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Abstract: The clustering and maintenance of nicotinic acetylcholine receptors (AChRs) at high density
in the postsynaptic membrane is a hallmark of the mammalian neuromuscular junction (NMJ). The
regulation of receptor density/turnover rate at synapses is one of the main thrusts of neurobiology
because it plays an important role in synaptic development and synaptic plasticity. The state-of-the-
art imaging revealed that AChRs are highly dynamic despite the overall structural stability of the
NMJ over the lifetime of the animal. This review highlights the work on the metabolic stability of
AChRs at developing and mature NMJs and discusses the role of synaptic activity and the regulatory
signaling pathways involved in the dynamics of AChRs.
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1. Introduction

The clustering and maintenance of nicotinic acetylcholine receptors (AChRs) at high
density in the postsynaptic membrane is a hallmark of the mammalian neuromuscular
junction (NMJ) [1–3]. AChRs are transmembrane ligand-gated ion channels, composed
of five protein subunits [4]. In the unborn, the composition of AChR consists of α2βγδ

(immature form) and within a very short time after birth, γ-subunits are replaced by the
adult specific ε-subunits to yield the mature AChRs α2βεδ. TheS switch in receptor sub-
units is accompanied by changes in electrophysiological properties of the receptor channel
(changes in conductances and gating properties) [5–10]. Interestingly, the conversion of
receptor channels appears to be tightly regulated by a muscle-specific differentiation pro-
gram [11]. It should be noted that during the first stages of muscle development, although
some receptors form spontaneous clusters, the majority of AChRs are distributed uniformly
throughout the membrane of the muscle cells [1,12] and as the development proceeds,
AChRs become highly concentrated at the synaptic sites [1,2]. The binding of the neu-
rotransmitter acetylcholine to receptors results in the depolarization of the postsynaptic
membrane, leading to muscle contractions [3].

The underlying mechanisms involved in the initial events of AChRs clustering,
synapse formation, maturation, and stability have been extensively studied (see
reviews [1–3]). Briefly, two major groups of proteins have been identified: proteins re-
quired for the initial AChRs clustering and synapse formation (the signaling pathway
involving agrin, low-density lipoprotein receptor-related protein (LRP4), muscle-specific
tyrosine kinase (MuSK), dedicator of cytokinesis family member (Dok7) and rapsyn)
and the auxiliary proteins involved in the maturation and stability of NMJs (dystrophin-
glycoprotein complex (DGC), neuregulin signaling molecules, Wnt proteins, nonkinase
muscle-specific protein) [1–3,13,14]. In mice deficient in any of the core proteins AChR clus-
ters simply fail to form, while in mice deficient in auxiliary proteins such as α-dystrobrevin
or α-syntrophin, NMJs are formed normally but mature abnormally [15–19].
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The nicotinic AChR (a critical downstream signaling transducer in muscle cells) is also
required for the clustering and accumulation of the core and auxiliary proteins at synaptic
clusters. For instance, targeted elimination of receptor clusters on cultured myotubes
with an argon laser not only induced the removal of receptor-associated proteins but also
prevented the insertion and accumulation of newly synthesized proteins at the illuminated
spots [20]. Additional in vivo studies have shown that AChRs are critical for the targeting
of the associated scaffold protein to the synaptic membrane. For example, when the
rapsyn coiled-coil (CC) domain, a required domain for the interaction between AChRs and
rapsyn was deleted, the targeting of rapsyn to the postsynaptic membrane of NMJs was
prevented [21]. Similarly, in zebrafish mutants lacking the expression of AChRs, rapsyn
failed to localize at synapses [22,23]. In mice deficient in either fetal or epsilon AChR
subunit, the rapsyn expression at the synapse was significantly reduced [24,25] as it was
reduced in mice deficient in α-syntrophin and α dystrobrevin, which exhibit a dramatic
reduction in total AChR levels compared with wild-type [15,16]. These observations
suggest that there is a reciprocal relationship between AChRs and their associated proteins.

2. Turnover Rates of Achrs at Aneural, Developing and Mature NMJS

The use of α-bungarotoxin (BTX) and its derivatives have been instrumental in study-
ing the metabolic stability of AChRs [26–31]. The consensus is that AChRs are highly stable
in the postsynaptic membrane of a mature NMJ until they are removed and targeted for
degradation. When fluorescent or radiolabeled BTX was used as a ligand to monitor the
turnover rate of receptors, the half-life was quite long (t 1

2
≈ 9–14 days) at fully functioning

synapses, and that this half-life was significantly reduced at surgically denervated synapses
(t1/2 ≈ 1–3 days) or when synaptic activity was compromised by diseases [32–36]. These
estimates were based on the assumption that once AChRs are internalized, they are targeted
for degradation (presumably in lysosomes) and did not consider the possibility that those
receptors can continuously recycle back to the postsynaptic membrane with their BTX tag.

In 2005, with the development of the sequential method of labeling of AChRs with
biotin-bungarotoxin and streptavidin-fluorophore conjugates, it was demonstrated that a
significant number of internalized AChRs were able to recycle back to synaptic sites [35,37,38].
This method allows us to distinctly visualize three distinct receptor pools at the NMJ:
recycled, pre-existing, and newly synthesized receptors [37]. Of note, it is well established
that AChR pools have the same binding affinities for biotin-bungarotoxin/streptavidin. At
functional NMJs, changes in fluorescence intensities of recycled and pre-existing AChRs at
the same synapses over time showed that the lifetime of recycled receptors is far shorter
(t1/2 ≈ 1 day) than that of the pre-existing AChRs (t1/2 ≈ 5 days), even though these AChRs
are intermingled in the same postsynaptic membrane. More importantly, it showed that the
recycled receptors are continually inserted into the postsynaptic membrane and contribute
to the postsynaptic receptor density. However, what remains unclear are (i) the proportion
of the recycled receptor pool that derives from pre-existing or previously recycled AChRs,
(ii) how many times receptors can recycle back to the membrane before being degraded,
and (iii) why recycled AChRs are turned over more rapidly than pre-existing AChRs.

Because the extrasynaptic AChRs play an important role in maintaining synaptic
AChR density [33,39], it was important to know about the metabolic stability of this receptor
pool. Depending on the experimental design and the use of fluorescent or radioactive BTX
ligand, it was reported that extrajunctional (nonsynaptic AChRs) turn over rapidly with a
half-life in the membrane of approximately one day compared to junctional receptors that
are much more stable (half-life that ranges between 9–14 days) [27–29,33,40–42]. It will be
interesting to know about the mechanisms that underlie the rapid turnover rate of AChRs
in the extrajunctional area of innervated and active muscle cells.

The metabolic stability of aneural AChRs on developing cultured muscle cells was
also extensively studied. Depending on cell type and experimental design, it was found
that AChRs turned over rapidly at rates (half-life) ranging from 7 to 24 h. However,
one must acknowledge that most of these studies have used either fluorescently tagged
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BTX or radio-labeled bungarotoxin, which it does not distinguish between diffuse and
clustered receptors and did not take into account the pool of diffuse receptors that are
able to laterally migrate into the receptor clusters over time, and that the estimate of
receptor half-life is derived by pooling together all receptors from the entire population of
cells [43–46]. However, when lateral migration of AChRs was taken into account, the half-
life of AChRs at clusters was considerably low (t1/2 ≈ 4.5 h) [47]. In the cultured embryonic
muscles [48,49] or organ cultures of muscles from newborn rats, it was also shown that
AChRs turn over rapidly, similar to extrajunctional receptors in adult muscles [29,50].
However, in other experiments that used organ cultures from neonatal rat diaphragm
muscles, it was demonstrated that junctional AChRs are degraded slowly, similar to the
rates found in adult junctional receptors [50]. The discrepancy between the above results
remains unclear.

At developing neuromuscular junction in living mice, when changes in fluorescently
labeled AChRs at the same synapses were monitored over time, it was estimated that
the half-life of AChRs is quite short during the first week after birth (t1/2 ≈ 26 h) and
as synapses mature AChRs turn over more slowly [17]. Similarly, the fast turnover rate
of junctional AChRs (t1/2 = 32 h) was also observed in chicken muscles one week after
hatching, which considerably slowed (t1/2 ≥ 5 days) three weeks later [51].

3. The Effect of Synaptic Activity on the Metabolic Stability of AChR Pools

Previous studies have shown that muscle activity regulates the metabolic stability of
AChRs in the postsynaptic membrane. In the absence of muscle activity following surgical
denervation or pharmacological agents-induced paralysis, the turnover rate of AChRs
was found to be considerably more rapid than the turnover rate in active muscles. For
instance, at surgically denervated NMJs, the half-life of AChRs was significantly reduced
from ∼ 9–14 days to 1–3 days [37,52–54]. A similar increase in the turnover of AChRs was
observed in long-term inactivity of the innervated muscle caused by a tetrodotoxin cuff on
the nerve [55]. In addition, at chronically blocked NMJs with either bungarotoxin or curare,
the turnover rate of AChRs was also significantly increased with a half-life of hours [32].
Likewise, at neuromuscular diseases such as the autoimmune disease myasthenia gravis or
muscles treated with IgG from myasthenia patients, the rate of AChRs degradation was
significantly increased, leading to a decrease in AChR density and a reduction in synaptic
folds [34,56–59]. A recent report also showed that in high-fat diet-induced obese male mice,
the turnover rate of AChR significantly increased and the postsynaptic AChR density was
considerably reduced, leading to a significant loss of postsynaptic receptor regions [60]. Of
note, these obesity-related synaptic alterations were not seen in normal mice [60].

As described above, the maintenance of a high density of AChRs in the postsynaptic
membrane involves at least two separate pathways: a receptor-recycling pathway and a
new synthesized receptor pathway [37]. Because recycled and pre-existing AChR pools
at the same synapse can be separately labeled with a distinct fluorophore, it was possible
to examine the effect of muscle activity on the turnover rate of these receptor pools. In
the absence of muscle activity following denervation, it was found that the half-life of
the pre-existing receptors was ∼ 1.9 days (nearly two times faster than the half-life at
innervated synapses) and the half-life of the recycled AChRs was ∼ 15 h (nearly twice as
fast as the half-life of recycled AChRs at innervated synapses). Muscle denervation not
only accelerated the turnover rate of receptor pools at the NMJ but it also depressed the
recycling of AChRs to the synaptic membrane by promoting the targeting of internalized
AChRs to degradation [38]. It also should be noted that in the absence of synaptic activity,
the delivery of new receptors to NMJs continues but at a reduced rate [37]. However,
it remains unclear why recycled AChRs are turned over more rapidly than pre-existing
AChRs. It appears that motor innervation plays a crucial role not only in the tethering and
stabilization of AChRs in the postsynaptic membrane but also in promoting the recycling
of internalized AChRs into the synaptic membrane (Figure 1).
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Figure 1. The metabolic stability of nAChRs at the functional and impaired peripheral cholinergic neuromuscular junction.
A schematic diagram shows possible ways by which AChR pools (junctional and extrajunctional) are removed from and
inserted into the neuromuscular junction under normal and pathological situations. Possible signaling molecules that
mediate the recycling of AChRs are also represented.

Several studies have shown that direct muscle stimulation alone was able to reversibly
increase the metabolic stability of receptors at surgically denervated synapses during
both early development and adulthood, and at blocked endplates with pharmacological
agents [32,61–65]. For instance, in denervated active/stimulated muscles, the half-life of
junctional AChRs was similar to innervated muscles (t1/2 ≈ 13 days) when compared to
the turnover rates of AChRs in inactive muscles (t1/2 ≈ 1–5 days). These data indicate
that muscle activity prevents the denervation-induced decline of metabolic AChR stability.
Interestingly, in denervated-stimulated muscles, the loss of end-plate membrane struc-
ture caused by denervation is also largely prevented [61]. Further studies have reported
that direct muscle stimulation of innervated and denervated muscles can promote the
translocation of internalized receptors from the internal pool into the postsynaptic mem-
brane [66]. This process appears to be associated with an increase in intracellular calcium
concentration through either ligand-gated, L-type channels, or directly from intracellular
stores. Interestingly, when L-type channels are blocked or intracellular calcium is clamped
with BAPTA-AM significantly, the stability of AChR was significantly decreased [64] and
the recycling of internalized receptors was attenuated [66]. Based on these observations,
it would be reasonable to suggest continuous muscle stimulation-induced contractions
can be used as an effective rehabilitative approach for patients suffering with permanent
long-term denervation and for patients who develop paralytic syndrome when they are
treated with reversible neuromuscular blocking agents for long periods of time.

4. The Regulatory Signaling Molecules Involved in the Metabolic Stability of AChRs
at the NMJ

Attempts to understand the regulatory signaling pathways involved in the endocyto-
sis, recycling, and new synthesis of AChRs have been investigated. During the last decade,
a series of reports have provided a list of molecules that are involved in the endocytosis of
AChRs. These include the autophagic regulator protein SH3 GLB1, the atrophy-promoting
E3 ubiquitin ligase (MuRF1), the NRG/ErbB signaling pathway, the activation of Rac1,
and the phosphorylation of Src [67–72]. Similar to processes of AMPA receptor internaliza-
tion and recycling in the CNS, endocytic vesicles containing AChRs and exocytic vesicles
containing recycled AChRs are found to be separately located at different sites within the
NMJ. For instance, it was found that vesicles containing endocytic Rab5 and AChRs inside
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muscles are located in distant areas from the NMJ, while vesicles containing AChRs and
recycling markers Rab4 and Rab11 are located mostly in close vicinity to the NMJ [73].
These observations were consistent with earlier data showing that the peri-junctional region
(several micrometers from the junction folds) is the site of receptor internalization [32].

The mechanisms involved in the recycling of AChRs into the postsynaptic membrane
remain largely unknown. A few studies have shown that activities of PKC and PKA (two
serine/threonine kinases), which are located in and around the neuromuscular junction,
were found to be involved in the recycling of AChRs. Inhibition of PKC or stimulation
of PKA promotes the recycling of internalized AChRs into synaptic sites, while stimula-
tion of PKC or inhibition of PKA depresses the recycling of AChRs and accelerates the
removal rate of receptors from the postsynaptic membrane [74]. It was suggested that
PKA controls the recycling of AChRs through its interaction with myosin Va, a protein
that plays an important role in the PKA positioning and tethering to the actin cytoskeleton
in a postsynaptic microdomain [75]. In other studies, rapsyn was also described as an
anchoring protein (AKAP) that links PKA to AChR-recycling vesicles [76]. Further studies
have shown that the release of α-calcitonin gene-related peptide (CGRP) from motor neu-
rons and sympathetic innervation of NMJs are essential for stimulating the production of
cAMP and activation of PKA [77,78]. Interestingly, in denervated muscles pharmacological
elevation of cytoplasmic cAMP and activation of PKA slow the turnover of nAChRs [79]. It
appears that a fine balance between activation of PKC and inhibition of PKA is critical for
the recycling, and insertion of new receptor clusters and the disassembly of pre-existing
ones [74,80]. Interestingly, work by Bruneau et al. [38] showed that inhibition of tyrosine
phosphatase activity caused the mistargeting of recycled AChRs specifically to extrasy-
naptic regions (outside of the usually sharp NMJ boundary) while pre-existing receptors
remain intact within the NMJ [38]. The same observation has been made in the synapses of
frog nerve/muscle co-cultures treated with tyrosine phosphatase inhibitors [81]. Of note,
the phosphorylation of ADF/cofilin-mediated actin was also shown to be involved in the
trafficking and targeting of AChRs to the cell surface, particularly to nascent postsynaptic
sites [82].

The synaptic organizer agrin also has been shown to play an essential role in the
recycling of nAChRs. Experiments on nerve-free AChR clusters induced by agrin in the
extrasynaptic membrane in living rats showed that internalized AChRs were able to recycle
back into the ectopic synaptic clusters where they intermingle with pre-existing and new
receptors and that the extent of AChR recycling depended on the strength of the agrin
stimulus [83].

The role of Ca2+/calmodulin-dependent kinase II in the control of the recycling of the
nAChR has been investigated. In muscle cells, several CaMKII isoforms (CamkII βM, γ,
δ, but not α isoform) are expressed and when intracellular calcium is chelated or CaMKII
activity is inhibited, receptor recycling is depressed, altering the trafficking of receptors
and the steady-state of the postsynaptic receptor density [17]. By increasing or decreasing
intracellular calcium concentration, the muscle cell can up- or downregulate the cycling of
AChR into the postsynaptic membrane. This process is mediated by CaMKII activity as
blockade of the enzyme dramatically inhibits receptor recycling. These results establish
a role for calcium and calcium-activated kinase, CaMKII in the recycling of receptors at
the NMJ in vivo. Recent work has also shown that a muscle-specific nonkinase anchoring
protein (αkap) encoded within the Camk2a gene plays a critical role in promoting the
stability of AChR by a ubiquitin-dependent mechanism. The Knockdown of αkap with
shRNA in cultured muscle cells significantly enhanced the degradation of AChR, leading
to fewer and smaller AChR clusters on the surface of differentiated C2C12 myotubes [84],
and in vivo significantly enhancing the turnover rate of AChR, and altering the structural
integrity of the NMJ [85].

Previous studies have shown that neuregulins signal through the ErbB family of
tyrosine kinase receptors is not required for synapse-specific expression of genes by subsy-
naptic nuclei of the mouse NMJ [86]. However, the analysis of the turnover rate of AChRs
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in mice deficient in erbb2 and erbb4 selectively in muscles (erbb2/4−/−) showed that the
half-life of AChRs was significantly decreased, specifically, the recycled receptor pool. In
addition, as the contribution of recycled and new receptors to the receptor pools at synaptic
sites is roughly equal, it appears that the destabilization of the recycled receptor pool was
instrumental in the lowering of the density of AChRs locally and thus the disassembly of
the postsynaptic apparatus observed at the NMJ of these mice [69]. Further experiments
showed that the destabilization of AChRs is mediated by α-dystrobrevin [a component
of the dystrophin glycoprotein complex (DGC) that is a substrate for ErbB receptor ty-
rosine kinases] as evidenced by its dephosphorylated state in the absence of NRG/ErbB
signaling. The role of isoforms of tyrosine phosphorylated α-dystrobrevin in the stability
of AChRs and the maintenance of the overall structural integrity of the synapse has been
previously studied. In the absence of phosphorylated α-dystrobrevin, the density as well
as the turnover rates were significantly altered. Likewise, in mice deficient in α-syntrophin
(another component of the DGC), the turnover rate of AChR is significantly increased
(3–4 days compared to 9–14 days in wildtype). Importantly, the number of recycled AChR
is also reduced in mice deficient in α-syntrophin and α-dystrobrevin, which may account
for the reduced AChR densities and numbers in these mutant mice [17]. While there is
no direct link between α-syntrophin or dystrobrevin and AChRs, it is clear that the loss
of either α-syntrophin or α-dystrobrevin drastically impairs the postsynaptic receptor
density [87]. However, not all components of DGC are involved in the regulation of the
metabolic stability of AChRs. For instance, in dystrophin-deficient NMJs, the turnover rate
is similar to wild type [33].

5. Concluding Remarks

The picture emerging from recent work is that nAChRs in the postsynaptic apparatus
are highly dynamic despite the overall structural stability of the neuromuscular junction e
(Figure 1). Identifying and understanding signals triggered by muscle action potentials and
nerves that are involved in the regulation of AChR dynamics (removal, insertion of new
synthesized, and recycling) should provide important insights not only into mechanisms
that control the structural integrity of the NMJ but also for neuromuscular diseases in
which the density/number and turnover rates of AChRs are compromised. It is also
equally important to understand the regulatory mechanism involved in the trafficking of
AChRs from their assembly in the endoplasmic reticulum to their insertion into the cell
membrane, and how reducing the endocytosis or enhancing the recycling of AChRs could
be beneficial for many neuromuscular diseases where the density/number of synaptic
AChRs is compromised.
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