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ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell 
responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune 
responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was 
demonstrated to induce functional Tregs and has a protective effect against inflammatory 
bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived 
DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated 
BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ 
induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 
expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was 
diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the 
levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive 
molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs 
was partially restored by inhibitors of these molecules. Collectively, these results suggest that 
LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and 
enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of 
costimulatory molecules and enhancement of suppressive molecules.

Keywords: Lactoferrin; Dendritic cells; B7 antigens; Immune tolerance; Regulatory T cells; 
Suppressive factor

INTRODUCTION

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play an important 
role in immune defenses and the maintenance of immune tolerance to self-tissues. 
DCs not only activate T cells but also tolerize the T-cell response, thereby maintaining 
immune homeostasis (1,2). Inflammatory mediators, such as CD40 ligands or LPS, induce 
the terminal differentiation of immature DCs into fully matured immunogenic DCs by 
upregulating MHC class II and costimulatory molecules (3). By contrast, immunosuppressive 
cytokines such as IL-10 and TGF-β as well as various pharmacological agents, including 
dexamethasone, rapamycin, vitamin D3, and retinoic acid, induce tolerogenic DCs (tDCs) 
(4). The tDCs are regulatory DCs that suppress immune responses through the induction 
of T-cell apoptosis/anergy and Tregs (5). Furthermore, arginase-1 (Arg-1), indoleamine 
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2,3-dioxygenase (IDO)-1, and CD39/CD73 expression by DCs are involved in the suppression 
of T-cell response via the catabolism of essential amino acids (6-10). The mechanisms 
underlying the induction of Tregs by tDCs were reported and include low levels of antigen 
presentation and costimulatory molecules as well as the secretion of regulatory cytokines, 
such as IL-10 and TGF-β1 (11).

Lactoferrin (LF) is an 80-kDa multifunctional iron-binding glycoprotein of the transferrin 
family. It is widely found in most mammalian exocrine secretions and secondary granules 
of neutrophils (12). LF demonstrates significant physiological anti-bacterial, anti-viral, and 
anti-inflammatory activity (13). Concerning immune tolerance, LF prevents the release of 
inflammatory cytokines such as TNF-α, IL-1, and IL-6 by LPS-activated mononuclear cells 
(14). Furthermore, perorally delivered LF enhances the secretion of anti-inflammatory 
cytokine IL-10 but decreases IFN-γ production, resulting in the alleviation of colitis in rats 
(15). These protective effects of LF also improve the prognosis of autoimmune diseases, such 
as experimental autoimmune encephalomyelitis and autoimmune hepatitis (16,17). These 
results suggest that LF can act as a key factor that causes immune tolerance, leading to the 
maintenance of immune homeostasis. Nevertheless, it has not yet been elucidated whether 
LF directly modulates DCs to be tolerogenic.

We recently found that LF strongly stimulates activated CD4+ T cells to differentiate into 
Foxp3+ Tregs (18), leading us to investigate the effect of LF on tDC generation. In the 
present study, LF decreased the expression of costimulatory molecules (CD80 and CD86) 
and increased suppressive molecules (Arg-1 and IDO-1). Furthermore, LF-treated bone 
marrow-derived DCs (LF-BMDCs) caused both the suppression of the T-cell proliferation and 
enhancement of Ag-specific induced Treg (iTreg) differentiation.

MATERIALS AND METHODS

Animals
BALB/c mice were obtained from Orient Bio Inc. (Seongnam, Korea). C57BL/6 WT and 
ovalbumin (OVA)-specific TCR-transgenic OT-II mice were obtained from the Jackson 
Laboratory (Bar Harbor, ME, USA). The animals were fed Purina Laboratory Rodent Chow 
5001 ad libitum. Mice that were 8–12 wk of age were used in this study. Animal care was 
performed in accordance with the institutional guidelines set forth by Kangwon National 
University (approval No. KW-190515-1).

Preparation of BMDCs and phenotype analysis
BM cells obtained from mouse femurs were cultured in 24-well plates in RPMI-1640 (Gibco, 
Grand Island, NY, USA) containing GM-CSF (20 ng/ml) and IL-4 (20 ng/ml) (Peprotech, Rocky 
Hill, NJ, USA). After 3 days, non-adherent cells were removed by gentle shaking and replacing 
the medium. These cells were harvested after 5 days. This procedure resulted in CD11b+CD11c+ 
(>85%) and CD83+ (up to 5%) cells, designated immature BMDCs. Next, the cells were exposed 
to 2 µg/ml of LPS (Escherichia coli O111:B4; Sigma-Aldrich, St. Louis, MO, USA) containing GM-
CSF (20 ng/ml) and IL-4 (20 ng/ml) for 2 days to generate mature DCs (>77% CD83).

Bovine LF was kindly donated by Morinaga Milk Co., Ltd. (Zama, Japan) and contained 
less than 5.0 pg mg−g of LPS (endotoxin). Different concentrations of LF were added from 
the start of BM cell culture (on day 0) or only during the generation of mature DCs (on 
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day 6) with 2 µg/ml of LPS. Cultured BMDCs were harvested after 7 days and used for the 
studies of T-cell proliferation and Treg differentiation. Cell surface staining was performed 
in PBS containing 2% FBS using the following Abs: anti-CD80-PE, CD86-PE, CD73-PE, 
and MHC II-APC (Invitrogen Life Technologies, Carlsbad, CA, USA), as well as CD39-APC 
(eBioscience, San Diego, CA, USA). Intracellular staining was performed using the Fixation 
and Permeabilization Buffer kits (eBioscience) with anti-Arg-1, anti-IDO-1, and IgG-APC Abs 
(BioLegend, San Diego, CA, USA) according to the manufacturer's instructions.

Allogeneic and Ag-specific T-cell proliferation assay
Naïve CD4+CD25− T cells from the spleens of 8- to 12-wk-old mice were purified by selection 
using naïve CD4+ T-cell isolation kits and magnetic cell sorting (Miltenyi Biotec, Auburn, CA, 
USA) according to the manufacturer's instructions.

Allogeneic T-cell proliferation was assessed using the mixed lymphocyte reaction. 
Carboxyfluorescein succinimidyl ester (CFSE)-labeled responder T cells (1×105) from BALB/c 
mice were co-cultured with irradiated/violet-labeled-BMDCs/LF-BMDCs (5×104) derived 
from C57BL/6 as an allogeneic stimulator. Irradiation (2,000 rad) was performed using a 
Gammacell 40 Exactor (Best Theratronics Ltd., Ottawa, Ontario, Canada). The CFSE and 
Violet kits were obtained from Invitrogen Life Technologies, Carlsbad, CA, USA). Dilution 
of CFSE was measured by counting 10,000 viable cells using FACSverse (BD Biosciences, 
San Diego, CA, USA). To inhibit enzyme the activities of IDO-1 and Arg-1, the IDO1 inhibitor 
(MedChemExpress, Monmouth Junction, NJ, USA) and Arg-1 inhibitor (Calbiochem, San 
Diego, CA, USA) were added to the cells 24 h before co-culture.

To assess Ag-specific T-cell proliferation, irradiated BMDCs/LF-BMDCs (5×104) from C57BL/6 
mice were pulsed with OVA peptide (OVA323-339; Peptron, Daejeon, Korea) and then co-
cultured with CFSE-labeled naïve CD4+ responder T cells (1×105) from OT-II transgenic mice.

Determination of OVA-specific inducible Tregs
Responder CD4+ T cells (1×105) from OT- II mice were co-cultured with OVA323-339-pulsed 
irradiated BMDCs/LF-BMDCs (5×104) in the presence of TGF-β1 (1 ng/ml), LF (100 µg/ml) or 
the combination for 3 days. The cells were stained with anti-mouse CD4-FITC Ab (BioLegend) 
for surface staining and with anti-Foxp3-PE/cy7 Ab (Invitrogen) for intracellular staining.

To perform the experiment designed to inhibit costimulatory signals, 4 µg/ml of mouse 
CTLA-4 Ig (R&D Systems, MN, USA) was added to the co-culture of OT- II CD4+ T cells (1×105) 
and irradiated/OVA323-339-pulsed CD4+ T-cell-depleted splenocytes (APCs; 5×104).

Statistical analysis
Statistical differences between experimental groups were determined by ANOVA, and values 
of p<0.05 by unpaired, 2-tailed Student's t-test were considered significant.

RESULTS

LF modulates BMDCs to be tolerogenic
tDCs are characterized by the reduced expression of costimulatory molecules and decreased 
ability to induce T-cell proliferation and increased induction of Tregs (5). Because we 
previously observed that LF stimulates naïve CD4+ T cells to differentiate into functional 
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Tregs, we asked whether LF can also modulate DCs to be tolerogenic. BM cells under the 
influence of retinoic acid were demonstrated to be tolerogenic when they are differentiated 
into mature DCs (19). Therefore, we investigated whether LF exerts a similar effect on BM 
cells. We also examined the limited effect of LF during the maturation of DCs, as shown in 
Fig. 1A. We first examined the levels of costimulatory molecules and MHC class II on BMDCs 
under the influence of LF. The levels of CD80, CD86, and MHC class II augmented by LPS 
were substantially diminished by the addition of LF in a dose-dependent manner, irrespective 
of the exposure times of LF (Fig. 1B). Moreover, the levels of the surface molecules expressed 
on LF-BMDCs between 7 days and 2 days were quite similar, suggesting that the major effect 
of LF on BMDCs occurs during DC maturation. Subsequently, we explored the effects of 
LF-BMDCs on allogeneic CD4+ T-cell proliferation. T-cell proliferation was significantly 
suppressed when BMDCs were treated with LF, although BMDCs treated with LF for 2 days 
were suppressed slightly less than those treated with LF for 7 days (Fig. 2). These results 
indicate that DCs can be tolerogenic when LF acts only during DC maturation.

Effect of LF on APCs toward the Ag-specific T-cell response
To obtain better information on the physiological role of LF on APCs, we adopted the OVA-
specific T-cell response using OT-II mice (TCRova transgenic)—i.e., T-cell proliferation and 
iTreg differentiation (Fig. 3A). First, immature BMDCs were cultured with LPS and LF for 2 
days. The cells were then pulsed with OVA323-339 peptide and co-cultured with CFSE-labeled 
OT-II CD4+ T cells (Fig. 3B). The proportion of proliferative CD4+ T cells was substantially 
diminished when LF was added to BMDCs and occurred in a dose-dependent manner 
(Fig. 3B). Second, we determined whether LF-treated DCs contribute to the conversion 
of naïve CD4+ T cells into CD4+ Foxp3+ Tregs. We recently found that either TGF-β1 or LF 
or both stimulated naïve CD4+ T cells to differentiate into Foxp3+ Tregs (18). The same 
experimental scheme was implemented using OT-II mice (Fig. 3A). LF-BMDCs strikingly 
increased Foxp3 expression by OT-II CD4+ T cells conditioned with TGF-β1 or LF or both 
(Fig. 3C). These results clearly show that LF causes Ag-loaded DCs to be tolerogenic because 
T-cell proliferation was not only suppressed but also the frequency of Foxp3+ T cells was 
increased in the co-culture of LF-BMDCs. Thus, we were interested in determining how 
LF-BMDCs drive Foxp3+ T-cell differentiation. Tregs are efficiently induced under weak TCR 
and costimulation (20,21). Because LF reduced the expression of costimulatory molecules 
in BMDCs, as shown in Fig. 1, we explored whether the levels of the costimulatory molecule 
B7 affect OVA-specific CD4+Foxp3+ T-cell differentiation. An increase in the Foxp3+ T-cell 
population by LF-BMDCs was further enhanced by CTLA4-Ig treatment; however, this 
increase in the Foxp3+ T-cell population by LF-BMDCs was decreased by anti-CD28 Ab 
treatment (Fig. 3D). Taken together, these results indicate that the low level of costimulatory 
molecules in LF-BMDCs contribute to CD4+Foxp3+ T-cell differentiation.

Effect of LF on potential suppressor molecules expressed by BMDCs
DCs become tolerogenic through expressing not only a low level of costimulatory molecules 
but also a high level of catalytic enzymes such as Arg-1, IDO-1, and CD39/73 (6,7,10). Because 
LF inhibited the expression of costimulatory molecules (CD80 and CD86) in the present 
study, we determined the levels of these catalytic enzymes. LF significantly increased the 
expression of Arg-1 and IDO-1 at the levels of mean of fluorescence intensity (MFI) and 
population frequencies (%). However, the levels of CD39 were not altered. In addition, MFI 
of CD73 was not changed either though its population frequency (%) looks significantly 
increased (Fig. 4A). Subsequently, we examined the role of these molecules in allogeneic 
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CD4+ T-cell proliferation. Inhibition of the activities of Arg-1 and IDO-1 substantially 
abrogated the suppressive ability of LF-BMDCs (Fig. 4B), indicating that the suppressive 
property of LF-BMDCs is, at least in part, attributed to the activities of Arg-1 and IDO-1.

DISCUSSION

The present study demonstrated that LF modulates BMDCs to be tolerogenic, leading to 
both the suppression of T-cell proliferation and enhancement of iTreg differentiation. We 
found that costimulatory molecules (CD80 and CD86) and MHC class II were significantly 
diminished in LF-BMDCs (Fig. 1). The reduction of these molecules is a typical property of 
tolerogenic DCs as shown by others (5,22-24). Similarly, the augmentation of Foxp3+ T-cell 
differentiation by LF-BMDCs is likely attributed to the diminished levels of CD80 and CD86 
because treatment with CTLA-Ig further increased the frequency of the OVA-specific Foxp3+ 
T-cell population, whereas the addition of anti-CD28 Ab strongly decreased it (Fig. 3D). 
Costimulatory signals ensure T-cell proliferation via the PI3K-AKT signaling pathway, which 
is the predominant signaling mechanism for IL-2 production (25). Our observation agrees 
with the report that strong costimulatory signals inhibit Foxp3 induction and functional Treg 
differentiation (21,26). We considered whether LF simply suppresses the proliferation of 
cultured BMDCs; however, the proliferation assay excluded this possibility (data not shown). 
Furthermore, we found that the suppressive activity of LF-BMDCs was partially attributed to its 
enhancement of Arg-1 and IDO-1 expression (Fig. 4). Similar to our observation, retinoic acid 
induces Arg-1 expression in DCs, which are involved in the induction of FoxP3+ Treg cells (27). 
Additionally, IDO-1-expressing mature DCs contributed to the differentiation and expansion 
of Treg cells (28). Therefore, increased expression of known suppressor molecules—e.g., Arg-1 
and IDO-1—in LF-BMDCs are likely to be involved in Treg differentiation.

LPS is a well-known stimulus for DC activation through the upregulation of MHC class II, 
CD80 and CD86 (29). In the present study, LF significantly reduced LPS-stimulated CD80/86 
expression. Notably, the present study does not address the specific mechanisms by which 
LF exerts this inhibitory effect. In this regard, studies that demonstrate the inhibition of LPS 
binding to LBP and CD14 receptor by LF (30) suggest that LF exerts a tolerogenic effect on 
DCs through the direct inhibition of LPS binding. On the other hand, IL-10 has been shown 
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to enhance the membrane-associated RING-CH 1 (MARCH1)-dependent ubiquitination and 
degradation pathway, resulting in low MHC class II and CD86 expression on LPS-activated 
DCs (31). Therefore, we are currently examining whether LF decreases the expression of 
these molecules via the MARCH1-dependent pathway. Overall, LF-BMDCs may affect the Ag-
specific T-cell response via at least two mechanisms—inhibition of T-cell proliferation and 
increased iTreg differentiation.
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LF is abundant in maternal colostrum and milk (32). We have previously shown that LF 
and TGF-β1 are important IgA class-switching factors (33,34). Secretory IgA is the single 
most important defense component in intestinal mucosal tissues, where it acts without 
inflammation. This phenomenon seems to be closely related to the abundance of Tregs in the 
gut (35,36). Thus, LF is a key factor for both IgA production and iTreg differentiation, leading 
to intestinal homeostasis. Furthermore, the major LF-secreting cells are neutrophils during 
inflammation (37). What is the physiological meaning of this phenomenon? One of the 
possibilities is that, as inflammation ceases, LF derived from neutrophils may initiate iTreg 
differentiation for the subsequent tolerogenic state—i.e., the return to homeostasis. This 
notion remains to be further determined in vivo.

In conclusion, lactoferrin decreases the expression of costimulatory molecules (CD80 and 
CD86) and MHC class II and increases Arg-1 and IDO-1, leading to the diminishment of T-cell 
clonal expansion and enhancement of iTreg differentiation (Fig. 5). In addition, lactoferrin 
directly forces T cells to be iTregs (18,38). Taken together, our current findings as well as 
those of others imply that lactoferrin is a good candidate to treat autoimmune disorders.
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Figure 5. Possible mechanisms by which LF induces tolerogenic DCs. 
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