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BRIEF REVIEW

Journey to a Receptor for Advanced Glycation 
End Products Connection in Severe Acute 
Respiratory Syndrome Coronavirus 2 Infection
With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue

Divya Roy, Ravichandran Ramasamy, Ann Marie Schmidt

ABSTRACT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and 
the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no 
fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying 
increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-
associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory 
factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a 
burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced 
glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming 
organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted 
by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these 
priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-
CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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COVID-19: PROPERTIES AND CELLULAR 
INTERACTIONS
The severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) causing coronavirus disease 2019 
(COVID-19) has affected >58 million persons world-
wide with nearly 1.4 million deaths, as of late November, 
2020.1 SARS-CoV-2 is an enveloped, nonsegmented 
positive-sense RNA virus that uses an enzyme RdRp 
(RNA-dependent RNA polymerase).2 Cellular infection is 
dependent on the binding of the SARS-Cov-2 spike pro-
tein (S protein) to ACE2 (angiotensin-converting enzyme 
2) on the surface of cells; proteases such as the ser-
ine protease TMPRSS2 prime the S protein to facilitate 

entry into the host cells.3 ACE2 is expressed on a broad 
range of cells, such as lung alveolar epithelial cells (type 
I and type II), enterocytes, endothelial cells, smooth mus-
cle cells, the basal cell layer of the epidermis, and proxi-
mal tubule cells in the kidney.4

Among the most prominent and best-described con-
sequences of SARS-CoV-2 are those that affect the 
lung. In a multi-center study of lung tissue examination 
at autopsy from patients succumbing to SARS-CoV-2 
infection in Italy and New York, frequent tracheobron-
chitis and significant pulmonary vascular involvement, 
with noted presence of large vessel thrombi, capillary 
microthrombi, endothelial swelling, and inflammation 
was observed.5
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Beyond the lung alveolar epithelial cells, ACE2 is also 
expressed on such cells as cardiomyocytes and adipo-
cytes.6,7 Evidence has linked complications of SARS-
CoV-2 to the heart.8,9 At presentation of COVID-19 
disease, elevated levels of cardiac troponin have been 
observed, which are indicators of cardiac involvement and 
harbingers of poor outcome.10 SARS-CoV-2 may directly 
infect human cardiomyocytes.11 Beyond the indirect 
effects to the heart consequent to the severe respiratory 
consequences12 and the yet-to-be-fully explained disor-
ders of coagulation, exemplified in part by high levels of 
the D-dimer,13,14 extensive damage to the heart may ensue 
from direct infection through necrosis and myocarditis.9

In other cell types, the expression of ACE2 on adipo-
cytes may link SARS-CoV-2 to obesity, as ACE2 expres-
sion in murine adipocytes was regulated by high-fat diet 
(HFD) feeding.6 Advanced age and elevation of body 
mass index have been linked to increased risk for SARS-
CoV-2 severity15 and others reported that dysglycemia, 
such as in metabolic syndrome or diabetes (type 1 or 
type 2), also heightens risk for SARS-Cov-2 severity.16–18

Collectively, these considerations lead to a key 
question, are there common threads linking both 
the enhanced risk for and the severity of SARS-
Cov-2 in human infection? Numerous nodes in the 

pulmonary-cardiac-vascular-immunometabolic SARS-
Cov-2 network point to potential roles for the receptor for 
advanced glycation end products (RAGE) in COVID-19. 
In the sections to follow, evidence for a 2-part story for 
RAGE, both in enhanced risk for and increased severity 
of SARS-Cov-2 pathobiology will be presented.

RAGE—FROM ITS DISCOVERY IN THE 
ENDOTHELIUM AND ONWARDS
This story begins with a brief summary of RAGE. RAGE 
is a member of the immunoglobulin superfamily of cell 
surface receptors; it is composed of 5 principal domains. 
There are 3 extracellular domains, one immunoglobulin 
(Ig)-like Variable (V) domain followed by 2 Ig-like Con-
stant (C)-type domains (C1 and C2); these are followed 
by a single transmembrane spanning domain and a short 
highly charged cytoplasmic domain that contributes to 
RAGE signaling.19 RAGE was discovered as a receptor 
for the advanced glycation end products (AGEs) based 
on its identification from bovine aortic endothelial cells.20 
AGEs form and accumulate in diverse settings such as 
in diabetes, aging, oxidative stress, in highly processed 
foods, renal failure, inflammation, and obesity.21–25 Profil-
ing of the expression of human RAGE in adult tissues 
revealed that RAGE was most highly expressed in the 
lung, particularly in the type I alveolar epithelial cells, and 
it has been suggested that RAGE is expressed in the 
type II alveolar epithelial cells and alveolar macrophages 
as well.26,27 In distinct settings of immunometabolic per-
turbation, RAGE expression is upregulated in organs 
such as the heart and coronary arteries, adipose tissue, 
liver, kidney and the brain, and in immune cells, such as 

Nonstandard Abbreviations and Acronyms

ACE2 angiotensin-converting enzyme 2
AGEs advanced glycation end products
Ang II angiotensin II
CF cystic fibrosis
COVID-19 coronavirus disease 2019
CRP C-reactive protein
DAMP  damage-associated molecular 

patterns
DIAPH1 diaphanous 1
eWAT epididymal visceral adipose tissue
FH1 formin homology 1
HFD high-fat diet
HMGB1 high-mobility group box 1
IFN interferon
IRF interferon regulatory factor
MHC major histocompatibility complex
MMPs matrix metalloproteinases
NET neutrophil extracellular trap
RAGE  receptor for advanced glycation end 

products
RdRP RNA-dependent RNA polymerase
SARS-CoV-2  severe acute respiratory syndrome 

coronavirus 2
sRAGE soluble RAGE
TLR toll-like receptor

Highlights

• Severe acute respiratory syndrome coronavirus 2 is 
associated with significant morbidity and mortality; 
yet, there are no definitive cures and no fully preven-
tative measures to combat severe acute respiratory 
syndrome coronavirus 2.

• Activation of damage-associated molecular pat-
tern pathways in severe acute respiratory syndrome 
coronavirus 2, in the lung and other organs, contrib-
utes to a burst of cytokine release, which predis-
poses to significant tissue damage, loss of function, 
and mortality.

• This Review puts for the proposal that damage-
associated molecular pattern interaction with their 
central receptor, receptor for advanced glycation 
end products, contributes both to the increased 
vulnerability of obese/diabetic tissues to severity 
of severe acute respiratory syndrome coronavirus 2 
and to the widespread tissue damage induced by 
this infection in the lung and other organs.
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monocytes, macrophages, T and B lymphocytes, and 
dendritic cells.24,28–31

These considerations and tissue expression patterns 
for RAGE suggested its involvement in a diverse group 
of disorders; this concept was supported by the discovery 
that RAGE was a multi-ligand receptor. Its ability to trans-
duce the effects of multiple members of non-AGE ligand 
families, such as the S100/calgranulin family, HMGB1 
(high-mobility group box 1), amyloid-beta peptide, lyso-
phosphatidic acid, phosphatidylserine, C1q and Mac-1,32–

38 underscored the pleiotropic nature of the ligand-RAGE 
interaction consequences. It was on account of this multi-
ligand nature of RAGE and its association with chronic 
disease that led to its inclusion as a damage-associated 
molecular pattern (DAMP) receptor.39

Recent reports in COVID-19 have cemented putative 
links to RAGE and its ligands. First, levels of RAGE ligands 
S100A8, S100A9, S100A11, and EN-RAGE (S100A12) 
were highly expressed in lung and serum of fatal versus 
less severe cases of COVID-19.40 Second, levels of plasma 
S100A12 correlated with disease severity and increased 
bacterial products in patients with COVID-19.41 Third, 
serum S100B levels were associated with increased dis-
ease severity and COVID-19 score in affected patients.42 
Fourth, in extracellular vesicles, significantly higher levels 
of S100A12 were observed in patients with severe versus 
moderate COVID-19.43 Fifth, higher levels of S100A8/A9 
and a distinct DAMP RAGE ligand, HMGB1, were found to 
associate with higher risk of intensive care unit admission 
and death in patients with COVID-19.44 Sixth, HMGB1 
was reported to induce NETosis (neutrophil extracellular 
traps)45 and to induce ACE2 expression, critical for SARS-
CoV-2 entry into cells.46

Collectively, these considerations, particularly the 
prominent expression of DAMPs and RAGE in the lung 
and in alveolar pneumocytes, its role as a DAMP receptor, 
and their upregulation and activities in COVID-19 and in 
disorders of immunometabolism pinpoint DAMPs-RAGE 
as a perfect storm for contributions both to SARS-Cov-2 
infection and to conditions that predispose to increased 
severity of COVID-19. In the sections to follow, evidence 
will be presented for the concept of the RAGE 2 part 
story in COVID-19, that is, direct RAGE roles in SARS-
CoV-2 infection and in the underlying conditions that 
predispose to increased risk for COVID-19 severity.

PART 1: DIRECT ROLES FOR RAGE IN 
COVID-19 INFECTION
RAGE and the Lung—Activity in a Range of 
Lung Disorders, Especially Acute Respiratory 
Disease Syndrome
Evidence from human subjects and animal models has 
shown strong links between RAGE and lung disor-
ders, such as allergic airway inflammation and asthma, 

pulmonary fibrosis, lung cancer, chronic obstructive 
pulmonary disease, acute lung injury, pneumonia, cys-
tic fibrosis (CF), and bronchopulmonary dysplasia.47 In 
CF, studies from the French CF Gene Modifier Study 
fortified the association between RAGE and the sever-
ity of CF, as the AGER promoter variant, −429C, was 
reported to be associated with increased expression 
of RAGE and the potential for increased lung inflam-
mation and lung disease.48 Roles for the RAGE ligand 
S100A12 have also been implicated in mucin overpro-
duction by epithelial cells in CF in a pathway involving 
activation of NF-kB (nuclear factor-kappa B).49 Other 
studies linked the AGER polymorphism rs2070600T 
(Ser82) to lung function in smokers.50

In addition to genetic variants, distinct biomarkers for 
tracking the activity of the RAGE pathway include the 
measurement of soluble RAGEs (sRAGE). In addition to 
cell surface forms of RAGE that bind and transduce the 
effects of RAGE ligand signaling, soluble forms of RAGE 
have been identified. In the measurement of total plasma 
sRAGE in human subjects, ≈80% of the sRAGE is the 
result of cleavage of the cell surface receptor through 
the actions of ADAM10 and MMPs (matrix metallopro-
teinases); the remaining 20% of total sRAGE results 
from a splice variant of RAGE, called endogenous or 
esRAGE (endogenous secretory RAGE).51 Multiple stud-
ies have deployed measurements of sRAGE to gauge 
associations for the RAGE pathway in disorders in which 
its ligands accumulate and the response to therapeutic 
intervention.51 In this context, levels of plasma/serum and 
bronchoalveolar lavage fluid sRAGE have demonstrated 
strong associations with acute respiratory disease syn-
drome and other forms of lung disease.52,53

Is there evidence for roles for RAGE in acute lung 
injuries from animal model studies? Multiple studies 
have addressed this concept. For example, in an animal 
model of acute respiratory disease syndrome induced by 
intratracheal instillation of acid, mice were treated with 
an anti-RAGE monoclonal antibody or with sRAGE. The 
authors assessed lung injury by a number of functional, 
histological, and molecular mediators and reported that 
both anti-RAGE pathway therapeutics reduced lung 
injury and alveolar inflammation and improved arterial 
oxygenation.54 In another set of studies, cecal ligation 
and puncture was performed to induce severe polymi-
crobial sepsis with survival as an end point; mice devoid 
of Ager and wild-type mice treated with an anti-RAGE 
antibody displayed significantly higher survival and 
reduced inflammation and lung pathology versus the 
respective controls.55 In that same study, intravenous 
treatment with Listeria monocytogenes was also induced 
to mediate severe sepsis; mice devoid of Ager or treated 
with the anti-RAGE antibody demonstrated improved 
survival and less organ damage than the respective 
controls.55 In distinct work, in lung injury induced by 
World Trade Center particulate matter, exposure of mice 
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to the particulate matter resulted in striking upregula-
tion of inflammation and reduction of lung function; this 
was prevented in mice devoid of Ager.56 Of note, in that 
study, firefighters exposed during the aftermath of the 
World Trade Center disaster with the greatest risk for 
lung injury displayed high levels of circulating sRAGE, in 
parallel with high levels of CRP (C-reactive protein) and 
low levels of MMP-9.56

In summary, RAGE expression in the lung, particu-
larly in alveolar pneumocytes and alveolar macrophages, 
together with the findings in animal models that deletion 
or antagonism of RAGE attenuates acute respiratory dis-
ease syndrome-like and lung injury pathologies due to 
distinct stimuli, such as prolific accumulation of DAMPs, 
may signal potential roles for the receptor in SARS-
Cov-2 infection manifestations in the lung. In the car-
diopulmonary sphere of dysfunction, the heart is also a 
direct and indirect target of this infection. Much evidence 
has shown that RAGE contributes to the cardiac com-
plications of diabetes, ischemia/reperfusion, and viral 
infections and suggest that the study of this receptor 
pathway for SARS-Cov-2 impact in the heart is logical.

RAGE and the Heart—Mediator of COVID-19 
Injury to the Heart
RAGE is expressed in the heart in cells such as cardio-
myocytes, vascular cells and resident, and infiltrating 
immune cells.57,58 Global deletion of Ager or pharmaco-
logical antagonism of RAGE, either in the isolated per-
fused heart model (ex vivo) or in the in vivo infarction 
model (ligation of the left anterior descending coro-
nary artery) imparted protection from the adverse con-
sequences of diabetes or ischemia/reperfusion injury, 
at least in part through protection from aberrant JAK/
STAT (Janus-associated kinase/signal transducer and 
activator of transcription) and GSK3 (glycogen synthase 
kinase 3) signaling.59,60 Experiments implicated roles for 
RAGE in endothelial cells or monocytes/macrophages in 
these processes.61 Furthermore, distinct work suggested 
roles for RAGE in inflammatory heart disease, such as 
that induced by viruses (such as Coxsackievirus B3) and 
by autoimmune stimuli.62–65

Hence, in the context of cardiopulmonary dysfunc-
tion, such as that which might be induced by these above 
stimuli or SARS-Cov-2, what might be the underlying 
RAGE-dependent mechanisms? It is known that dying 
lung cells (endogenous and infiltrated immune cells) and 
dying cardiac cells may release DAMPs, such as HMGBI 
and S100/calgranulins, some of which may bind to 
RAGE and activate highly inflammatory cascades, such 
as NF-kB,66 which may exacerbate the early phases of 
tissue damage. Beyond the DAMPs, recent work has 
linked both RAGE and SARS-Cov-2 to neutrophil extra-
cellular traps (NETs), which will be considered in the sec-
tion to follow.

DAMPs, RAGE, and SARS-Cov-2: Casting a 
Wide Net
Recent studies underscore the link between NETs and 
COVID-19 pathology; for example, it was shown that 
when compared with healthy control subjects, in 32 hos-
pitalized patients with COVID-19, the concentration of 
NETs was increased in plasma, tracheal aspirates, and 
lung autopsy tissues.67 These NETs were derived from 
SARS-CoV-2-infected neutrophils; in in vitro studies, the 
NETs mediated lung epithelial cell death,67 which was 
proposed to be an important mediator of lung pathology 
in this disease.

How might these considerations relate to RAGE? A 
growing body of evidence links RAGE to NET formation 
and consequences. For example, NETs induce platelet 
aggregation through RAGE68; NET-derived HMGB1 
induces macrophage pyroptosis through RAGE69; disul-
fide HMGB1 facilitates prothrombotic NET formation via 
RAGE70; HMGB1 facilitates NET formation in part via 
RAGE71; RAGE facilitates NET formation in pancreatic 
cancer72; and platelet-derived HMGB1 facilitates NET 
formation via RAGE.73 If and by what means RAGE biol-
ogy intersects with that of SARS-CoV-2 in the context 
of NET formation and its prothrombotic and other con-
sequences, especially in the lungs, remains to be tested.

In summary, there are multiple putative mechanisms 
by which RAGE might play key roles in the pathogenesis 
of lung-triggered infection, inflammation, and the conse-
quent inflammatory burst that may trigger systemic com-
plications and severe local tissue damage.

Beyond direct RAGE roles in the host response to 
SARS-CoV-2 infection, it is also plausible that the accu-
mulation of DAMPs in chronic immunometabolic pertur-
bations such as diabetes and obesity may contribute, in 
part through RAGE, to the enhanced risk and severity of 
COVID-19. In this part 2 of the putative RAGE story in 
COVID-19, the following sections will present the evi-
dence supporting this premise.

PART 2: ROLES FOR RAGE IN 
IMMUNOMETABOLIC DISORDERS THAT 
EXACERBATE COVID-19 INFECTION
Diabetes—The Cascade of Consequences 
Triggered by Elevated Blood Glucose in SARS-
CoV-2 Infection
Studies have shown that diabetes renders patients with 
SARS-CoV-2 at greater risk of worse prognosis and 
death.74–78 While a myriad of mechanisms may underlie 
these findings, it is well-established that hyperglycemia 
perturbs fundamental homeostatic properties of blood 
vessels that cause increased oxidative stress, higher pro-
thrombotic potential, increased inflammation, including 
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upregulation of adhesion molecules and matrix metal-
loproteinases, and disruption of the glycocalyx, to name 
just a few.79–83 Some of these, in fact, have parallels in 
the pathobiology of SARS-CoV-2 infection. In the case 
of the RAGE axis, the first of the RAGE ligands to be dis-
covered, the AGEs, are increased in diabetes, and their 
formation is a direct consequence of high levels of blood 
glucose. AGE-RAGE interaction in endothelial cells 
enhances vascular permeability, upregulates vascular cell 
adhesion molecule-1, and increases hypoxia-mediated 
upregulation of Egr1 (early growth response-1).20,84,85 
Critically, beyond AGES, distinct DAMP RAGE ligands, 
such as HMGB1 and multiple members of the S100/
calgranulin family, are also upregulated in the circulation 
and tissues in types 1 and 2 diabetes and often associ-
ate with the severity of disease and complications.86–92

In this context, extensive evidence has indicated that 
the ligand-RAGE pathway contributes to the pathogen-
esis of both microvascular and macrovascular complica-
tions of diabetes.93–95 In experiments using genetic and 
pharmacological approaches, modulation of RAGE sig-
naling protects from many of the adverse complications 
of long-term diabetes.93–95 In the case of AGE-RAGE 
dynamics and the direct impact on the vasculature, when 
mice with targeted expression of dominant negative-
RAGE in endothelial cells were bred into the athero-
sclerosis-prone Apoe-deficient background, decreased 
atherosclerosis, reduced endothelial inflammation and 
suppression of proatherogenic signal transduction was 
observed when compared with control Apoe null mice.84

In addition to direct vascular cell damage by AGE-
RAGE interactions, especially in diabetes, the biology of 
RAGE has important links to the renin angiotensin sys-
tem, which is dysregulated in diabetes.96 ACE2, the recep-
tor for SARS-CoV-2, normally functions to convert Ang 
II (angiotensin II) into Ang (1–7), thereby opposing the 
inflammatory and vascular injury-provoking effects of Ang 
II.97,98 In diabetes, reductions in ACE2 favor unchecked 
actions of Ang II, which may potentiate diabetes-medi-
ated injury.99,100 It has been suggested that such dysregu-
lation of the renin angiotensin system in diabetes might 
contribute to poor outcome in SARS-CoV-2 infection.101

Previous research linked RAGE to the renin angiotensin 
system. For example, in spontaneously hypertensive rats, 
treatment with sRAGE reduced ACE activity, enhanced 
ACE2 expression, reduced oxidative and inflammatory 
stress, and limited activation of NF-kB in vascular tis-
sues.102 Furthermore, others showed that activation of the 
AT1 receptor by Ang II transactivated the RAGE cytoplas-
mic domain, leading to proinflammatory effects.103 Collec-
tively, these considerations suggest that components of 
the Ang II/ATI and ACE2 axis may be impacted by RAGE, 
especially in diabetes and, therefore, may contribute to 
perturbations upon SARS-CoV-2 infection.

Are cells beyond vascular cells affected by hypergly-
cemia, thereby modulating the impact of SARS-CoV-2 

in the infected subject? Indeed, a recent study examined 
the effects of high levels of glucose on monocytes/mac-
rophage properties in response to this infection. In that 
work, the authors used publicly available single-cell RNA 
sequencing data from BAL (bronchoalveolar lavage) fluid 
of patients with mild and severe COVID-19 and controls, 
and they identified that several genes associated with IFN 
(interferon) α/β signaling pathway were upregulated in 
patients with mild and severe COVID-19 versus controls; 
this was observed in all 6 clusters of monocytes.104 It was 
further shown that SARS-CoV-2 infects peripheral blood 
monocytes and enhances the expression of ACE2, thereby 
increasing SARS-CoV-2 infection. SARS-CoV-2-infected 
monocytes expressed higher levels of a range of proinflam-
matory factors, such as IFNα, β, and λ and higher levels 
of TNFα (tumor necrosis factor alpha), IL (interleukin) 1β, 
and IL6. Importantly, in environments characterized by high 
levels of glucose, sustained aerobic glycolysis in monocytes, 
through HIF-1α, promoted viral replication, cytokine produc-
tion, and mediated the subsequent T-cell dysfunction and 
lung epithelial cell death observed in SARS-CoV-2-infected 
lung. These findings thus identify a direct molecular mecha-
nism by which high levels of glucose modulate monocyte/
macrophage metabolism, which imparts significant conse-
quences on inflammation and cellular survival in COVID-19.

On account of the wide range of cellular targets in 
hyperglycemia, it is likely that multiple insights will con-
tinue to emerge regarding the modifying effects of high 
levels of glucose on the host response to SARS-CoV-2 
infection. If and how such perturbations may relate to 
RAGE signaling remain to be tested.

RAGE and Obesity—Does Fat Harbor DAMPs 
That Predispose to Exaggerated Immune 
Responses in SARS-CoV-2 Infection?
Adipocytes express ACE2 and ongoing investigations 
are addressing the question of whether or not adipose 
tissue is a reservoir for SARS-CoV-2 and, if so, does this 
serve as a means to amplify systemic viral load?105,106 
These considerations notwithstanding, it is established 
that obese adipose tissue may harbor DAMPs, such as 
AGEs, HMGB1, and S100/calgranulins.24,107,108 RAGE is 
expressed in human and murine adipose tissue, in adipo-
cytes as well as in other cells such as immune cells.24,109,110 
Mice bearing global deletion of Ager were subjected to 
HFD feeding; compared with wild-type mice fed HFD, 
mice with loss of Ager, although consuming equivalent 
amounts of food, were significantly protected from diet-
induced obesity. In parallel, the HFD-fed mice devoid of 
Ager displayed improved glucose and insulin tolerance.109 
The epididymal visceral adipose tissue (eWAT) of these 
mice fed the HFD revealed that the total CD11B+/
F4/80+ macrophage content was reduced in the Ager 
null eWAT versus the wild-type eWAT. Furthermore, the 
population of CD11B+/F4/80+/CD11C+ cells in the 
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eWAT, which are speculated to be more inflammatory, 
were also significantly lower in the Ager-deficient versus 
Ager-expressing eWAT.109 The mice devoid of Ager and 
fed the HFD displayed significantly higher energy expen-
diture than those mice expressing Ager despite no differ-
ences in food intake. The underlying RAGE-dependent 
mechanisms were traced to its expression in adipocytes.

Mice with adipocyte-specific deletion of Ager (in both 
white and brown adipocytes; using the Adipoq cre recom-
binase approach) were employed. AgerFlox/Flox Adipoq Cre+/

wt (adipocyte-specific deletion of Ager) and their floxed 
controls (AgerFlox/Flox Adipoq Crewt/wt) were fed a HFD; 
compared with the floxed control mice, those mice with 
adipocyte-specific deletion of Ager displayed significant 
protection from diet-induced obesity and improvements 
in glucose and insulin tolerance.110 These mice displayed 
significantly higher energy expenditure despite no major 
differences in food intake or physical activity; their brown 
and subcutaneous white adipose tissues (iBAT [inter-
scapular brown adipose tissue] and iWAT [inguinal white 
adipose tissue (subcutaneous)], respectively) displayed 
significantly higher expression of genes linked to thermo-
genesis such as Ucp.110 Further, the eWAT of the adipo-
cyte Ager-deleted mice fed HFD experiments traced the 
mechanism to RAGE ligand-dependent downregulation of 
protein kinase A activities on lipolysis and regulation of 
thermogenic gene programs.110

These intriguing findings uncovered potential innate 
functions for RAGE in conservation of energy mecha-
nisms; in the lean state, the quantity of DAMPs and 
pathological ligands in adipose tissue is low. However, in 
over-nutrition and obesity, the hoarding of energy in fat 
cells appears to correspond to plentiful accumulation of 
proinflammatory ligands. If and how the basal upregula-
tion of RAGE ligands including the DAMPs in adipose 
tissue depots might raise the risk for severity of infection 
by viruses such as SARS-Cov-2 remains to be tested.

It is notable that obesity may not only portend adverse 
outcomes in SARS-Cov-2 but in other viral infections, as 
well. It was reported that during the influenza A subtype 
H1N1 pandemic, obesity was found to correlate with 
worse outcome and death compared with lean persons 
based on the stratification by body mass index.111

Hence, at least in a subset of viral infections, the 
increased adipose and immune cell inflammation may, 
by yet to be defined mechanisms, facilitate excessively 
exuberant host responses to discrete infections, thereby 
leading to adverse clinical outcomes. If and how DAMP 
accumulation, and potential roles in such mechanisms 
as trained immunity, may contribute to such vulnerability 
needs to be studied.

In summary, the 2 part hypothesized story for RAGE 
in both severity of and enhanced risk for more severe 
COVID-19 was recently buttressed by new insights into 
roles for RAGE in interferon biology, as presented in the 
section to follow.

A New Twist: RAGE Meets IRF7
An unexpected facet of RAGE biology was recently 
unearthed in studies probing mechanisms by which 
RAGE suppressed regression of diabetic atherosclerosis 
in a murine model.112 In parallel with accelerated regres-
sion of atherosclerosis in diabetic mice devoid of Ager, 
RNA sequencing studies revealed that Ager null mac-
rophages retrieved from the regressing atherosclerotic 
plaques demonstrated significant reduction in the inter-
feron signaling pathway, and, in particular, in expression 
of Irf7. In in vitro studies, in primary bone marrow derived 
macrophages, RAGE ligands or serum from Western diet-
fed mice devoid of the low density lipoprotein receptor 
(Ldlr; 2%) upregulated Irf7 in a manner that was reduced 
by genetic deletion of Ager or by siRNA-targeted reduc-
tion of Ager in wild-type bone marrow derived macro-
phages. Furthermore, the plasma of diabetic Ager null 
mice undergoing regression of diabetic atherosclerosis 
revealed significantly lower levels of IFN-γ versus levels 
observed in the control wild-type diabetic mice.112

IRF7 (interferon regulatory factor 7) is considered a 
master regulator of the type 1 interferon response, as 
mice devoid of Irf7 display severe vulnerability to viral 
infections and reduction in IFNα/β.113 IRF7 is also 
expressed on nonimmune cells, such as smooth mus-
cle cells.114,115 In the context of SARS-CoV-2, ongoing 
research is revealing that the biology of interferon and 
type 1 IFN immunity is complex. It has been suggested 
that patients with severe and life-threatening COVID-
19 display inborn errors of type 1 IFN immunity.116 An 
enrichment of rare variants predicted to cause loss of 
function at 13 human loci known to govern TLR3 (toll-
like receptor 3) and IRF7-dependent type 1 IFN immu-
nity to influenza virus was noted in 659 patients with 
life-threatening severe COVID-19 pneumonia when 
compared with 534 subjects with very mild or asymp-
tomatic SARS-CoV-2 infection. In vitro, human fibro-
blasts bearing these mutations displayed increased 
vulnerability to SARS-CoV-2 infection.116 In other stud-
ies, it was shown that 101 of 987 patients with life-
threatening COVID-19 displayed neutralizing antibodies 
against IFN-ω (and in some cases IFN-α) or both. It was 
reported that these auto-antibodies neutralized the abil-
ity of the relevant IFNs to block SARS-CoV-2 infection 
in vitro.117 Collectively, these findings suggest beneficial 
and critical roles for IFNs in the response to SARS-
CoV-2; the situation, however, may be more complex 
and requires further investigation.

Recent evidence suggests that there may be dis-
tinct time-dependent differences in the roles of IFNs in 
SARS-CoV-2 infection. It is possible that whereas early 
rises in IFNs may be protective, later stage rises in IFNs 
may actually cause hyperinflammatory responses in part 
via the accumulation of monocytes and macrophages in 
the lung.118,119 Hence, despite the success of a number 
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of recent IFN-β trials, it was noted that care needed to 
be taken to consider issues of timing and patients sub-
groups.119 Insights into this complexity emerged from 
studies in mouse models.

Channappanavar et al120 showed that delayed IFN1 
signaling in SARS-CoV-infected mice resulted in the 
pathological accumulation of inflammatory monocytes/
macrophages and consequent elevation of lung cytokine 
levels, vascular leakage and impaired virus-specific T-cell 
responses. In mice expressing human ACE2 (adenovi-
rus), these authors showed that whereas IFNs did not 
mediate major changes in viral replication, they did cause 
significant pathological activation of immune cells.121 The 
authors, using wild-type mice and mice devoid of the IFN-
α receptor (Ifnar−/−) or devoid of both Irf3/Irf7, suggested 
that type 1 IFNs may be important drivers of pathologi-
cal sequelae in SARS-CoV-2 infection. Perhaps, it is all 
about the timing, the distinct cellular milieus, and the 
potential priming effects of preexisting and comorbid 
conditions associated with increased severity of COVID-
19. It will be essential to dissect these potential time-
dependent effects of IFNs in COVID-19 to maximize the 
possible benefits of IFN treatment for this disease.

These concepts lead to the premise that if, how, and 
in what settings the DAMP receptor RAGE might modu-
late the timing of IFN responses, perhaps through IRF7, 
remains to be tested. In this context, studies have tested 
roles for RAGE in viral infections and revealed complex 
relationships. In influenza A infection, deletion of Ager 
resulted in improved survival, improved viral clearance, and 
enhanced T-cell responses and neutrophil activation.122 In 
Newcastle disease virus infection, HMGB1-RAGE interac-
tion increased cytokine production in cellular models.123 In 
cellular models of the blood brain barrier, RAGE and CC7 
enhanced the transmigration of Zika-infected monocytes 
through the barrier.124 In cellular models, RAGE, along with 
TLRs 2 and 4, promoted cytokine production induced by 
porcine reproductive and respiratory syndrome virus.125 
Mice devoid of Ager or mice treated with sRAGE were pro-
tected from respiratory syncytial virus A2 strain-induced 
weight loss and inflammation126). In a distinct study, mice 
devoid of Ager displayed impaired antiviral immunity when 
infected with pneumonia virus of mice strain J3666, which 
is a murine analogue of RSV (respiratory syncytial virus).127 
The reasons for these divergent RAGE-dependent 
responses were not elucidated from those studies.

However, antiviral responses are also mediated 
through distinct DAMP receptors, the TLRs. In the sec-
tion to follow, the interplay between RAGE and TLRs in 
the context of COVID-19 is considered.

RAGE and TLR in SARS-CoV-2: Partners or 
Detours for RAGE From the Toll Road?
The discovery that RAGE ligands upregulated Irf7 in 
bone marrow derived macrophages raises the key 

issue of possible links between RAGE and the TLRs 
in the response to SARS-CoV-2 infection. Infection of 
the human lung epithelial cell line, A549, with SARS-
CoV-2 upregulated a number of pathways; by gene 
ontology analysis, upregulation of the TLR pathway was 
observed.128 Among the genes identified relevant to this 
pathway were Irf7, Ccl5, Stat1, Cxcl8, Tlr8, and Fos. TLRs 
transmit the biological signals emitted by pathogen-
associated molecular patterns, such as those relevant 
to viral infections.129 Although much work needs to be 
done to dissect the potential specific contributions of the 
multiple members of the TLR family, it is speculated that 
TLR7 may be key to driving the effects of single stranded 
RNA, relevant to SARS-CoV-2, which leads to activation 
of the type I IFN response.130 In in vitro studies, it was 
suggested that incubation of human lung macrophages 
with SARS-CoV-2 triggered TLR4-mediated cytokine 
release.131 Full elucidation of the beneficial versus antag-
onist roles for specific TLRs may lead to novel therapeu-
tic opportunities for COVID-19.

In this context, as discussed above, RAGE also acti-
vates NF-kB and plays roles in macrophages in regula-
tion of IRF7. It was previously shown that RAGE may 
bind to DNA.132 In other studies, it was reported that 
RAGE bound RNA and that RAGE enhanced cellular 
RNA uptake into endosomes.133 With respect to inter-
section with the TLRs, it was also shown that RAGE 
increased the sensitivity of the single strand RNA sens-
ing TLRs, such as TLR7, 8, and 13.133 Atop these con-
siderations that both RAGE and TLRs may bind DNA 
and RNA, additional molecular bridges between these 
2 pathways ensue from the ability of both RAGE and 
TLRs to bind HMGB1.134

Hence, it is likely that there may be relationships 
between RAGE and TLRs in the lung and other tissues 
such as the heart, upon infection and contact with SARS-
CoV-2. It is important to point out that nature and evolu-
tionary forces may have had divergent expectations and 
plans for the functions of TLRs versus RAGE, or, perhaps 
RAGE evolved to complement and fortify at least some 
of the functions of the TLRs. On the one hand, the TLRs 
may be traced to orthologs in Drosphila.135 In contrast, 
AGER, located on chromosome 6 in the MHC (major his-
tocompatibility complex) III humans,136 first appeared in 
Laurasiatheria.137 Laurasiatheria is a superorder of pla-
cental mammals that is part of the larger group of mam-
mals classified as Eutheria, which are mammalian clades 
that date to 160 million years ago.138 In the Eutherians, a 
key property is the expression of UCP1 (uncoupling pro-
tein 1), which is linked to nonshivering thermogenesis.139

Do the distinct origins of the TLR and RAGE networks 
have implications for responses to viral infections? At 
this time, in SARS-CoV-2 infection, it is clear that much 
work needs to be done to identify if interactions between 
RAGE and the TLRs exist and the timing of their involve-
ment in priming and active infection in COVID-19. 
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Studies in animal models are likely to shed light on the 
nature of the host responses that orchestrate the (patho)
biological response to SARS-CoV-2 infection. This will 
be considered in the section to follow.

Animal Models of SARS-CoV-2 Infection and 
Consequence: the Pros and Cons
Multiple species of animals have been considered for 
the study of SARS-CoV-2 infection; in naturally vulner-
able species such as hamsters, ferrets, cats, and non-
human primates, disease associated with this infection 
is often mild and not progressive but, in some species, 
age-related increases in severity have been observed.140 
Efforts have been made to study SARS-CoV-2 infection 
in mice models on account of the more ready availabil-
ity of mouse models for testing roles for specific genes. 
As the murine ACE2 may have reduced affinity for the 
SARS-CoV-2 Spike protein, humanized models of the 
ACE2 have been generated to overcome this limita-
tion.141–143 Examples include clustered regularly inter-
spaced short palindromic repeats/clustered regularly 
interspaced short palindromic repeat (CRISPR-Cas)-
mediated knock-in of the hACE2 (human angiotensin-1 
converting enzyme 2)141; expression of hACE2 under 
control of the murine Ace2 promoter142; and K18 trans-
genic hACE2 mouse, in which hACE2 is under control 
of the cytokeratin-18 gene promoter.143 In each case, 
there are pros and cons; for example, in the K18-hACE2 
mouse, although SARS-CoV-2-infected animals display 
weight loss, severe pulmonary involvement and mortali-
ties, the expression of hACE2 is artificially driven and not 
under the natural control mechanisms for the gene.143

These considerations notwithstanding, such murine 
models, may facilitate understanding of the mediators 
of injury directly upon COVID-19 infection and may aid 
in uncovering how underlying conditions such as obesity 
or diabetes may exacerbate the impact of SARS-CoV-2 
infection in the host. Such knowledge may then lead to 
targets amenable to therapeutic testing. In this context, 
based on the hypothesized part 1 (direct infection) and 
part 2 (conditions amplifying COVID-19 severity) roles 
for RAGE, the potential benefits of antagonism of RAGE 
may be probed. In the section to follow, means to antago-
nize RAGE will be considered.

Identification of Potential Therapeutic 
Strategies Targeting RAGE
Multiple efforts have been made to target RAGE using 
small molecules antagonists of the extracellular domains, 
antibodies, aptamers, and sRAGEs, as examples.51,144–146 
However, the extracellular domains of RAGE are com-
plex; they are composed of 3 extracellular Ig-like domains 
that bind the ligands of RAGE at distinct sites within the 
V and C1 and C2 domains.147,148 Accordingly, it is possible 

that blockade of RAGE at discrete sites on these extra-
cellular domains may fail to capture the pathobiology of 
all of its relevant ligands. Toward this end, targeting RAGE 
through blockade of its cellular signaling pathways has 
been proposed as a more comprehensive strategy.

The cytoplasmic domain or tail of RAGE, although 
essential for RAGE signaling, requires its interaction 
with adapter molecules to transduce the consequences 
of RAGE ligand extracellular binding and to initiate sig-
naling cascades. In this context, the cytoplasmic domain 
or tail of RAGE binds to the FH1 (formin homology 1) 
domain of DIAPH1 (Diaphanous 1) and DIAPH1 is 
important for RAGE-mediated signaling.149 The spe-
cific amino acids in cytoplasmic domain or tail of RAGE 
required for this interaction are R5Q6; upon their muta-
tion to alanine residues, NMR-based spectroscopic evi-
dence of their interaction is attenuated and in smooth 
muscle cells bearing the A5/A6 mutant, RAGE ligand-
triggered signal transduction (activation of AKT [protein 
kinase B]) was attenuated versus that observed in the 
R5/Q6 wild-type construct.150

This interaction site provided a potential opportunity for 
the development of small molecule antagonists; screening 
of a >59 000 compound small molecule library resulted in 
the identification of 13 small molecules that blocked cyto-
plasmic domain or tail of RAGE-DIAPH1 interaction.151 In 
cellular systems and in vivo, after infusion of RAGE ligands 
into wild-type mice, administration of small molecule 
antagonists suppressed inflammation in liver and kidney 
tissue compared with mice receiving vehicle.151

The observation that the RAGE-DIAPH1 axis repre-
sents a key signal transduction scaffold that is amenable 
to therapeutic interruption, unveils an entirely new set of 
hypotheses regarding potential roles for this signaling 
axis, RAGE-DIAPH1, in vascular and immune cell biol-
ogy. To date, multiple studies in mice devoid of Diaph1 
reveal striking similarities to the findings observed in 
Ager null mice, thereby linking these 2 pathways in bio-
logical systems beyond NMR spectroscopy and cell cul-
ture to rigorous hypothesis-testing in vivo.152–154

In summary, given the availability of a range of animal 
model species of SARS-CoV-2 infection, the targeting of 
extracellular or intracellular RAGE in SARS-CoV-2 infec-
tion is feasible.

Summary and Perspectives
Research has advanced knowledge of RAGE, from its 
earliest identified high level of basal expression in the 
lung, to its role as a conduit for transducing the effects 
of AGEs and other DAMPs, to one whose intracellular 
domain engages a formin, DIAPH1, thereby connect-
ing RAGE to signaling scaffolds mediating biological 
and pathobiological functions through the actin cyto-
skeleton, Rho GTPase signaling and regulation of SRF 
(serum response factor)-dependent genes—each key 
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pieces in vascular and immune cell perturbations (Fig-
ure).155–157 Atop these observations, the recent discovery 
of RAGE ligand-dependent regulation of IRF7 in mac-
rophages raises new and unanticipated possibilities—is 
RAGE involved in the host response to viral infections; 
does DIAPH1 participate; does RAGE-dependent acti-
vation of NF-kB and IRF7 contribute to the cytokine 
barrage after SARS-CoV-2 infection; might antagonism 
of RAGE/DIAPH attenuate the aggressive inflamma-
tory barrage triggered at least in some patients infected 
with COVID-19?

Finally, as clinical studies have identified that disor-
ders of metabolism (diabetes and obesity) amplify the 
risk for severe manifestations of COVID-19, is it plau-
sible that the increased production and accumulation of 
DAMPs in metabolic and vascular tissues, and through 
their interactions with RAGE, raise basal signaling and 

inflammatory stress via circulating immune cell-host cell 
communications, thereby priming the tissues throughout 
the diabetic or obese host, thus amplifying the response 
to SARS-Cov-2 infection? Undoubtedly, optimal preven-
tion and control of SARS-CoV-2 infection will require 
a multi-pronged approach. If and to what extent RAGE 
might be a key component within the COVID-19 arma-
mentarium of therapeutic strategies is under investiga-
tion as the journey continues.
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Figure. Receptor for advanced glycation end products (RAGE) and the many roads to severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).
Recent studies from SARS-CoV-2-infected human subjects have demonstrated that elevation of damage-associated molecular patterns (DAMP) 
ligands of RAGE, such as HMGB1, S100A8, S100A9, S100A11, S100A12, and S100B in the lung tissue, and plasma/serum are associated 
with disease severity and risk of death. Hence, in active infection, in part I of the hypothesized RAGE response in acute infection (top), these 
DAMP ligands of RAGE may exacerbate the local responses to infection in organs such as the lung and heart, leading to severe cell stress/
death. The known sequelae of RAGE activities, in part through the actions of NF-kB (nuclear factor-kappa B), lead to endothelial dysfunction 
(permeability, prothrombotic and proinflammatory state); immune cell activation, oxidative stress, and upregulation of distinct factors such as 
EGR1 (early growth response 1), which coordinates much of the adverse responses to hypoxia and ischemia. The recent observation that 
RAGE ligands upregulate IRF7 (interferon regulatory factor 7) in immune cells suggests that DAMP RAGE ligands might aggravate disease in 
SARS-CoV-2 infection. Within the sphere of RAGE biology, many of these same DAMP ligands also accumulate in chronic inflammatory and 
metabolic disorders. In part 2 of the hypothesized RAGE priming mechanisms in diabetes/hyperglycemia and obesity (bottom), the inexorable 
accumulation of advanced glycation end products (AGEs) and other DAMP RAGE ligands relevant to cardiometabolic perturbation may prime 
the organs for amplification of inflammatory and tissue-damaging mechanisms upon SARS-CoV-2 infection. Hence, blockade of RAGE, during 
immunometabolic priming in diabetes/obesity, or during active SARS-CoV-2 infection, might be efficacious in tempering the damage from acute 
infection and in preventing diabetes/obesity-mediated amplification of coronavirus disease 2019 (COVID-19) severity. These hypotheses are 
open questions amenable to investigation. EC indicates endothelial cell; and TLR, toll-like receptor.
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