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Synaptic vesicles (SVs) are presynaptic organelles that load and release small molecule neurotransmitters at
chemical synapses. In addition to classic neurotransmitters, we have demonstrated that SVs isolated from the Pe-
ripheral Nervous Systems (PNS) of the electric organ of Torpedo californica, a model cholinergic synapse, and SVs
isolated from the Central Nervous System (CNS) of Mus musculus (mouse) contain small ribonucleic acids
(sRNAs; ≤50 nucleotides) (Scientific Reports, 5:1–14(14918) Li et al. (2015) [1]). Our previous publication pro-
vided the five most abundant sequences associated with the T. californica SVs, and the ten most abundant se-
quences associated with the mouse SVs, representing 59% and 39% of the total sRNA reads sequenced,
respectively). We provide here a full repository of the SV sRNAs sequenced from T. californica and themouse de-
posited in the NCBI as biosamples. Three data studies are included: SVs isolated from the electric organ of T.
californica using standard techniques, SVs isolated from the electric organ of T. californica using standard tech-
niques with an additional affinity purification step, and finally, SVs isolated from the CNS of mouse. The three
biosamples are available at https://www.ncbi.nlm.nih.gov/biosample/ SRS1523467, SRS1523466, and
SRS1523472 respectively.
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1. Direct link to deposited data

The deposited data can be found at: https://www.ncbi.nlm.nih.gov/.
The data consists of three studies. Two studies contain the SV sRNAs

isolated from the electric organ of T. californica. The first study contains
the SV sRNAs isolated using the standard procedure (SRS1523467). The
second study contains the SV sRNAs from SVs that had an additional
immuno-affinity purification step prior to RNA extraction
(SRS1523466). The third study contains the SV sRNAs isolated from
the CNS ofM. musculus (SRS1523472). The standard SV isolation proce-
dure was used for the M. musculus tissue.

2. Experimental design, materials and methods

2.1. Isolation of synaptic vesicles

Methods were adapted from Ohsawa [2]. A Spex Freezer Mill 6800
(Spex Sample Prep; Metuchen, NJ) was cooled to−180 °C and ~25 g of
frozen electric organ from an individual Torpedo californica (adult fe-
male; Aquatic Research Consultants; San Pedro, CA) or 25 g frozen Mus
musculus brains (~50 Swiss Webster mouse brains of both male & fe-
male; BioChemed Services,Winchester, VA)was groundwith 25 g of fro-
zen buffer pellets (320 mM Sucrose, 10 mM TRIS-Cl, pH 7.4) Sigma-
Aldrich; St. Louis, MO). The resulting powder of buffer and electric
organ/brain was warmed to 4 °C with 50 ml of buffer solution
(320 mM Sucrose, 10 mM Tris-Cl, pH 7.4, 4 °C). The resulting slurry
(100 ml) was centrifuged at 20,000 rpm for 10 min (Beckman Coulter
JA-20 rotor - Avanti J25 centrifuge) (Beckman Coulter; Brea, CA). The
resulting supernatant was centrifuged at 34,000 rpm for 40 min (70ti
rotor - Optima X80; Beckman). The supernatant was then loaded onto
a 4 ml/4 ml 0.6 M/1.2 M sucrose step gradient (10 mM Tris-Cl, pH 7.4),
then centrifuged at 48,000 rpm for 2 h (70ti rotor - Optima X80). The
4 ml 0.6 M (1.07 g/ml density) sucrose fluffy layer, enriched in vesicles,
was collected. Heavier densities and pellet (N0.6 M sucrose), known to
be enriched in exosomes,were discarded [3,4]. A 2ml sample of enriched
vesicles was filtered using a 0.22 μm spin column (Spin-x, Corning;
Corning, NY) to remove any large debris. The filtrate was injected into
a Pharmacia LC500 plus FPLC (GE Healthcare, Fairfield, CT) and run
through a 25 cm 4% agarose bead column (Bioscience Beads; West War-
wick, RI). Separate bead columns were prepared for electric organ and
mouse brains to ensure no contamination. The FPLC was eluted with a
buffer solution (0.2 M NaCl, 10 mM HEPES, pH 7.4; Sigma) at a flow
rate of 1.0ml/min. The secondmajor peakwas collected, and the vesicles
concentrated to a protein concentration of 5 mg/ml for RNA isolation
(measured by Bradford Assay) (Bio-Rad Laboratories, Inc.; Hercules,
CA) using a Stirred Cell apparatus with a 100 kDa filter (PLHK02510;
EMD Millipore, Billerica, MA). As a further enrichment, SVs from one
preparation of T. californica were affinity enriched using dynabeads
(100.07D; Dynabeads; Invitrogen/Life Technologies, Carlsbad, CA) with
VAChT antibody (ab68986; Abcam; Cambridge, England) [5,6].

2.2. Isolation of synaptic vesicle sRNAs and sequencing

SVswere isolated and concentrated as described above. Each sample
consisted of 50 μl of SVs (5mg/ml) in PBS (80mMNa2HPO4 and 25mM
NaH2PO4, 100 mM NaCl pH 7.4; Sigma). To remove exogenous RNA,
each SV preparation was treated with 50 μl PBS pH 7.4 with 1 μl RNase
cocktail as instructed (RNase A (500 U⁄ml) and RNase T1
(20,000 U⁄ml), AM2286; Ambion/Life Technologies). SV RNA was ex-
tracted after the treatments using 900 μl TRIzol (Invitrogen/Life Tech-
nologies) followed by 200 μl chloroform and 400 μl isopropanol (EMD
Millipore), with a final precipitation by 75% ethanol. Library preparation
and sequencing were performed by the Genomic Sequencing and Anal-
ysis Facility at the University of Texas, Austin. An Agilent 2100 (Agilent
Technologies, Santa Clara, CA) was used for quality control. The sRNAs
were prepared for sequencing using the TruSeq small RNA sample
preparation kit (Illumina; San Diego, CA). Single-end reads (100 bp)
were sequenced on an Illumina HiSeq 2500(Illumina).

3. Discussion

Disruptions in the normalmaintenance of chemical synapses, or in the
processes by which chemical synapses are reorganized during memory
formation, are implicated in a wide range of neurological diseases. A
vital aspect of normal synaptic function is the proper post-transcriptional
regulation of protein synthesis at sites away from the nerve cell body. This
local protein synthesis at the synapse is regulated by activity, and requires
a host of mRNAs, translation factors, and ribosomes [7–11]. In addition, it
is suspected thatmicroRNA (miRNA) andother non-codingRNA (ncRNA)
that include, but are not restricted to, endogenous small interfering RNA
(esiRNAs), piwi-interacting RNA (piRNA), antisense and long-ncRNA,
play a key role in regulating translation [12]. Activity at chemical synapses
is controlled by the fusion of SVswith the presynaptic plasmamembrane,
and the release of the vesicles' contents. We hypothesize that, in addition
to neurotransmitters, SVs contain small RNAs (sRNAs; ≤40 nucleotides),
and in a previous paper provided evidence for the presynaptic origin
and luminal presence for the most abundant SV sRNAs [1]. The SV sRNA
data presented in this work represent the entirety of the data sets collect-
ed for the previous study, including microRNAs associated with the SVs
isolated from the electric organ of T. californica not discussed in the previ-
ous publication [1]. The data sets produced in these studies have been de-
posited in the NCBI: SRS1523467, SRS1523466, SRS1523472.
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