) (Fig 4C). To deter-

mine the correlation among influenza (sub)types, weakly negative correlation was found

between influenza A(H1N1)pdm09 and influenza A(H3N2) at lag 4 (r = -0.26, p<0.05). In

contrast, influenza A(H1N1)pdm09 showed strongly positive correlation with influenza B

virus (r = 0.63, p<0.001). All influenza activity showed positive correlation with the mean tem-

perature at lag 4 (r = 0.62, p<0.001), and relative humidity and rainfall at lag 1 (r = 0.32 and

r = 0.3, respectively) (p<0.05) (Fig 4D).

To identify the best-fitting model for the observed values, we performed the log10 transfor-

mation on the dependent variables to obtain a stationary time series (S1 Fig). We then com-

puted the suitable univariate and multivariate ARIMA models. For multivariate model,

variables which provided significant correlation were selected as predictors (S2 Table). The

appropriate ARIMA models for individual influenza (sub)type and all influenza viruses were

established (S2 and S3 Figs) by comparing the AICc values between the univariate and multi-

variate time series. We found that multivariate ARIMA model using both influenza incidence

and climate factors provided better goodness of fit than the univariate ARIMA model, which

used only influenza incidence (S3 Table). It also performed better and had reduced errors

(RMSE and MAPE) than the univariate model. For influenza A(H1N1)pdm09, the SARIMA

(2,1,1)(0,1,1)12 of multivariate time series gave a better forecast (RMSE = 0.89, MAPE =

22.99%), while the SARIMA(1,0,2)(1,1,0)12 model combined with all climate factors for influ-

enza A(H3N2) provided lowest forecasting error (RMSE = 0.77, MAPE = 22.47%). In addition,

the multivariate ARIMA(3,0,3)12 fitted well for influenza B when combined with temperature

and influenza A(H1N1)pdm09 (RMSE = 1.14, MAPE = 46.09%). The SARIMA(2,0,1)(1,0,0)12

with the mean temperature at lag 4, relative humidity at lag 1, and rainfalls at lag 1 was the

selected multivariate model with the best forecast value, which took into account all influenza

and climate factors (RMSE = 0.15, MAPE = 2.81%). Fitted graphs derived from the univariate

and multivariate analysis of the time series (Fig 5) showed that the multivariate models were

better able to capture the observed influenza activity during 2018 than the univariate models.

Overall, the forecast model using all influenza activity and all climate factors performed better

than the forecast model of individual (sub)type.

Discussion

Influenza is prevalent throughout the year in some countries with tropical climate [6]. In Thai-

land, increased influenza activity appears biannually typically in the rainy (June-August) and

cool (December-February) seasons [20, 23, 28]. Our multi-year study confirmed the substan-

tial decrease in influenza activity following the relatively hot and dry month of May, which

precedes the rainy season and coincides with the yearly recommended influenza vaccination

period in Thailand [40, 41]. We found that the first wave of influenza activity in a typical year

involves A(H1N1)pdm09, and to a lesser extent influenza B virus, both of which peaked in

February and again in August-September. The second and major wave of influenza activity

occurs around August-September in which all influenza viruses co-circulate. The observation

that influenza A(H1N1)pdm09 activity increases during the periods of low (February-May)

and high (August-October) relative humidity has previously been reported and suggests that
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Fig 4. Association between meteorological factors and influenza virus. Correlation analysis of (A) influenza A(H1N1)pdm09 virus, (B) influenza A(H3N2) virus, (C)

influenza B virus, and (D) all influenza viruses against climate variables and in the presence of co-circulating viruses at different lag times. Spearman’s rank cross-

correlation coefficients ranged from -1 to 1. Negative value equates to negative association as indicated by red circles, and positive value equate to positive association as

indicated by blue circles. Circle size represents the magnitude of the p-value. Color intensity represents the strength and weakness of the correlation (right scale). Temp,

mean temperature; RH, relative humidity; RF, rainfall.

https://doi.org/10.1371/journal.pone.0239729.g004
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Fig 5. Seasonal ARIMA (p,d,q)(P, D, Q)12 fitted time series analysis for individual influenza (sub)type and all influenza virus activity in the different

forecasting models. Time series for influenza A(H1N1)pdm09 (A, B), influenza A(H3N2) (C, D), influenza B (E, F), and all influenza virus (G, H) activities are
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humidity extremes along with temperatures influence influenza virus survival and/or trans-

mission in a complex way [5, 42–44].

Our findings add to the accumulating evidence that climate factors do affect the incidence

of influenza in Southeast Asia. Our study showed that overall influenza positively correlated

with relative humidity (up to lag 1) and rainfall (lag 1) similar to an earlier report in the tropics

including a previous Thai study with data from 2009–2014 [13, 26]. One of the most significant

findings from this study was that temperature, relative humidity, and rainfall were all associ-

ated with influenza A(H3N2) activity in Bangkok. Moreover, temperature was positively corre-

lated with overall influenza activity at 4 months lag, which happens to coincide with the period

of increased rainfall and humidity. Previous studies in Cambodia, the Philippines and Vietnam

have linked rainfall to increased overall influenza [8, 45]. In another Philippines study, temper-

ature and specific humidity were positive indicators for both influenza A and B viruses [2]. On

the contrary, Singapore identified negative correlations between relative humidity and both

influenza A and B viruses [25]. Despite differences in conclusions, we believe that findings

from each of these studies are valid for their respective study sites due to intrinsic differences

in geography among these countries. Seemingly contradictory results further underscore the

complexity of climatic drivers on individual (sub)type of influenza, and it has been proposed

that future regional data are warranted especially for relatively large and dispersed countries

such as the Philippines and Indonesia [9].

The association between climate factors such as temperature with the onset of influenza epi-

demic in some countries may be dependent on the latitudes [42]. It has been suggested that

influenza activity in countries located at low latitudes or in the tropics significantly correlated

with rainfall [8]. Influenza incidence may be linked to the latitude gradients whereby countries

located between 10 and 30 degrees north latitude tend to experience influenza A activity from

June to November and year-round sporadic influenza B activity [2, 46]. It was postulated that

the observed increase in influenza activity in the tropics during the humid and rainy season

may be indirectly linked to over-crowding in the community and virus stability on fomites

[47, 48]. Our observation of low overall influenza activity during hot and dry periods is consis-

tent with the notion that increase temperature may limit aerosol transmission in tropical

regions [5].

Using ARIMA model, the relationship between all influenza incidence and meteorological

variables enabled a forecast model with significant prediction. The analyzed forecasts for indi-

vidual influenza A(H1N1)pdm09, A(H3N2), and influenza B virus, however, were not as

robust. Although factoring in the average temperature, relative humidity, and rainfalls can

increase the accuracy of the forecasting model, each influenza (sub)type was affected by spe-

cific climate factors and presented forecasting challenges. Better prediction result from overall

influenza activity might have been due to the increased sample size of the combined data for

all three (sub)types of influenza viruses. Interestingly, we found that influenza A(H1N1)

pdm09 did not always co-circulate with influenza A(H3N2) virus like it did with influenza B

virus at up to 1 month lag. We also did not observe the inverse correlation between influenza

A(H3N2) and influenza B virus previously identified in the tropical Uganda [14]. Again, there

are probably unaccounted differences in geographical factors in addition to the fact that we

did not have weekly climate data, which would have been more useful for our calculations.

Finally, our time series analysis showed that the best-fit model resulted when incorporating

the climate factor parameters.

shown in black (January 2011 to December 2017) and dashed (January 2018 to December 2018) lines. Colored lines represent the predicted seasonality trends for

2018 using univariate (left panels) or multivariate (right panels) analysis with the 90% (darker shade) and 95% (lighter shade) confidence intervals shown.

https://doi.org/10.1371/journal.pone.0239729.g005
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This study had several limitations. Influenza surveillance was derived from one major hos-

pital in western Bangkok and may not have represented the influenza activity of the entire

city. Our surveillance was passive in nature because samples were submitted to us rather than

actively sought, therefore we did not use the time of viral exposure for analysis. The over-

whelming majority of the samples came from in-patient settings, so nosocomial influenza was

not considered. Although we had influenza data prior to 2011, these were excluded due to

fewer sample size and possible bias from the influenza pandemic of 2009. From our experi-

ence, we presumed that only influenza A(H1N1)pdm09 and A(H3N2) viruses comprised the

overwhelming majority of influenza A virus in circulation, but it is possible that other less fre-

quent subtypes were missed. Due to latitude and climate differences, influenza incidence in

northern and southern Thailand may be different and this would benefit from future studies.

In addition, daily or weekly climate factor values, when available, would be more useful in

improving modeling accuracy. Despite these limitations, our results suggest that certain cli-

mate factors do influence influenza activity and further support the existing schedule for influ-

enza vaccination prior to the rainy season. The time series analysis of influenza virus could

potentially supplement a more accurate forecasting of future seasonal influenza activity when

combined with an active epidemiological surveillance. Countries lacking the latter but share

similar geographical and climatological factors may benefit from the model-based disease

predictions. This and other time series analysis, especially when performed on the daily

climate factors, could potentially improve the foundation for enhanced modeling of disease

seasonality.
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