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Phase contrast microscopy (PCM) is routinely used for the inspection of adherent cell cultures in all fields of biology and
biomedicine. Key decisions for experimental protocols are often taken by an operator based on typically qualitative
observations. However, automated processing and analysis of PCM images remain challenging due to the low contrast
between foreground objects (cells) and background as well as various imaging artefacts. We propose a trainable pixel-wise
segmentation approach whereby image structures and symmetries are encoded in the form of multi-scale Basic Image
Features local histograms, and classification of them is learned by random decision trees. This approach was validated for
segmentation of cell versus background, and discrimination between two different cell types. Performance close to that of
state-of-the-art specialised algorithms was achieved despite the general nature of the method. The low processing time (,4 s
per 1280 £ 960 pixel images) is suitable for batch processing of experimental data as well as for interactive segmentation
applications.
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1. Introduction

Phase contrast microscopy (PCM) is widely used as the de

facto light microscopy modality for the inspection of

adherent cell cultures. PCM enables the observation of

transparent cellular specimens by transforming phase

shifts (induced by differences in refractive index between

the sample and the surrounding medium) into changes in

amplitude, which are readily detectable by the human eye

or a digital camera (Zernike 1942). Automated segmenta-

tion of PCM images is made challenging by artefacts that

are intrinsic to the method (Otaki 2000; Gao et al. 2011).

The ‘shade-off effect’ results in low contrast between the

interior of cellular objects and the image background, and

bright halo artefacts around cellular objects commonly

occur. Other sources of noise that can potentially interfere

with PCM image segmentation include illumination

patterns and non-cellular background structural noise

(e.g. protein depositions and growth substrate defects).

Generic intensity thresholding approaches (e.g.

Otsu’s) do not usually produce satisfactory results.

Specialised segmentation approaches that rely on a priori

knowledge of the structure and properties of PCM images

have been developed, including methods based on contrast

filters (Bradhurst et al. 2008; Topman et al. 2011; Juneau

et al. 2013; Jaccard et al. 2014), active contours (Ambühl

et al. 2012; Seroussi et al. 2012), weak watershed

assemblies (Debeir et al. 2008) and image formation

models (Yin et al. 2012). More recently, trainable

segmentation methods for microscopy images based on

statistical learning of image features (e.g. intensity and

texture) have been gaining traction (Kazmar et al. 2010;

Yin et al. 2010; Sommer et al. 2011). Random forest

classifiers (Breiman 2001) were found to be suitable to

learn the patterns of features that allow correct segmenta-

tion due to their low computational complexity and their

ability to accommodate large data-sets such as images

(Schroff et al. 2008; Sommer et al. 2011). Typically,

trainable segmentation involves using the responses to a

bank of linear and nonlinear filters computed at multiple

scales as feature vectors for pixel-wise classification.

In Ilastik and Weka trainable segmentation (Sommer et al.

2011; Schindelin et al. 2012), two widely used software

packages for trainable segmentation of biomedical images,

the vector for a given pixel typically contains only a single

value per scale for a given feature and thus does not fully

encode potentially valuable local information and context.

In this contribution, we describe a framework for PCM

image segmentation whereby local histograms encoding

image features at multiple scales were used as the input to

random decision trees classifiers. Unlike typical filter-

based feature or patch-based representations, the use of

local feature histograms leads to the discarding of local

spatial structure, essentially yielding locally orderless

images (Koenderink 1999). This was achieved by
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computing Basic Image Features (BIFs), an image

representation whose pixels take one of seven values

depending on local features and symmetries (Griffin et al.

2009). This small range of possible pixel values allowed

efficient construction of local histograms, and classifier

training was computationally tractable even in the case

where multiple scales were considered. The segmentation

performance is assessed using two separate PCM image

data-sets which present different challenges. It is also

compared with specialised PCM segmentation algorithms.

This extension of our previously published work

(Jaccard et al. 2014) includes additional details on the

methods used and new results including comparison with

other widely used trainable segmentation software

packages.

2. Trainable segmentation

2.1 General approach

PCM images were segmented based on local histograms of

BIFs (Figure 1). First, BIFs of the input image were

computed at various scales. Local BIFs histograms were

then computed for windows centred at each pixel of the

image. The feature vector for classification was con-

structed by concatenation of the local BIFs histograms

obtained for a given pixel of the input across all scales

considered (i.e. dimensions of the local structures

detected). The dimensions of the pixel feature vectors

were thus M £ 7 where M is the number of scales

considered. For comparison purposes, the situation where

a single value per scale per pixel was considered, which

effectively corresponded to a window diameter of 1 pixel.

Pixel feature vectors for classification were then of

dimensions M £ 1.

The classifier used was a random forest with 20 trees

and
ffiffiffiffi
F

p
features were sampled at each split where F is the

total number of features. The number of trees had to be

chosen taking into account the balance between segmenta-

tion performance and processing time. Empirical exper-

iments showed that increasing the number of trees above

20 only led to marginal improvements in segmentation

performance while significantly increasing processing

time and memory usage. The lower number of trees

ensured reasonable processing times for applications

where rapid feedback is required, such as interactive

segmentation.

The output of the classifier was a binary label, with 1

for foreground objects (i.e. cells) and 0 for image

background, which was based on the majority vote across

all trees of the forest. This output was used as is for

segmentation without further processing or refinement.

Random forest-Matlab, an open-source implementation of

Random Forest for MATLAB, was used.1

2.2 BIFs computation

The computation of BIFs consisted in classifying the

output obtained from convolution of an image with a bank

of derivative-of-Gaussian (DtG) filters into one of seven

categories. These categories corresponded to distinct local

image structures (Figure 1), as defined by local symmetries

(Griffin et al. 2009): slopes, radially symmetrical dark and

bright blobs, dark and bright lines, saddle points and ‘flat’

(i.e. no strong structure Figure 2).

Figure 1. PCM pixel classification based on local histograms of BIFs. The seven BIFs and their respective colour codes are flat (i.e. no
strong structure), slopes, radially symmetrical dark blobs, radially symmetrical bright blobs, dark lines, bright lines and saddle points.
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The response of the convolution of image I with one of

the DtG filters is denoted as cij where i and j represent the

order in the x and y directions, respectively. Scale-

normalised response sij was then computed as shown in

Equation (1).

sij ¼ siþj
B cij: ð1Þ

Based on the scale-normalised response, intermediate

calculations are carried out as shown in Equations (2) and

(3). These calculations are made for speed purposes. l is

the image Laplacian (i.e. the mean over directions of the

2nd directional derivatives) and g is a term measuring the

variance over directions of the 2nd directional derivative.

l ¼ s20 þ s02; ð2Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs20 þ s02Þ2 þ 4s211

q
: ð3Þ

Both l and g were computed for each pixel of the

input image I. Pixels were then classified in one of

seven categories based on the largest of 1c00;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c210 þ c201

p
; l;2l; gþ l=

ffiffiffi
2

p
; g2 l=

ffiffiffi
2

p
; g, resulting in a

BIFs image IB. BIFs computation was thus controlled

by two parameters: the scale (standard deviation) sB of

the DtG filters and a value 1 that controls when a pixel

should be considered flat. For this work, 1 was kept at a

constant value of 0.03, which was empirically found to

produce good results regardless of the feature scale

considered.

2.3 Soft-edged local BIFs histograms computation

Soft-edged local BIFs histograms were computed

by convolution (Griffin et al. 2012). First, seven binary

masks b ðkÞ were generated as shown in Equation (4), one

per BIF.

b ðkÞðx; yÞ ¼
1 if IBðx; yÞ ¼ k

0 otherwise

(

for k ¼ 1; 2; . . . ; 7

ð4Þ

Images C ðkÞ were obtained by convolution of each

binary mask b ðkÞ with a Gaussian kernel Gsw
of width

equal to the desired window size (w) and of standard

deviation sw equal to half the window size as shown in

Equation (5)

C ðkÞðx; yÞ ¼ Gsw*b
ðkÞ for k ¼ 1; 2; . . . ; 7 ð5Þ

The histogram at location ðx; yÞ was then constructed

by concatenating the values obtained across the seven C ðkÞ
images for that location, as shown in Equation (6). The

resulting histograms necessarily sum to unity.

Hðx; yÞ ¼ ½C ð1Þðx; yÞ;C ð2Þðx; yÞ; . . . ;C ð7Þðx; yÞ�: ð6Þ

2.4 Intensity and contrast features

In addition to BIFs, intensity and contrast features were

also considered (Figure 3). For intensity features, the

feature scale corresponded to the standard deviation of

the Gaussian kernel used to blur the original PCM image.

Figure 2. Construction of local soft-edged BIFs histograms. Cameraman image qMIT.
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Contrast features were computed after application of a

previously described soft-edged normalised contrast

filter (Jaccard et al. 2014). The feature scale corre-

sponded to the standard deviation of said filter. Local

contrast histograms for both intensity and contrast

features were constructed as described above before

being downscaled to 10 bins per scale for performance

reasons. Although only the best results obtained for

intensity and contrast are reported in the text, the same

parameter process methodology was followed for all

three feature types.

2.5 Data-sets and segmentation performance
evaluation

Two data-sets were used for segmentation performance

evaluation (Figure 4). The first one was a set of

50,250 £ 250 pixel mouse embryonic stem cells

(mESCs) PCM images (Jaccard et al. 2014). This data-

set was used to evaluate the performance of the algorithm

for a simple foreground versus background segmentation

task. The second data-set comprised 20,500 £ 500 pixel

PCM images of human embryonic stem cells (hESCs) co-

cultured with mouse embryonic fibroblasts (MEFs). This

Figure 3. Illustration of the three types of figures considered for this work: intensity, contrast and BIFs.

Figure 4. Data-sets used for segmentation performance evaluation: mESCs and hESCs PCM images. The last column shows the
agreement between the segmentation output using optimal parameters and the ground truth. TP is true positives, FP is false positives, TN
is true negatives and FN is false negatives.
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data-set was used to evaluate algorithm performance for

the discrimination between two foreground object types

with similar visual features. This second data-set was used

in a previous study (Reichen et al. 2012) where a

preliminary, unoptimised implementation of the approach

described here-in resulted in promising results, but at the

cost of long processing times (,40 s per images). Due to

the nature of the cells imaged, it was not possible to

segment individual cells at a useful accuracy. Instead, the

goal was the classification of pixels as either foreground or

background.

Qualitative comparisons with Ilastik (version 1.1.3)

and the Weka trainable segmentation plugin for FIJI

(version 2.1.0) were also carried out for both data-sets.

Interactive segmentation was simulated by sparse annota-

tions of four and three full-resolution (1280 £ 960) PCM

images for mESCs (Figure 7) and hESCs (Figure 8) data-

sets, respectively. Although all efforts were made to have

equivalent annotations across all methods compared, there

were slight differences at the pixel level due to differences

in annotation tools. Segmentation performance for each

method was evaluated on a per-pixel basis as above (using

F-score as a metric) by comparison with fully annotated

ground truth images. For Ilastik, all feature types at all

scales were considered. For Weka trainable segmentation,

Gaussian blur, Sobel filter, Hessian, difference of Gaussian

and membrane projection features were used with sigma

varying from 1.0 to 16.0. The results shown are the best

obtained for each method after non-exhaustive exploration

of the feature and parameter space.

The trainable segmentation scheme presented in this

work was implemented in MATLAB, mainly relying on the

image processing toolbox. The quoted processing times

were determined using a single thread on an Intel i7-4770K

CPUwith 16GB of RAM and included feature computation,

local histograms constructions and pixel label prediction.

3. Segmentation performance

Segmentation performance was evaluated by comparison

of the algorithm output with ground truth images

annotated by human experts. The agreement between the

two was calculated using the F-score, equivalent to Dice’s

coefficient (Dice 1945). A leave-one-out cross-validation

(LOOCV) approach was taken whereby the classifier was

trained using 50,000 pixels randomly sampled across

N 2 1 images before being used to predict the labels for

each pixel of the left out image. This was repeated N times

so that all images were left out once. The reported LOOCV

F-score was thus the mean F-score across the N images.

Segmentation performance was evaluated for both the

mESC and hESC PCM images data-sets over a range of

parameter values (Figure 5). The diameter of the local

histogram window (w) was varied between 5 and 400

pixels. Up to five BIFs scales (sB) were combined: 1,

1 þ 2, 1 þ 2 þ 4, 1 þ 2 þ 4 þ 8 and 1 þ 2 þ 4 þ
8 þ 16.

3.1 Cell versus background segmentation
(mESC data-set)

The mESC data-set was employed to evaluate the

performance of the proposed method for cell versus

Figure 5. Segmentation performance in function of the local window diameter (w) for different combinations of BIFs scales. Awindow
diameter of 1 pixel indicates that only a single value per scale was used. The scores shown are the mean ^ standard deviation F-scores
obtained after LOOCV based on 50 and 20 images for mESCs and hESCs, respectively.
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background segmentation tasks. Best performance was

achieved for a local window diameter of 20 pixels and the

combination of all five scales (0.92 ^ 0.05). Very similar

results were obtained across all combinations of scales for

window diameters of 15 and 20 pixels, showing a plateau

of performance around these window size values.

Segmentation performance was markedly lower when

using only a single value per pixel and scale, rather than

local histograms. Increasing the window size beyond 20

pixels was found to be detrimental, the worst results

recorded being for 200 pixel-wide windows. While single-

scale schemes were usually the worst performing,

increasing the number of scales only led to marginally

better performance. For comparison purposes, local

intensity and contrast histograms were also considered.

The best performance achievable was 0.83 ^ 0.12 and

0.85 ^ 0.15 for intensity and contrast features,

respectively.

The trainable segmentation approach (using multi-

scale local BIFs histograms) was also compared with

specialised PCM image segmentation algorithms based on

contrast filters (Topman et al. 2011; Juneau et al. 2013;

Jaccard et al. 2014). Trainable segmentation outperformed

two of the three approaches and produced results

approaching those obtained using the third (best perform-

ing) one (Table 1). Such results were expected as the

specialised approach in question (Jaccard et al. 2014)

relies on highly optimised hand-crafted algorithms taking

into account known PCM image properties and structures,

whereas the proposed trainable segmentation scheme

relies solely on generic image features (BIFs in this case)

and user-set hard constraints. Interestingly, the classifier

learned how to properly label halos around foreground

objects (a type of artefact intrinsic to PCM) without being

explicitly designed to do so (as shown by the very few

false positive pixels on the border of cellular objects in

Figure 6). Holes within colonies were also accurately

detected as background, which is often difficult to handle

well with conventional approaches where a size threshold

parameter usually dictates whether to fill the hole or not.

In general, the output of the trainable segmentation

algorithm was more variable than that of the specialised

algorithms assessed, most likely due to using the raw

output of the random forest classifier without any kind of

post-processing clean-up of the segmentation mask.

In a qualitative comparison with Ilastik and Weka

segmentation in an interactive segmentation setting, the

proposed scheme performed slightly better, but the

difference was not significant (Figure 7). The segmenta-

tion outputs were very similar across all methods

compared.

3.2 Discrimination between cell types in co-culture
images

The ability of the proposed trainable segmentation scheme

to discriminate between different cell types was assessed

using PCM images of hESCs co-cultured with MEFs

(Figure 4). The best segmentation performance

(0.90 ^ 0.08) was achieved for a local window diameter

of 100 pixels and the combination of three BIFs scales

(Figure 5). This optimal window diameter is significantly

larger than for the mESC data-set, suggesting that pixels

belonging to hESC colonies, which are mostly convex

monolithic objects, were best identified over a large

neighbourhood, whereas smaller window sizes were

required to correctly label the comparatively smaller and

more intricate features of mESCs.

Using a single feature value per pixel per scale instead

of local histograms resulted in the worst performance

across the conditions tested. Segmentation performance

tended to increase with the local window diameter up to

the aforementioned optimal 100 pixels value.

A performance plateau was observed between window

diameters of 60 and 100 pixels, beyond which the results

rapidly deteriorated. In all cases, the combinations of at

least two BIFs scales outperformed single-scale schemes.

Using raw intensity and contrast features resulted in

LOOCV F-scores of 0.71 ^ 0.24 and 0.87 ^ 0.10,

respectively. The latter was thus close to the results

obtained using BIFs.

In a qualitative comparison of segmentation outputs,

the proposed scheme appeared to perform significantly

better than both Ilastik and Weka trainable segmentation

(Figure 8). In particular, both the other software packages

had a large number of false positives due to the

misclassification of MEF cell pixels as hESC pixels.

In contrast, the proposed scheme only had false positives

at the edges of hESC colonies where the boundary between

the two cell types is more ambiguous.

4. Summary and conclusion

In this work, we described a trainable segmentation

algorithm for PCM images based on multi-scale local BIFs

histograms. It performed well in foreground versus

background segmentation tasks, approaching performance

Table 1. Comparison of the performance of the proposed
trainable segmentation scheme with specialised PCM segmenta-
tion algorithms.

Method LOOCV F-score

Trainable segmentation 0.92 ^ 0.05
Jaccard et al. 2014 0.95 ^ 0.04
Juneau et al. 2013 0.85 ^ 0.10
Topman et al. 2011 0.84 ^ 0.11

Notes: All results shown are mean F-score ^ standard deviation after
LOOCV.
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of state-of-the-art specialised algorithms. Indeed, the

random forest classifier implicitly learned how to correct

halo artefacts, which is usually done as an extra post-

processing step in said algorithms (Bradhurst et al. 2008;

Jaccard et al. 2014). It also produced good results for a

more complex segmentation task consisting in differ-

entiating between two types of foreground objects with

similar visual attributes. The fact that two significantly

different problems could be suitably addressed using the

same algorithm demonstrated the versatility of trainable

segmentation approaches in general, and that of the

proposed method in particular. The use of local histograms

was found to markedly increase segmentation perform-

ance when compared with schemes based on a single

feature value per scale. In contrast, the combination of

multiple BIFs scales only resulted in moderate (and in

most cases not significant) improvements. In all cases,

schemes using BIFs outperformed those based on intensity

or contrast features. In addition, when compared with the

widely used Ilastik and Weka trainable segmentation

packages, the proposed multi-scale BIFs histogram

scheme performed similarly for cell versus background

applications and significantly better for the discrimination

between two cell types.

Processing a standard microscopy image (1280 £ 960

pixels) took less than 4 s using a single thread on a 3.7GHz

E5-1620 CPU, including the computations of BIFs at three

scales and the construction of histograms for each pixel of

the image. Using BIFs as features had the advantage of

requiring only seven bin histograms per scale, which

Figure 6. Comparison of the output from the proposed method with that of a previously described specialised PCM image segmentation
algorithm. Images shown are from the mESCs data-set. Trainable segmentation based on five scales local BIFs histograms. For the
specialised algorithm, images were processed using optimal segmentation parameters determined using the same mESC data-set as
reported in the original paper (Jaccard et al. 2014). TP is true positives, FP is false positives, TN is true negatives and FN is false
negatives.

Figure 7. Segmentation performance of the proposed scheme (multi-scale BIFs histograms), Ilastik and Weka trainable segmentation
for the mESC data-set. Numerical results are shown as mean F-score ^ SD.
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allowed their rapid computation for each pixel. It also

significantly reduced the computational complexity of the

offline phase (i.e. classifier training), as memory require-

ments and training time both increase with the number of

features. In contrast, when using local 256-bin intensity

feature histograms, computation time soared to more than

45 s for the same image and conditions. Specialised

algorithms took on average about a second to process the

same images (Jaccard et al. 2014). Interestingly,

combining all feature types (intensity, contrast and BIFs)

did not result in significant improvements in segmentation

performance over the best results obtained with BIFs only.

These low processing times using BIFs make this

method suitable for batch segmentation of large number of

PCM images or that of time-lapse movie frames.

To generate the results presented in this paper, the

classifier was trained based on 50,000 pixels sampled

across the entire data-set (minus the left out image), or less

than 1.6% and 1% of the total number of pixels for the

mESC and hESC data-sets, respectively. Combined with

the low processing times, the ability to handle sparse

annotations could enable the use of the proposed approach

for interactive segmentation of PCM images.

Further improvements to the proposed scheme could

include the use of multiple window sizes and BIFs scales

simultaneously. This would allow the method to

accommodate different applications (e.g. the cell versus

background and cells versus cells scenarios shown here)

without requiring additional tweaking of the window size,

thus potentially increasing its robustness and generalis-

ation. However, feature vectors of increasing size could

potentially be detrimental to the processing speed without

further optimisation or feature selection. Another potential

venue for improvement is the use of a series architecture,

whereby the first model uses features extracted from the

input images only, while the subsequent models also

employ the probability map obtained from the preceding

model. This multi-scale context approach was previously

shown to improve segmentation performance of neuron

membranes in electron microscopy images (Seyedhosseini

et al. 2011).
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XC, MÃ rken K, Lysaker M, Lie KA, editors. Scale space and
variational methods in computer vision. Second International
Conference. Berlin: Springer Science & Business Media;
p. 343–355.

Griffin LD, Elangovan P, Mundell A, Hezel D. 2012. Improved
segmentation of meteorite micro-ct images using local
histograms. Comput Geosci. 39:129–134. doi:10.1016/j.
cageo.2011.07.002.

Jaccard N, Griffin LD, Keser A, Macown R, Super A, Veraitch F,
Szita N. 2014. Automated method for the rapid and precise
estimation of adherent cell culture characteristics from phase
contrast microscopy images. Biotechnol Bioeng. 111
(3):504–517, doi:10.1002/bit.25115.

Jaccard N, Szita N, Griffin LD. 2014. Trainable segmentation of
phase contrast microscopy images based on local basic image
features histograms. In: Medical image understanding and
analysis 2014. Durham: British Machine Vision Association.
p. 47–52.

Juneau PM, Garnier A, Duchesne C. 2013. Selection and tuning
of a fast and simple phase-contrast microscopy image
segmentation algorithm for measuring myoblast growth
kinetics in an automated manner. Microsc Microanal. 19
(4):855–866. doi:10.1017/S143192761300161X.

Kazmar T, Smid M, Fuchs M, Luber B, Mattes J. 2010. Learning
cellular texture features in microscopic cancer cell images
for automated cell-detection. In: Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society. New York, NY: IEEE. p. 49–52.

Koenderink Jan J, Van Doorn AJ. 1999. The structure of locally
orderless images. Int J Comput Vision. 31:159–168. doi:10.
1023/A:1008065931878.

Otaki T. 2000. Artifact halo reduction in phase contrast
microscopy using apodization. Opt Rev. 7:119–122.
doi:10.1007/s10043-000-0119-5.

Reichen M, Macown RJ, Jaccard N, Super A, Ruban L, Griffin
LD, Veraitch FS, Szita N, Emanueli C. 2012. Microfabri-
cated modular scale-down device for regenerative medicine
process development. PLoS ONE. 7(12):e52246, doi:10.
1371/journal.pone.0052246.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M,
Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B,
Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P,
Cardona A. 2012. Fiji: an open-source platform for
biological-image analysis. Nat Methods. 9(7):676–682,
doi:10.1038/nmeth.2019.

Schroff F, Criminisi A, Zisserman A. 2008. Object class
segmentation using random Forests. In: Everingham M,
Needham C, editors, Proceedings of the British Machine
Conference, September 2008. Durham: BMVA Press. doi:10.
5244/C.22.54.

Seroussi I, Veikherman D, Ofer N, Yehudai-Resheff S, Keren K.
2012. Segmentation and tracking of live cells in phase-
contrast images using directional gradient vector flow for
snakes. J Microsc. 247:137–146. doi:10.1111/j.1365-2818.
2012.03624.x.

Seyedhosseini M, Kumar R, Jurrus E, Giuly R, Ellisman M,
Pfister H, Tasdizen T. 2011. Detection of neuron membranes
in electron microscopy images using multi-scale context and
radon-like features. Med Image Comput Comput Assist
Interv. 14(pt 7):670–677.

Sommer C, Straehle C, Kothe U, Hamprecht FA. 2011. Ilastik:
Interactive learning and segmentation toolkit. In: 2011 IEEE
International Symposium on Biomedical Imaging: From
Nano to Macro. New York, NY: IEEE. p. 230–233. doi:10.
1109/ISBI.2011.5872394.

Topman G, Sharabani-Yosef O, Gefen A. 2011. A method for
quick, low-cost automated confluency measurements.
Microsc Microanal. 17(06):915–922. doi:10.1017/
S1431927611012153.

Yin Z, Bise R, Chen M, Kanade T. 2010. Cell segmentation in
microscopy imagery using a bag of local Bayesian classifiers.
In: 2010 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. New York, NY: IEEE.
p. 125–128.

Yin Z, Kanade T, Chen M. 2012. Understanding the phase
contrast optics to restore artifact-free microscopy images for
segmentation. Med Image Anal. 16(5):1047–1062. doi:10.
1016/j.media.2011.12.006.

Zernike F. 1942. Phase contrast, a new method for the
microscopic observation of transparent objects part II.
Physica. 9(10):974–986. doi:10.1016/S0031-8914(42)
80079-8.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 9367

http://dx.doi.org/10.1109/IVCNZ.2008.4762144
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/ISBI.2008.4541098
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1364/OL.36.004305
http://dx.doi.org/10.1016/j.cageo.2011.07.002
http://dx.doi.org/10.1016/j.cageo.2011.07.002
http://dx.doi.org/10.1002/bit.25115
http://dx.doi.org/10.1017/S143192761300161X
http://dx.doi.org/10.1023/A:1008065931878
http://dx.doi.org/10.1023/A:1008065931878
http://dx.doi.org/10.1023/A:1008065931878
http://dx.doi.org/10.1007/s10043-000-0119-5
http://dx.doi.org/10.1371/journal.pone.0052246
http://dx.doi.org/10.1371/journal.pone.0052246
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.5244/C.22.54
http://dx.doi.org/10.5244/C.22.54
http://dx.doi.org/10.1111/j.1365-2818.2012.03624.x
http://dx.doi.org/10.1111/j.1365-2818.2012.03624.x
http://dx.doi.org/10.1109/ISBI.2011.5872394
http://dx.doi.org/10.1109/ISBI.2011.5872394
http://dx.doi.org/10.1017/S1431927611012153
http://dx.doi.org/10.1017/S1431927611012153
http://dx.doi.org/10.1016/j.media.2011.12.006
http://dx.doi.org/10.1016/j.media.2011.12.006
http://dx.doi.org/10.1016/S0031-8914(42)80079-8
http://dx.doi.org/10.1016/S0031-8914(42)80079-8

	2. Trainable segmentation
	2.1 General approach
	2.2 BIFs computation
	2.3 Soft-edged local BIFs histograms computation
	2.4 Intensity and contrast features
	2.5 Data-sets and segmentation performance evaluation

	3. Segmentation performance
	3.1 Cell versus background segmentation (mESC data-set)
	3.2 Discrimination between cell types in co-culture images

	4. Summary and conclusion
	Funding
	Notes
	References



