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INTRODUCTION 
 
Gastric cancer (GC) is a major health burden worldwide, 
especially in Eastern and Western Asia [1]. Besides, the 

incidence of GC ranks second in China [2]. Due to  
the lack of obvious symptoms, specific clinical, imaging, 
or pathological manifestations, patients are usually 
diagnosed at the advanced stage [3, 4]. Despite the 
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ABSTRACT 
 
Background: This study aimed to investigate the relationship of dyslipidemia and interleukin-enhancer binding 
factor 3 (ILF3) in gastric cancer, and provide insights into the potential application of statins as an agent to 
prevent and treat gastric cancer. 
Methods: The expression levels of ILF3 in gastric cancer were examined with publicly available datasets such as 
TCGA, and western blotting and immunohistochemistry were performed to determine the expression of ILF3 in 
clinical specimens. The effects of ox-LDL on expression of ILF3 were further verified with western blot analyses. 
RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set 
Enrichment Analysis (GSEA) pathway analyses were performed to reveal the potential downstream signaling 
pathway targets of ILF3. The effects of statins and ILF3 on PI3K/AKT/mTOR signaling pathway, cell proliferation, 
cell cycle, migration and invasion of gastric cancer cells were investigated with Edu assay, flow cytometry and 
transwell assay. 
Results: Immunohistochemistry and western blot demonstrated that the positive expression rates of ILF3 in 
gastric cancer tissues were higher than adjacent mucosa tissues. The ox-LDL promoted the expression of ILF3 in 
a time-concentration-dependent manner. ILF3 promoted the proliferation, cell cycle, migration and invasion by 
activating the PI3K/AKT/mTOR signaling pathway. Statins inhibited the proliferation, cell cycle, migration and 
invasion of gastric cancer by inhibiting the expression of ILF3. 
Conclusions: These findings demonstrate that ox-LDL promotes ILF3 overexpression to regulate gastric cancer 
progression by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibits the expression of ILF3, which 
might be a new targeted therapy for gastric cancer. 
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development in surgery, chemotherapy, immunotherapy, 
and targeted therapy, the overall survival rate and 
prognosis remain unsatisfactory in patients with GC, with 
a poor 5-year survival rate (<30%) [5, 6]. Among them, 
the metastasis and recurrence of GC are the main reasons 
for treatment failure and the patient death [7, 8]. 
Therefore, it is critical to study the underling molecular 
of the development of GC, which also can help us 
identify more molecular markers for monitoring the 
prognosis of patients. 
 
To date, conventional serum tumor markers are applied 
in GC screening, including carcinoembryonic antigen 
(CEA), alpha-fetoprotein (AFP), cancer antigen 19-
9(CA19-9), cancer antigen 72-4(CA72-4) and cancer 
antigen 125(CA125), and are also used in the predicting 
of the prognosis, recurrence, or metastasis [9–11]. 
However, as a result of the lack of sensitivity and 
specificity, these biomarkers are not recommended for 
GC detection and prognostic follow-up [12]. 
 
The successful eradication of Helicobacter pylori (Hp) 
effectively lowered the morbidity of distal GC, while 
the number of gastric cancers at the esophagogastric 
junction and upper third was increasing year by year, 
and new cases were gradually showing a younger trend 
[13]. Studies found that obesity contributes greatly to 
the occurrence of proximal GC [14]. Obesity is a 
disorder of energy balance and abnormal lipid 
metabolism, which is mainly characterized with the 
upregulated blood concentration of low-density 
lipoprotein cholesterol (LDL-C) [15, 16]. LDL-C is 
delivered throughout the body in the form of LDL. 
LDL is very prone to be oxidized by reactive oxygen 
species (ROS) to form oxidized LDL (ox-LDL)  
[17, 18]. Therefore, excessive ox-LDL indicates the 
abnormal lipid conditions in obese subjects. It is  
well-known that ox-LDL negatively impacts on 
hypertension, atherosclerosis, and cardiovascular 
diseases [19]. More and more studies demonstrated 
that the increased ox-LDL was positively associated 
with cancer development such as colon, breast, and 
ovarian cancer [20–22]. Some studies have 
demonstrated that ox-LDL can induce mutagenesis, 
stimulate proliferation, initiate metastasis, and induce 
treatment of resistance [23, 24]. 
 
Although the occurrence and development of GC 
involves a wide range of metabolic pathways [25], little 
has been written about the roles of abnormal lipid 
metabolism in this regard. Thus, the mechanism remains 
unclear that how ox-LDL promotes the occurrence and 
development of GC. 
 
Interleukin-enhancer binding factor 3 (ILF3) is known 
as NF90/NF110, a member of the double-stranded 

RNA-binding proteins (DRBPs), which is crucial in 
RNA metabolism from transcription to degradation, 
including transcription, translation, maintaining the 
stability of mRNA and primary microRNA processing 
[26]. In recent years, ILF3 has been widely studied and 
been linked to multiple malignant tumors. For example, 
ILF3 facilitated the occurrence of colorectal cancer by 
regulating the mRNA stability of serine–glycine–one-
carbon (SGOC) SGOC genes [27]. ILF3 overexpression 
was associated with poor clinical outcome for patients 
with lung cancer, and ILF3 can also be employed to 
guide the hierarchical postoperative management of 
patients with lung cancer [28]. ILF3 might serve as an 
important promoter in hepatocellular carcinoma 
proliferation and migration, and could be a potential 
therapeutic target in hepatocellular carcinoma [29]. 
ILF3 increased the expression of HIF-1α/VEGFA in 
cervical cancer cells to promote angiogenesis through 
PI3K/AKT signaling pathway [30]. Moreover, it has 
been reported the important function of ILF3 in the 
development of acquired chemoresistance in GC 
patients [31]. 
 
In addition to contributing to carcinogenesis, ILF3 is also 
a risk factor for coronary artery disease, venous 
thromboembolism, and stroke [32]. Studies have reported 
that ILF3 was associated with the serum concentrations 
of LDL cholesterol, and has been found to be a candidate 
gene for myocardial infarction in Japanese individual  
[33, 34]. The reports on the relationship of ox-LDL and 
the expression of ILF3, and their relationship with the 
development and progress of GC have never been 
reported. Therefore, further research is required to 
explore the association of ox-LDL and ILF3 and the 
underlying molecular mechanism in the development  
of GC. 
 
Statins are 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase inhibitors, which are intensively 
used for dyslipidemia and cardiovascular disease 
prevention [35]. Besides, statins use also could reduce 
total cancer risk and lower cancer-specific mortality 
[36, 37]. In a large population-based retrospective 
cohort study, statins use reduced the risk of cancer and 
cancer-related mortality [38]. A meta-analysis revealed 
that statins was associated with 32% reduction in the 
risk of GC [39]. Recent years, in vivo and in vitro 
studies have demonstrated that statins may exert anti-
cancer effects via a number of potential mechanisms 
including inhibition of mevalonate pathway, anti-
inflammatory and anti-angiogenesis [40, 41], and could 
lower the cholesterol levels in human gastric cancer cell 
lines [42]. 
 
This is the first study to demonstrate that statins can 
downregulate the expression of ILF3 in GC treatment 
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by reducing blood lipid levels. Thus, we hypothesized 
that ox-LDL promoted ILF3 overexpression and 
promoted proliferation, cell cycle, migration, and 
invasion of gastric cancer cells via PI3K/AKT/mTOR 
signaling pathway, and that statins might be the targeted 
drugs to treat GC in clinical practice. 
 
RESULTS 
 
ILF3 was overexpressed in gastric cancer patients 
 
To determine the expression level of ILF3 in GC 
samples, analysis of the mRNA expression data from 
The Cancer Genome Atlas (TCGA) including 375 GC 

samples and 32 normal cases demonstrated that the 
ILF3 expression level was higher in cancer tissue than 
normal tissues (Figure 1A, P<0.05). 
 
To measure the ILF3 expression levels in clinical GC 
tissues, immunohistochemical staining of ILF3 was 
performed in a cohort of 33 human GC tissues and 
matched adjacent non-cancerous tissues. Patients with 
GC were divided into subgroups according to use of 
statins medication. The results revealed that the ILF3 
expression in GC was higher than in no-neoplastic 
tissues. And the expression of ILF3 in patients taking 
statins was significantly lower than that without taking 
statins (Figure 1B, P<0.05). 

 

 
 

Figure 1. ILF3 was up-regulated in gastric cancer. (A) Expression of ILF3 mRNA in gastric cancer samples (n = 375) and normal samples 
(n = 32) from the TCGA data. (B) ILF3 protein expression was detected by IHC. ILF3 positive staining in tumor tissues was increased relative to 
non-cancerous tissues. (C) Western blot analysis of ILF3 in paired tumor tissues and non-cancerous tissues. The ILF3 expression level of mRNA 
was higher in cancer tissue than in normal tissues. (D) Western blot analysis of ILF3 protein in gastric epithelial cell line (GES-1) and gastric 
cancer cells lines (SGC-7901, HGC-27, Ncl-N87, and SNU-1). The ILF3 protein expression was significantly higher in gastric cancer cell lines 
than gastric epithelial cell line. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Moreover, the ILF3 protein expression was quantified 
by western blot. As shown in Figure 1C, ILF3 protein 
level was significantly upregulated in tissues from GC 
(P<0.05). 
 
Expression of ILF3 protein was detected in all 4 gastric 
cancer cell lines (SGC-7901, HGC-27, Ncl-N87, and 
SNU-1) and gastric epithelial cell lines (GES-1). 
Western blotting found that GC cell lines expressed 
higher ILF3 protein than gastric epithelial cell line 
(GES-1) (Figure 1D, P<0.05). Among the 4 cell lines of 
GC, the expressions of ILF3 in HGC-27 and Ncl-N87 
were remarkedly increased compared with other cell 
lines. Therefore, Ncl-N87 and HGC-27 cell lines were 
selected for subsequent experiments. 
 
Whole-genome RNA-seq analysis of ILF3 
 
Correlation analysis of the whole-genome RNA-
sequencing (RNA-seq) of ILF3 was performed with 
small interference (si-ILF3) to explore potential 
biological effects of ILF3. The volcano map of 
transcriptomics analysis showed a global view of gene 
expression, and showed that ILF3 played important role 
in processing the environmental and genetic 
information, the cellular processes, metabolism, and 
organismal systems (Figure 2A, 2B). 
 
Among all the differentially expressed genes 
(Supplementary Table 1), APOB and FGF19 were 
involved in the lipid biosynthetic process. APOB was 
also involved in the lipoprotein transport. Based on  
the result, we speculated that ILF3 may participate  
in the regulation of lipid metabolism by regulating  
the expression of APOB. Besides, DEPTOR was 

overexpressed after knocking out ILF3 using ILF3-
specific small interference RNA (si-ILF3), and 
previous studies have reported that DEPTOR is an 
endogenous mTOR inhibitor [43], whose expression 
was negatively regulated by mTOR. Therefore, the 
overexpressed DEPTOR may inhibit the mTOR 
signaling pathway and thus exerted a tumor suppressor 
effect (Figure 2C). 
 
Functional characteristics of ILF3 in gastric cancer 
cells 
 
GO analysis was applied to reveal the function 
characteristics of ILF3, including BPs (biological 
processes), CCs (cellular components), and MFs 
(molecular function) (Figure 3 and Supplementary 
Table 2). 
 
For BP analysis, the functions of ILF3 were mainly 
involved in digestive system development, lipoprotein 
transport and localization, cell migration (T cell, 
leukocyte, lymphocyte etc.), cell-cell adhesion, cell 
proliferation (fibroblast, neural precursor cell, smooth 
muscle cell etc.), and DNA synthesis and transcription. 
For example, a number of investigators have proposed 
the role of lipoproteins in the promotion of cancer 
progression [44]. And LDL is the largest cholesterol 
transporter of the body [45]. The LDL receptor on 
tumor cells is overexpressed to meet the high demand of 
cholesterol which is necessary for the rapid cell 
proliferation and de novo membrane synthesis. And ox-
LDL is an independent risk factor for GC. Thus, 
understanding the mechanism and function between 
ILF3 and ox-LDL facilitates the discovery of new 
targets for the treatment of GC. 

 

 
 

Figure 2. Volcano plot comparing gene expression between the interference group (infected with ILF3-specific siRNA) and 
the transfected negative control group in gastric cancer cell SGC-7901, respectively named si-ILF3 group and si-nc group.  
(A) The abscissa represents the logarithmic value of the fold change(log2FC) of the difference in the expression of a certain gene in the si-ILF3 
group and si-nc group. The greater the absolute value of the abscissa, the greater the difference of expression between the two groups. The y-
coordinate represents the negative log of p-value, namely the -log10 (p-value). The higher the value of ordinate was, the more the differential 
expression of genes was reliable. (B) The potential important roles that ILF3 played in the gastric cancer cells. (C) Genes that were potentially 
regulated by ILF3 expression in whole-genome RNA sequencing. 
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For CC analysis, ILF3 was associated with membrane 
raft. Membrane rafts of lipid rafts are small, dynamic 
membrane domains which are enriched with cholesterol 
and sphingolipids [46]. Membrane rafts do not only 
occur in the plasma membrane but also in intracellular 
membranes and extracellular vesicles [47]. Membrane 
rafts are significant in cellular signal pathways, and 
regulating cell proliferation, migration, invasion and 
apoptosis, which are responsible for the initiation, 
development and progression of malignant tumors  
[48, 49]. Studies have shown that ox-LDL may destroy 
the severity of lipid rafts, leading to corresponding 
pathological processes, and promote the progression of 
cancer [50]. Further research to link the ox-LDL to 
impaired lipid raft function due to the interaction with 
the expression of ILF3 is needed. 
 
For MF analysis, ILF3 was associated with Notch 
binding. Abnormal Notch signaling is associated with a 
variety of genetic and acquired disease, including 

cancers [51]. Notch signaling pathway regulated 
cellular proliferation and differentiation in a variety of 
gastrointestinal tract tissues, including the stomach.  
[52, 53]. Studies have found that mTOR signaling was 
reduced after Notch inhibition suggesting that mTOR 
might be downstream of Notch in GC cells [54, 55]. 
Therefore, ILF3 may eventually activate the mTOR 
signaling pathway through the Notch signaling to 
promote the proliferation of GC cells. 
 
ILF3 involved signaling pathway alterations in 
gastric cancer cells 
 
KEGG pathway analysis of ILF3 identified 14 
statistically significant signaling pathways, including 
African trypanosomiasis, Glycine, serine and threonine 
metabolism, Mineral absorption, Tryptophan metabolism, 
Arrhythmogenic right ventricular cardiomyopathy 
(ARVC), Gap junction, Hypertrophic cardiomyopathy 
(HCM), Systemic lupus erythematosus, Alcoholism, 

 

 
 

Figure 3. GO enrichment analysis between the si-ILF3 group and si-nc group in gastric cancer cell SGC-7901. GO enrichment 
analysis revealed the functions of ILF3 in gastric cancer cells, including BPs (biological processes), CCs (cellular components), and MFs 
(molecular function), which showed that ILF3 played important roles in the development of gastric cancer. 



www.aging-us.com 3892 AGING 

signaling pathways regulating stem cell pluripotency, 
TGF-beta signaling pathway, Dilated cardiomyopathy 
(DCM), Glycosaminoglycan biosynthesis - heparan 
sulfate / heparin and mTOR signaling pathway  
(Figure 4A and Supplementary Table 3). 
 
To further investigate ILF3-mediated signaling 
pathways in gastric carcinogenesis, Gene Set 
Enrichment Analysis (GSEA) was performed, which 
found that ILF3 was positively associated with 
upregulation of mTOR signaling pathway. It is well-
known that mTOR is an important downstream target of 
PI3K/AKT. Therefore, we need further experiments to 
prove that ILF3 can promote the occurrence and 
development of GC through PI3K/Akt/mTOR signaling 
pathway (Figure 4B). 
 
ox-LDL promoted ILF3 overexpression in gastric 
cancer cells 
 
To study the potential links between ox-LDL and ILF3, 
we set the concentration gradient of ox-LDL (0, 20, 40, 
60, 80, and 100 µg/ml) and the time gradient (24, 48, 
and 72 h) of stimulation, respectively. 
 
Western blotting showed that when the stimulation time 
was set to 48h, the protein expression of ILF3 was 
significantly upregulated after ox-LDL stimulation in 
20, 40, 60, and 80 µg/ml concentration range compared 
with blank control group without ox-LDL stimulation. 
The protein expression of ILF3 was highest when the 

concentration of ox-LDL was 40 µg/ml. When the 
concentration of ox-LDL is 100ug/ml, the protein 
expression of ILF3 is not statistically significant 
compared with control group (Figure 5A, P<0.05). 
Therefore, an ox-LDL concentration of 40 µg/ml was 
used for all subsequent experiments. 
 
When the concentration of ox-LDL was set to 40 µg/ml, 
the expression of ILF3 was measured by western blot at 
24h, 48h and 72h after stimulation. The expression of 
ILF3 was the highest when the stimulation time wea 48h 
and it was statistically significant (Figure 5B, P<0.05). 
 
To conducted loss-of-function assays to detected the 
effect of ILF3 on GC cells, ILF3 was knocked down 
with ILF3-specific small interference RNA (si-ILF3). 
Compared to the negative control (si-nc) group, mRNA 
and protein levels of ILF3 were lower (Figure 5C, 
P<0.05). Also, ILF3 was overexpressed with ILF3-
overexpressed plasmids (flag-ILF3). Compared to the 
vector plasmids (CMV2) group, the ILF3 expression 
was significantly higher (Figure 5D, P<0.05). 
 
ILF3 promoted proliferation, cell cycle, migration, 
and invasion of gastric cancer cells, and statins may 
exert an anti-tumor effect by inhibiting ILF3 
expression in gastric cancer 
 
Combined with BP (biological processes) analysis, to 
verify the role of ILF3 in promoting GC, in vitro 
experiments were conducted. 

 

 
 

Figure 4. KEGG enrichment analysis between the si-ILF3 group and si-nc group in gastric cancer cell SGC-7901. (A) KEGG 
analysis showed the signaling pathways that ILF3 was involved in gastric cancer cell SGC-7901. (B) Results of the GSEA showed that ILF3 
participated in the regulation of mTOR signaling pathway. NES = normalized enrichment score. 
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To further reveal the possible relationship between 
statins and ILF3, we set the concentration gradient of 
statins (0, 10, 20, 30, 40, and 50 µmol/L) to stimulate 
GC cells. Western blot assay showed that the expression 
of ILF3 was decreased with the increase in 
concentration of statins. Follow-up experiments chose 
40 µmol/L as the treatment concentration of statins 
treatment. And western blot analysis also found that 
ILF3-specific small interference RNA (si-ILF3) 
downregulated the protein expressions of ILF3 
compared with blank control group (Figure 6A, 
P<0.05). To reveal the role of ILF3 and the feasibility of 
statins in the treatment of GC, the changes of cell 
phenotype was analyzed after treatment with ox-LDL + 
si-nc, ox-LDL+ILF3-specific small interference RNA 
(si-ILF3) and ox-LDL + statins. And we set the ox-LDL 
+ si-nc group as control group. 
 
The effect of ILF3 on cell proliferation was evaluated 
by Edu assay (Figure 6B). The percentage of Edu-
positive GC cells in the ILF3-specific small interference 
and statins treatment groups were lower than that in the 
control group. The PCNA expression was lower 
expressed in the ILF3-specific small interference and 
statins treatment groups compared to control (Figure 
6B, 6C, P<0.05). 
 
Flow cytometry analyzed the effect of ILF3 on cell cycle 
of GC cells. Down-expression of ILF3 significantly 
increased the proportion of HGC-27 in the G0/G1 phase, 
and inhibited the proportion of HGC-27 in the S phase of 
cell cycle in the ILF3-specific small interference and 

statins treatment groups compared to control group. 
Down-expression of ILF3 significantly inhibited the 
proportion of Ncl-N87 in the S phase of cell cycle in the 
ILF3-specific small interference and statins treatment 
groups compared to control group, but the proportion of 
Ncl-N87 in the G0/G1 phase was not statistically 
significant(Figure 6D, P<0.05). Western blot analysis 
showed that the protein expression of cyclin-D1, the 
marker of G1-S phase transition, was lower expressed in 
the ILF3-specific small interference and statins treatment 
groups compared to control group(Figure 6E, P<0.05). 
 
The role of ILF3 on cell cycle was analyzed by flow 
cytometry. Inhibiting ILF3 expression significantly 
upregulated the proportion of HGC-27 and Ncl-N87 in 
the G0/G1 phase, and inhibited the percentage of HGC-
27 and Ncl-N87 in the S phase in the ILF3-specific small 
interference and statins treatment groups compared to 
control group (Figure 6D, P<0.05). As shown in Figure 
6E, compared to control group, the protein level of 
cyclin-D1, the marker of G1-S phase transition, was 
lower expressed in the ILF3-specific small interference 
and statins treatment groups (P<0.05). 
 
Cell invasion and migration modulated by ILF3 were 
assessed by transwell assay. Less invasive and migrated 
GC cells were found in the ILF3-specific small 
interference and statins treatment groups compared to 
control group (Figure 6F, P<0.05). The protein levels of 
MMP-2 and MMP-9 were lower expressed in the ILF3-
specific small interference and statins treatment groups 
compared to control (Figure 6G, P<0.05). 

 

 
 

Figure 5. The relationship of the expression of ILF3 and ox-LDL. (A, B) ox-LDL promoted the expression of ILF3 in a time-
concentration-dependent manner, the optimal concentration and intervention time was 40 µg/ml and 48h. (C) ILF3 was knocked down by 
ILF3-specific small interference RNA (siRNA) in HGC-27 and Ncl-N87 cells. The mRNA and protein expression level of ILF3 was verified by RT-
qPCR and western blot. The ILF3 expression at the mRNA and protein levels was significantly lower in the ILF3-siRNA group compared with 
the negative control group in HGC-27 and Ncl-N87 cells. (D) ILF3 was overexpressed by ILF3-overexpressed plasmids (flag-ILF3) in HGC-27 and 
Ncl-N87 cells. The mRNA and protein expression level of ILF3 was verified by RT-qPCR and western blot. The ILF3 expression at the mRNA and 
protein levels was significantly higher in the flag-ILF3 group compared with the negative control group in HGC-27 and Ncl-N87 cells. **P < 
0.01, ***P < 0.001, ****P < 0.0001 vs. 0 µg/L or 48 h groups. 
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Knockdown of ILF3 inhibited the activity of PI3K/ 
AKT/mTOR signaling pathway in gastric cancer 
cells 
 
KEGG and GSEA analyses revealed that ILF3 affected 
GC through PI3K/AKT/mTOR signaling pathway. 

Western blot analysis of p-PI3K/PI3K, p-AKT/AKT, 
and p-mTOR/mTOR found that p-PI3K, p-AKT, and  
p-mTOR were significantly downregulated ILF3-
specific small interference and statins treatment groups 
compared to control group. And the expression of 
PI3K, AKT and mTOR did not change significantly 

 

 
 

Figure 6. ILF3 promotes gastric cancer cells proliferation, cell cycle, migration, and invasion, and statins may exert an anti-
tumor effect by inhibiting ILF3 expression in gastric cancer. (A) Statins inhibited the expression of ILF3 in a concentration-dependent 
manner, the optimal concentration was 40 µmol/L. The protein expression of ILF3 was significantly downregulated with ILF3-specific small 
interference RNA (si-ILF3) and statin treatment compared to control group. The expression level of ILF3 was analyzed with western blot. (B) 
Edu assay analyzed the effects of ILF3 on cell proliferation of gastric cancer cells. ILF3-specific small interference RNA (si-ILF3) and statins 
treatment inhibited the proliferation of HGC-27 and Ncl-N87 cells compared to control group. (C) The protein expression of PCNA was lower 
expressed in the ILF3-specific small interference and statins treatment groups compared to control group. (D) Flow cytometry analyzed the 
effect of ILF3 on cell cycle of gastric cancer cells. ILF3-specific small interference RNA (si-ILF3) and statins treatment inhibited the cell cycle of 
HGC-27 and Ncl-N87 cells compared to control group. (E) The protein expression of cyclin-D1 was lower expressed in the ILF3-specific small 
interference and statins treatment groups compared to control group. (F) Transwell assay analyzed the effect of ILF3 on cell migration and 
invasion. ILF3-specific small interference RNA (si-ILF3) and statins treatment inhibited the migration and invasion of HGC-27 and Ncl-N87 cells 
compared to control group. (G) The protein expression of MMP-2 and MMP-9 were lower expressed in the ILF3-specific small interference 
and statins treatment groups compared to control group. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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(Figure 7). These findings demonstrated that ILF3 
regulated the proliferation, cell cycle, migration and 
invasion by activating the PI3K/AKT/mTOR signaling 
pathway. 
 
ILF3 promoted gastric cancer cell proliferation, cell 
cycle, migration and invasion via PI3K/AKT/mTOR 
signaling pathway 
 
To further define the role of PI3K/AKT/mTOR signaling 
pathway affected by ILF3 in the regulation of GC cell 
proliferation, cell cycle, migration, and invasion, the 
malignant biological of GC cells overexpressing ILF3 
treated with PI3K/AKT inhibitor LY294002. ILF3-
overexpressed plasmids (flag-ILF3) or vector plasmids 
(CMV2) were transfected into GC cells HGC-27 and 
Ncl-N87. The changes of cell phenotype were analyzed 
after treatment with ox-LDL+CMV2, ox-LDL+ 
flag-ILF3, ox-LDL+flag-ILF3+PI3K/AKT inhibitor 
LY294002. And we set the ox-LDL+flag-ILF3 as the 
control group. 
 
Western blotting found that p-PI3K, p-AKT, and  
p-mTOR were downregulated in ILF3-vector plasmids 

(CMV2) and PI3K/AKT inhibitor LY294002 treatment 
groups compared to ILF3-overexpressed plasmids  
(flag-ILF3) group. And the expression of PI3K, AKT  
and mTOR did not change significantly (Figure 8A). 
These findings demonstrated that ILF3 activated the 
PI3K/AKT/mTOR signaling pathway. And the inhibition 
of the signaling pathway could reverse the gastric cancer-
promoting effect of the overexpression of ILF3. 
 
Edu assay analyzed the effects of PI3K/AKT/mTOR 
signaling pathway affected by ILF3 on cell proliferation 
of GC cells. The proportion of Edu-positive GC cells 
was higher than in the ILF3-overexpressed plasmids 
group compared to control group. LY294002 treatment 
reduced the proportion of Edu-positive GC cells 
compared to the ILF3-overexpressed plasmids group 
(Figure 8B, P<0.05). The LY294002 treatment 
decreased the expression of PCNA compared to the 
ILF3-overexpressed plasmids group (Figure 8C, 
P<0.05). Overall, inhibition of the signaling pathway 
impeded ILF3-mediated the proliferation of GC cells. 
 
Flow cytometry analyzed the effects of the signaling 
pathway affected by ILF3 on the cell cycle. ILF3 

 

 
 

Figure 7. ILF3 was involved in the regulation of PI3K/AKT/mTOR signaling pathway. The effect of ILF3 on PI3K/AKT/mTOR signaling 
pathway was verified with western blot. ILF3-specific small interference RNA (si-ILF3) and statins treatment significantly inhibited 
PI3K/AKT/mTOR signaling pathway. The expression of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were significantly downregulated 
compared to control group. And the expression of PI3K, AKT and mTOR and p-mTOR did not change significantly. 
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Figure 8. ILF3 regulated gastric cancer cell proliferation, cell cycle, migration, and invasion via PI3K/AKT/mTOR signaling 
pathway. (A) The effect of ILF3 on PI3K/AKT/mTOR signaling pathway was verified with western blot. ILF3-overexpressed plasmids (flag-
ILF3) treatment significantly activated PI3K/AKT/mTOR signaling pathway. The expression of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR 
were significantly upregulated compared to vector plasmids (CMV2) group. And PI3K/AKT inhibitor LY294002 treatment significantly inhibited 
the PI3K/AKT/mTOR signaling pathway. (B) Edu assay analyzed the effects of PI3K/AKT/mTOR signaling pathway affected by ILF3 on cell 
proliferation of gastric cancer cells. ILF3-overexpressed plasmids (flag-ILF3) treatment significantly promoted the proliferation of HGC-27 and 
Ncl-N87 cells. And PI3K/AKT inhibitor LY294002 treatment significantly inhibited the proliferation of HGC-27 and Ncl-N87 cells compared to 
control group ILF3-overexpressed plasmids (flag-ILF3) group. (C) The protein expression of PCNA was lower expressed in the PI3K/AKT 
inhibitor LY294002 treatment and vector plasmids (CMV2) groups compared to ILF3-overexpressed plasmids (flag-ILF3) group. (D) Flow 
cytometry analyzed the effects of PI3K/AKT/mTOR signaling pathway affected by ILF3 on cell cycle of gastric cancer cells. ILF3-overexpressed 
plasmids (flag-ILF3) treatment significantly promoted the cell cycle of HGC-27 and Ncl-N87 cells. And PI3K/AKT inhibitor LY294002 treatment 
significantly inhibited the cell cycle HGC-27 and Ncl-N87 cells compared to ILF3-overexpressed plasmids (flag-ILF3) group. (E) The protein 
expression of cyclin-D1 was lower expressed in the PI3K/AKT inhibitor LY294002 treatment and vector plasmids (CMV2) groups compared to 
ILF3-overexpressed plasmids (flag-ILF3) group. (F) Transwell assay analyzed the effects of PI3K/AKT/mTOR signaling pathway affected by ILF3 
on migration and invasion of gastric cancer cells. ILF3-overexpressed plasmids (flag-ILF3) treatment significantly promoted the migration and 
invasion of HGC-27 and Ncl-N87 cells. And PI3K/AKT inhibitor LY294002 treatment significantly inhibited the migration and invasion HGC-27 
and Ncl-N87 cells compared to ILF3-overexpressed plasmids (flag-ILF3) group. (G) The protein expression of MMP-2 and MMP-9 were lower 
expressed in the PI3K/AKT inhibitor LY294002 treatment and vector plasmids (CMV2) groups compared to ILF3-overexpressed plasmids (flag-
ILF3) group. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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overexpression downregulated the proportion of HGC-
27 and Ncl-N87 in the G0/G1 phase and increased the 
proportion of HGC-27 and Ncl-N87 in the S phase in 
the ILF3-overexpressed plasmids group compared to 
control group. LY294002 treatment increased the 
proportion of HGC-27 and Ncl-N87 in the G0/G1 phase 
and reduced the proportion of HGC-27 and Ncl-N87 in 
the S phase compared to the ILF3-overexpressed 
plasmids group (Figure 8D, P<0.05). The LY294002 
treatment downregulated the cyclin-D1 expression 
compared with ILF3-overexpressed group (Figure 8E, 
P<0.05). Overall, inhibition of the PI3K/AKT/mTOR 
signaling pathway impeded ILF3-mediated the cell 
cycle of GC cells. 
 
Transwell assay analyzed the effects of the signaling 
pathway affected by ILF3. The number of migrated and 
invasive GC cells was remarkedly elevated in the  
ILF3-overexpressed plasmids group compared to 
control group (Figure 4F, P<0.05). LY294002 treatment 
reduced the number of migrated and invasive GC  
cells compared to the ILF3-overexpressed plasmids 
group (Figure 8E, P<0.05). The protein expression of 
MMP-2 and MMP-9 were higher in ILF3-overexpressed 
plasmids group compared to control group. LY294002 
treatment decreased the expression of MMP-2 and 
MMP-9 compared to the ILF3-overexpressed plasmids 
group (Figure 8G, P<0.05). Overall, suppress the PI3K/ 
AKT/mTOR signaling pathway impeded ILF3-mediated 
the invasion and migration of GC cells. 
 
ILF3 promoted tumorigenesis of in vivo gastric 
cancer cells 
 
To test the consequent of ILF3 on the growth of GC cells 
in vivo, a xenograft tumor model was employed. Sixteen 
of twenty nude mice survived up to the end of the 
experiments. Tumors of the high-fat diets had larger 
volumes than those of the normal diets group. Tumors of 
statins treatment and YM-155 (ILF3 inhibitor) treatment 
groups had smaller volumes than those of the high-fat 
diets group (Figure 9A, P<0.05). Immunohistochemistry 
showed that the expression of ILF3 in high-fat diets was 
significantly higher compared with the normal diet group. 
The expression of ILF3 in statins treatment and YM-155 
(ILF3 inhibitor) treatment groups were lower than those 
of the high-fat diets group (Figure 9B, P<0.05). 
 
ILF3 was involved in the regulation of PI3K/AKT/ 
mTOR signaling pathway in gastric cancer cell 
SGC-7901 
 
The experiments were conducted in SGC-7901 cells to 
confirm the relationship of ILF3 and the related 
signaling pathway. Western blotting found that p-PI3K, 
p-AKT, and p-mTOR were significantly downregulated 

ILF3-specific small interference and statins treatment 
groups compared to control group. The expression of 
PI3K, AKT and mTOR did not change significantly. 
The protein level of p-PI3K, p-AKT, and p-mTOR were 
significantly downregulated in ILF3-vector plasmids 
(CMV2) and PI3K/AKT inhibitor LY294002 treatment 
groups compared to control group. But the expression 
of PI3K, Akt and mTOR did not obviously changed 
(Figure 10). 
 
DISCUSSION 
 
Gastric cancer ranks fifth in the global incidence (5.6%) 
and fourth in tumor-related mortality (7.7%) [1]. Studies 
have investigated molecular mechanisms of GC. 
However, the pathogenesis needs to be further revealed. 
Therefore, more and more research has focused on 
patient-specific factors to provide more effective 
treatment to achieve precise treatment, thereby reducing 
morbidity and mortality [56]. Recently, studies have 
shown that lipid metabolism dysfunction plays significant 
role in gastric carcinogenesis [57], which provides a new 
research direction to predict, prevent, and early diagnosis 
of GC. High-fat diets and obesity have been regarded as 
risk factors of GC [58]. Therefore, dietary modifications 
and losing weight primary and secondary prevention 
strategies to reduce the risk of GC. In addition, this study 
focused on the molecular mechanism and targets of GC 
caused by abnormal lipid metabolism and find a new 
biomarker for early diagnoses of GC. In addition to 
formulating personalized treatment plans for targets, it is 
more important to find targeted drugs to successfully 
transform research results into results that benefit 
patients. 
 
Obesity leads to diseases such as abnormal lipid 
metabolism and hyperlipidemia [59], and is an important 
risk factor for carcinogenesis. Some studies have 
demonstrated that improvement of blood lipid levels and 
obesity control reduced the occurrence rate of GC, 
colorectal cancer, and esophageal cancer [60–62]. 
Abnormal lipid metabolism triggers a cascade of 
molecular events to finally cause malignancy. So, 
understanding mechanisms that how obesity or abnormal 
lipid metabolism induce GC development is important to 
prevent and treat GC. A case-control study in South 
Korea has found the higher blood LDL in patients with 
GCs compared to healthy people [63]. And LDL can 
easily be oxidized to ox-LDL which is an important 
feature of abnormal lipid metabolism [64, 65]. While, 
ox-LDL is critical in the progress of atherosclerosis and 
non-alcoholic steatohepatitis [66, 67]. Recently, studies 
have revealed the function of ox-LDL in the cancer  
cell proliferation [24], cell cycle [68], EMT [69], 
angiogenesis [70] and metastasis [71]. However, the 
detailed mechanism of ox-LDL to regulate the 
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Figure 9. ILF3 promoted tumor cell growth in vivo. (A) Images of nude mouse tumorigenesis test after four weeks of implantation. 
Comparison of tumor volume between normal diets, high-fat diets, high-fat diets+statin and high-fat diets + ILF3 inhibitor-YM155. Tumors in 
high-fat diet group were bigger than normal diet group. Tumors in statin and ILF3 inhibitor-YM-155 groups were smaller than high-fat diet 
group. (B) Immunohistochemistry showed that the expression of ILF3 in normal diets, high-fat diets, high-fat diets+statin and high-fat diets + 
ILF3 inhibitor-YM155 groups. **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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downstream gene expression or involved signaling 
pathways in GC is still unclear. It has been shown that 
ILF3 was associated with plasma LDL cholesterol, and 
has been considered as a candidate gene for the patients 
with acute myocardial infarction in Japanese [33, 34]. 
But the reports on the relationship of ox-LDL and the 
expression of ILF3, and their relationship with the 
occurrence and development of GC have never been 
reported. We found ox-LDL promoted the expression of 
ILF3 in a time-concentration dependent manner in GC 
cells, which provided a new research direction of the 
relationship of ox-LDL and GC. 
 
Previous research has reported that ILF3 plays as a 
transcriptional coactivator and involves in proliferation 
and metastasis of tumor [72]. To further explore the 
function of ILF3, GO analysis on the sequencing results 
was performed to guide the next step of phenotyping 
experiments. GO analysis exhibited that ILF3 was vital 
in GC cell proliferation, migration and invasion, 
indicating the oncogenic role of ILF3. We showed that 
ILF3 promoted proliferation of GC in vitro, and ILF3  
 

 
 

Figure 10. ILF3 was involved in the regulation of 
PI3K/AKT/mTOR signaling pathway in gastric cancer  
cell SGC-7901. (A:ox-LDL+si-nc;B:ox-LDL+si-ILF3;C:ox-LDL+statin; 
D:ox-LDL+CMV-2;E:ox-LDL+flag-ILF3;F:ox-LDL+flag-ILF3+PI3K/AKT 
inhibitor LY294002). (A–C) ILF3-specific small interference  
RNA (si-ILF3) and statins treatment significantly inhibited 
PI3K/AKT/mTOR signaling pathway. The expression of p-
PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were significantly 
downregulated compared to control group. And the expression 
of PI3K, Akt and mTOR and p-mTOR did not change significantly. 
(D–F) ILF3-overexpressed plasmids (flag-ILF3) treatment 
significantly activated PI3K/AKT/mTOR signaling pathway. The 
expression of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were 
significantly upregulated compared to vector plasmids (CMV2) 
group. PI3K/AKT inhibitor LY294002 treatment significantly 
inhibited the PI3K/AKT/mTOR signaling pathway. 

overexpression accelerated cell proliferation rate with 
upregulation of PCNA expression in GC cells, 
suggesting that ILF3 promotes GC progression. Previous 
research reported that downregulation of ILF3 could 
delay hepatocellular carcinoma cell cycle progression 
and inhibit cell proliferation [73]. And to a certain 
extent, the cell cycle reflects the proliferation status of 
GC cells. After ILF3 inhibition by ILF3-specific small 
interference, the proportion of GC cells in G0/G1 phase 
was increased, which indicated that ILF3 promoted the 
proliferation and cell cycle of GC cells. 
 
Cell invasion and migration are typical hallmark of 
malignancies [74]. Consistent with previous study in 
melanoma, our results indicated that ILF3 could 
accelerate the invasion and migration of GC cells  
in vitro [75]. When ILF3 was down-regulated by 
siRNA, the migration and invasion of GC cells in vitro 
were significantly inhibited. Thereby, the results 
validated that ox-LDL promoted the overexpression of 
ILF3 to enhance proliferation, cell cycle, migration and 
invasion of GC cells, thereby promoting the occurrence 
and development of GC. 
 
Statins can lower plasma cholesterol, and are extensively 
used to prevent cardiovascular diseases [76, 77]. 
Currently studies have found that statins have multiple 
functions, including anti-inflammatory, antioxidant, 
antithrombotic, anticancer, and cancer chemopreventive 
effects. Several studies found that statins improved 
chemosensitivity in a variety of cancers and was used as 
an adjuvant to chemotherapy [78]. A meta-analysis of 
studies supported the association between statin and GC 
risk [39]. A previous study found that Hp infection was 
the most common cause for GC [39], and cytotoxin-
associated gene A (CagA) is the most-important 
virulence factor of Hp [79]. Hp can manipulate the 
cholesterol-rich microdomains (also called lipid rafts), 
which contributes to CagA functions and pathogenesis 
[80], and statins disrupt the lipid raft of cell membranes 
to inhibit pathogenic function of CagA [79]. A meta-
analysis demonstrated that the inhibition of cancer by 
statins was more pronounced in distal than proximal GC, 
and that Hp infection is not the only risk factor for GC 
[42]. Besides, study had reported that the inhibition of the 
mevalonate pathway reverted the malignancy potential 
and reduce the invasiveness of cancers [81]. However, 
molecular mechanisms for the use of statins to treat GC 
remain unclear. Thus, it is crucial to find new targets to 
provide a reliable fundamental basis for statins against 
GC. 
 
From CC analysis, the results showed that ILF3 was 
also associated with membrane raft. We proposed that 
statins may play anti-tumor effects in GC by acting on 
ILF3. To verify this hypothesis, in the present study we 
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conducted a series of experiments. We found statins 
treatment significantly inhibited the mRNA and protein 
expressions of ILF3 compared to control group in GC 
cells. The cell functional experiments revealed that 
statins treatment significantly inhibited the proliferation, 
cell cycle, migration and invasion of GC cells by 
inhibiting ILF3. The animal experiments revealed that 
ILF3 inhibitor (YM-155) and statins treatment not only 
the volume of subcutaneous, but also the expression of 
ILF3 were significantly reduced. These findings were 
consistent with previous findings that the expression of 
ILF3 was significantly lower in patients with taking 
statins when compared to patients who didn’t take 
statins. Thereby, these data supported that ILF3 acted as 
a tumor promoter and served as a potential new target 
for the use of statins to treat GC patients, and ILF3 
elimination is a significant target to prevent and 
intervent GC, providing rationale for the use of statins 
to treat GC. 
 
Obesity-associated cancer is a major health burden and 
has been intensively studied. Researchers have identified 
multiple cancer risk factors including adipokines, 
cytokines, insulin/insulin-like growth factor axis, and 
other cellular signal pathways. Among them, lipids 
regulate some important oncogenic pathways such as 
PI3K/AKT/mTOR, Ras, or Wnt pathways [82, 83]. In 
this study, based on KEGG pathway enrichment analysis 
and GSEA analysis, the expression levels of ILF3  
could regulate the activation of the PI3K/AKT/mTOR 
signaling pathway 
 
The PI3K/AKT/mTOR signaling pathway is important 
in tumor progression, including cell proliferation, 
invasion, metastasis, cell cycle, apoptosis, and 
metabolic functions [84, 85]. Thus, discovery of new 
specific targets to activate PI3K/AKT/mTOR signaling 
pathway has become a hotspot of research among 
targeted interventions of GC. And the role of ILF3 in 
the modulation of PI3K/AKT/mTOR signaling pathway 
is unrevealed. 
 
This study validated that interference of ILF3 and statins 
treatment downregulated the phosphorylation PI3K, 
AKT and mTOR, thereby inhibit the PI3K/AKT/mTOR 
signaling pathway in GC cells. The rescue experiments 
were designed, in which PI3K/AKT/mTOR signaling 
pathway inhibitors under the premise of overexpression 
of ILF3 were used to observe the phenotypic changes of 
GC cells. The rescue experiments demonstrated that the 
inhibitor of signaling pathway reversed overexpression 
effect of ILF3 on cell proliferation, cell cycle, migration, 
and invasion of GC cells. Therefore, ILF3 promoted cell 
proliferation, cell cycle, migration, and invasion by 
regulating PI3K/AKT/mTOR signaling pathway in GC 
cells. 

ILF3 and its regulated PI3K/AKT/mTOR signaling 
pathway are valuable resource for GC in the field of 
abnormal lipid metabolism, providing insights into lipid 
metabolism and discovery of energy metabolism-based 
molecular biomarker pattern and new antitumor targets/ 
drugs to effectively treat GC. ILF3 might be a new GC 
marker for risk stratification in people with obesity or 
abnormal lipid level. According to the individual risks, 
appropriate preventive measures can be taken. For high-
risk group of GC, statins treatment improved blood lipid 
levels when inhibiting the expression of ILF3, and 
reduced the occurrence of GC. Statins combined with 
chemotherapy might aid personalized treatment of 
treatment of high-expressed ILF3 GC patients. 
 
CONCLUSIONS 
 
This study shows that ox-LDL promotes the expression 
of ILF3 through the PI3K/AKT/mTOR signaling 
pathway, thus facilitates the proliferation, cell cycle, 
migration and invasion of gastric cancer cells, providing 
a potential new biomarker for the early detection and 
the therapeutic target of gastric cancer patients. 
 
MATERIALS AND METHODS 
 
Clinical specimen acquisition and analysis 
 
The data of mRNA sequencing and corresponding 
clinical information of 375 GC samples and 32 normal 
cases were obtained from The Cancer Genome Atlas 
(TCGA) database (https://tcga-data.nci.nih.gov/). The 
paired gastric cancer tissue and matched adjacent 
normal tissue were collected from 33 patients with GC 
admitted to Qilu Hospital, Cheeloo College of 
Medicine, Shandong University (Jinan, China) 
between January 2020 and December 2020 before 
surgery, these patients did not receive any other 
treatments, such as radiotherapy, chemotherapy, and 
targeted therapy. Informed consent was obtained from 
all participants. 
 
Whole-genome RNA sequencing 
 
The gastric cancer cells SGC-7901 were randomly 
divided into the interference group (infected with ILF3-
specific siRNA) and the transfected negative control 
group. RNeasy mini kit (Qiagen, Germany) was applied 
to isolate total RNA. TruSeq™ RNA Sample Preparation 
Kit (Illumina, USA) was used to synthesize paired-end 
libraries. The final cDNA library was then created with 
PCR by purification and enrichment. The library 
construction and sequencing were implemented by 
Sinotech Genomics Co., Ltd (Shanghai, China). R 
package edgeR was carried out to analyze the mRNA 
differential expression. Differentially expressed RNAs 

https://tcga-data.nci.nih.gov/
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with |log2(fold-change)| value >1 and q value <0.05 were 
reserved for further analysis. 
 
Functional enrichment analyses 
 
We performed the Gene Ontology (GO) [86] and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses based on the RNA sequencing, 
which included the biological processes (BP), cellular 
components (CC), molecular functions (MF), and 
pathways. The p value < 0.05 were considered significant. 
 
Gene Set Enrichment Analysis (GSEA) was performed 
to figure out the signaling pathway which may be 
regulated by ILF3. The normalized enrichment score 
(|NES|) > 1 was considered as statistical significance. 
 
Cell lines and cell culture 
 
The gastric cancer cell lines GES, SGC-7901, HGC-27, 
Ncl-N87, and SNU-1 were obtained from Fuheng 
company, Shanghai, China, and were cultured in 1640 
media (Gibco) supplemented with 10% fetal bovine 
serum (Gibco) and 1% penicillin/streptomycin 
(Millipore) in a humidified incubator with 5% CO2 at 
37° C. 
 
ILF3-siRNA transfection and groupings 
 
For the knockdown of ILF3, cells were transfected with 
ILF3-specific siRNA or scramble siRNA with 
lipofectamine 3000 reagents. Each targeting sequence 
was shown: si-ILF3: 5’-ACG UGA CAC GUU CGG 
AGA ATT-3’; si-nc: 5’-UUC UCC GAA CGU GUC 
ACG UTT-3’. According to the manufacturer's 
protocol, GC cells were seeded in a 6-well plate, and 
cultivated for 24h prior to transfection. And transfection 
was performed when the cells reached ~70% 
confluence. Subsequent experiments were performed at 
48h post-transfection. 
 
Plasmid construction and transfection 
 
Human ILF3 Gene cDNA Clone (full-length ORF Clone) 
was cloned into Flag-ILF3 vector. For transfection, the 
Lipofectamine 3000 and OPTI-MEM (Gibco, Shanghai, 
China) were mixed with plasmids, transfected into cells 
and incubate for 24 hours. 
 
Cell proliferation assay (Edu assay) 
 
GC cells were seeded in 12-well plates to confluence and 
cultured with 10-μM EdU for an additional 2h. Then 4% 
formaldehyde (PFA) was used to fix the cells for 30 min 
at room temperature (RT). After washing, Click-iTR EdU 
kit was used to detect EdU, with a detection time of ~30 

min. After 10 min incubation with DAPI, the cells were 
observed with a fluorescence microscope (Olympus). The 
EdU incorporation rate was calculated by Image-Pro Plus 
6.0 software (Media Cybernetics). The result was 
expressed as the ratio of EdU-positive cells to total 
DAPI-positive cells. 
 
Flow cytometry for cell cycle analysis 
 
Gastric cancer cells were centrifuged (1000g, 5 min, 
and 4° C), and rinsed with a volume (1 ml) of precooled 
PBS. Then a volume (1 ml) of precooled 70% ethanol 
was added, and the cells were maintained at 4° C for 2 
h. The cell suspension was added with a volume (1 ml) 
of precooled PBS, and the supernatant was discarded 
after centrifugation (1000 g, 5 min, and 4° C). The cells 
were resuspended in a volume (500 µl) of binding 
buffer with 25 µl propidium Iodide (20 x) and 10 µl 
RNase A (50 x) (RT, darkness, and 30min). Then the 
flow cytometry was performed. 
 
Detection of cell migration and invasion 
 
Human gastric cancer cell lines were collected, and 
suspended with 1640 medium (Gibco), made into 1.5 x 
105 cells/ml. The cell suspension (200 µl) was incubated 
into the upper chamber for migration (or precoated with 
100µl Matrigel solution [BD] for invasion). A volume 
(600 µl) of medium containing 20% FBS and specific 
treatment was applied to the lower chamber. After 24 h 
plating, the cells remaining on the upper chamber were 
removed with a cotton swab. The cells in the lower 
chamber were fixed and stained. And the number of 
migration and invasion cells was counted and 
photographed in three randomly selected view-fields. 
 
Western blotting 
 
The total proteins were collected from gastric cancer 
cells grown in a 6-well plate with specific treatment. 
Briefly, the cells were harvested and lysed with RIPA 
lysis buffer containing 1× protease inhibitor cocktail. A 
portion (5 µl) of protein samples was separated by SDS-
PAGE, and transferred onto PVDF membrane. PVDF 
membrane was blocked with 5% non-fat milk (1h, room 
temperature), and incubated with primary antibody 
(overnight, 4° C). The proteins on PVDF Membrane 
were incubated with secondary anti-rabbit antibodies 
(1h, room temperature). The levels of proteins and 
phosphoproteins were determined with WesternBright 
ECL. The primary antibodies were against ILF3 
(Abcam, USA), PCNA (Abcam, USA), cyclinD1 
(Abcam, USA), MMP9 (Abcam, USA), MMP2 
(Abcam, USA), Akt (CST, USA), p-Akt (CST, USA), 
PI3K (CST, USA), p-PI3K (CST, USA), mTOR (CST, 
USA), and p- mTOR (CST, USA). 
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Immunohistochemistry staining (IHC) 
 
Gastric cancer tissues and adjacent nonmalignant tissues 
were PFA-fixed, paraffin-embedded, and cut into 5-µm-
thick consecutive sections. Each section was then 
immersed in sodium citrate solution (pH 6.0, 20 min, 
98° C) and washed three times with 1x PBS for 3 
min/time to achieve deparaffinization and antigen 
recovery. The sections were permeabilized with PBS 
containing 0.5% Triton X-100 for 20 min at RT. After 
initial incubation in 4% normal goat serum (30 min, 
RT), primary antibody was used and incubated (4° C, 
overnight). After washing with PBS, each tissue section 
was incubated with secondary antibody for 1 h at RT, 
and then stained with diaminobenzidine (DAB). After 
washing in PBS, nuclei were stained with hematoxylin 
(Sigma-Aldrich) for 10 min, and washed in tap water. 
Immunohistochemistry for each sample was repeated 
thrice. 
 
Real-time quantitative PCR (RT-qPCR) 
 
RNAfast200 was applied to extract the total RNAs. 
Reverse transcription was performed in a total 
volume 20 µl with reverse transcriptase. To remove 
genomic DNA, samples were mixed with gDNA 
wipeout buffer and incubated (42° C, 2min), and 
further incubated at 37° C for 15 min, and 85° C for 5 
s to obtain cDNA. The prepared sample was stored at 
−20° C until use. 
 
The quantification cycle (Cq) was calculated with the 
amplification curve. The experiments were repeated 
thrice. The primers for ILF3 were forward 5’-CATTA 
CGCCCATGAAACGCC-3’, and reverse 5’-TAAAG 
ATGGGGGCATGGACG-3’. The primers for GAPDH 
were forward 5’-GCACCGTCAAGGCTGAGAAC-3’, 
and reverse 5’-TGGTGAAGACGCCAGTGGA-3’. 
 
Xenograft tumor 
 
Four-week-old male nude mice were obtained from 
Sibeifu Company (Beijing, China). A total of 1 x 107 
HGC-27 cells were subcutaneously injected into nude 
mice (n = 5 per group). Nude mice were randomly 
divided into four groups (n = 5 per group): normal diets, 
high-fat diets, high-fat diets + statins treatment, and 
high-fat diets + ILF3 inhibitor-YM155 treatment. The 
tumor size was measured every 4 days with a vernier 
caliper starting from the day 7 after subcutaneous 
tumor. The treatment group were injected with  
statins (intraperitoneally, 5 mg/kg) or ILF3 inhibitor 
(intraperitoneally, 5 mg/kg) once every 3 days. The 
tumor volume was calculated with volume = 0.5 x 
length x width2. All animal experiments met the ethic 
regulations. 

Statistical analysis and bioinformatics 
 
SPSS 26.0 and GraphPad Prism 9.1.2 software were used 
to perform statistical analysis. Data was expressed as 
mean ± SD of 3 independent biological replicates. 
Differences between two groups were analyzed by 
unpaired two-tailed Student's t-test. Multiple comparisons 
between groups were performed with ANOVA test. A P-
value < 0.05 was considered as statistically significance. 
 
Ethics approval 
 
All investigations conformed to the principles outlined in 
the Declaration of Helsinki and were performed with 
permission by the responsible Medical Ethics Committee 
of Qilu Hospital of Shandong University. 
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Supplementary Table 1. The differentially expressed genes between the control group and the si-ILF3 group. 
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