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Background: Ectoparasites exhibit pronounced variation in life history characteristics such as time spent on the
host and host range. Since contemporary species distribution (SD) modelling does not account for differences in
life history, the accuracy of predictions of current and future species’ ranges could differ significantly between life

Results: SD model performance was compared between 21 flea species that differ in microhabitat preferences and
level of host specificity. Distribution models generally performed well, with no significant differences in model
performance based on either microhabitat preferences or host specificity. However, the relative importance of
predictor variables was significantly related to host specificity, with the distribution of host-opportunistic fleas
strongly limited by thermal conditions and host-specific fleas more associated with conditions that restrict their
hosts’ distribution. The importance of temperature was even more pronounced when considering microhabitat
preference, with the distribution of fur fleas being strongly limited by thermal conditions and nest fleas more
associated with variables that affect microclimatic conditions in the host nest.

Conclusions: Contemporary SD modelling, that includes climate and landscape variables, is a valuable tool to study
the biogeography and future distributions of fleas and other parasites taxa. However, consideration of life history
characteristics is cautioned as species may be differentially sensitive to environmental conditions.
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Background

Ectoparasites exhibit pronounced variation in life history
strategies with parasite-host associations ranging from
one-to-one symbiosis (host-specific) to multi-partner
symbiosis (host generalist). Furthermore, life history also
differs between taxa with some parasite species being
only temporarily associated with the body of a host (e.g.
ticks and fleas), while others are more permanently
linked with a host (e.g. lice) [1-3]. Consequently, it can
be argued that the distribution of parasite species with
multiple free-living stages (i.e. temporary parasites) are
likely more strongly affected by the off-host environment
(e.g. climatic and landscape features), whereas the
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distribution of permanent parasites may be indirectly
driven by factors affecting host assemblages (e.g. shelter
and food) (see [1, 2]). Temporary parasite taxa, however,
are also characterized by varying levels of host associ-
ation [1, 2] with these subtle differences in life history
characteristics also potentially adding further complexity
to patterns of parasite species distributions [2, 4]. These
complex relationships between parasite, host and envir-
onment may make it difficult to achieve accurate range
predictions for ectoparasites.

The increasing threat posed by emerging infectious
diseases [5, 6] coupled with an increase in the availability
of species occurrence records, has stimulated renewed
interest in predicting the current and future distribu-
tions of arthropod vectors. Species distribution (SD)
modelling has proved useful for this purpose, e.g. [7-9],
with particular success for several medically and
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veterinary important arthropod vectors, e.g. [8, 10-12],
including a single study on fleas [10]. In the latter study
the authors used standard climatic variables (temperature,
relative humidity and precipitation) in a GARP modelling
approach to estimate the regional distribution of 18 flea
species that act as vectors of Yersinia pestis, the bacterial
agent of plague in California, USA. Given the recent re-
emergence of certain flea-borne diseases [6] any improve-
ments in our understanding of changes in flea vector
distributions is valuable for the field of epidemiology.

Fleas are obligate ectoparasites of terrestrial verte-
brates, and are regarded as "permanent satellites" of their
hosts, due to the intimate association between fleas and
hosts [13, 14]. In general, fleas spend part of their life-
cycle in the host’s nest (egg, larvae and pupae) while
adults occur on the body of the host. The length of time
that adults spend on the host varies between flea taxa [1,
14, 15] and this difference in microhabitat preference al-
lows fleas to be categorized either as “fur” (adults spend
more time on the host), “nest” (adults spend more time
in the nest of the host) or “fur/nest” species (adults
spend more or less equal amounts on the host and in
the nest of the host) [1, 14, 15]. Flea species also differ
in terms of host specificity, which ranges from host-
specific (recorded from<2 host species) to host-
opportunistic (recorded from>2 host species) [1, 14,
16]. There appears to be no relationship between micro-
habitat preference and level of host specificity exhibited
by flea species (i.e. nest fleas are not generally regarded
as having a higher level of host specificity). However, dif-
ferences in level of host association between a flea and a
host may have profound implications for the level of ex-
posure to environmental features (e.g. climate and land-
scape), see [17-20], highlighting the need to assess the
importance of these life history characteristics in SD
modelling studies.

The aim of this study was therefore to compare SD
model performance and the relative importance of pre-
dictor variables between flea species with different
microhabitat preferences (fur vs nest) and level of host
specificity (opportunistic vs specific). We predicted that
fur fleas will be more accurately modelled due to being
more strongly affected by variables associated with re-
gional environmental conditions (e.g. climate), while nest
fleas will be less accurately modelled due to being af-
fected by conditions within the host nest (e.g. soil condi-
tions and microclimate; since all life stages spend the
majority of their life-cycle off the host and have limited
dispersal capabilities). Furthermore, we predict that
host-specific fleas will be more strongly associated with
the abiotic variables constraining their host’s distribution
and therefore will be more accurately modelled than
host-opportunistic fleas. This is expected because host-
specific fleas are assumed to be adapted to the
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immediate environment of their specific host and thus
are expected to tolerate a narrower range of physical
conditions compared to host-opportunistic fleas (see
[14, 21, 22]).

Methods

A dataset comprising occurrence records for flea species
that parasitize 83 small mammal species (rodents, ele-
phant shrews and shrews) from 1064 localities across
South Africa were compiled from published literature
[23-25] (Fig. 1). Flea species were selected for modelling
when having occurrence records from ten or more local-
ities (following [26-28] and when their microhabitat
preference and host specificity are known (Fig. 1;
Table 1). The raw data associated with background and
presence data points are available upon request from the
authors. Flea species were subsequently categorized by
microhabitat preference (fur: adult stage spend more
time on the host vs nest: adults spend more time in the
nest of the host vs fur/nest: adults stage spend roughly
equal time in the nest and on the host) [1, 14, 15] and
host specificity (opportunistic: recorded from >2 host
species vs specific: recorded from <2 host species) ([1]
based on [23, 29]) (Table 1). Fleas that spend almost
equal amounts of time in the nest and fur (indicated as
fur/nest in Table 1) were only included when analysing
species by host specificity. Furthermore, instances where
a flea species was only recorded once from a host spe-
cies were seen as accidental infestations and not consid-
ered when classifying host specificity.

Preliminary climate and landscape variables were se-
lected based on our knowledge of flea ecology, limiting
candidate variables to only include predictors that are
considered ecologically relevant to flea species (following
[30-32]). All predictor variables and flea occurrence
data were converted to Quarter Degree Grid Cell
(QDGC) scale and cropped to the borders of South
Africa. Five remotely-sensed climate-based variables
(daytime land surface temperature (hereafter referred to
as day temperature), Leaf Area Index (LAI), Normalised
Difference Vegetation Index (NDVI), rainfall, water
vapour, and soil characteristics) and one landscape fea-
ture variable (Topography) were extracted from the
NASA-NEO website (http://neo.sci.gsfc.nasa.gov/about/)
as potential predictor variables (missing values were esti-
mated as the average of contiguous cells). Climate is
known to generally influence flea populations to a
greater extent than host species, especially at regional
and local scales [20, 33], with air temperature, rainfall
and relative humidity being important for flea survival,
see [1, 10, 33-36]. NDVI is widely used in arthropod
vector distribution modelling and is a measure of pri-
mary productivity (plant photosynthetic activity), and
therefore can be considered as a proxy for general
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Fig. 1 Map of South Africa indicating 1064 background and 1993 presence data points for all 21 flea species used in the flea distribution models
A

EEEEE
=00 * Background data

O Presence data

arthropod habitat conditions [37, 38]. Furthermore,
NDVI has also been successfully used in small mammal
resource and population dynamics studies [38—40] and
therefore may also be a surrogate for host availability.
LAI is a measure of plant canopy structure and can in-
fluence incident radiation and evapotranspiration at the
soil surface [41]. Additionally soil data, including soil or-
ganic carbon content, pH, cation exchange capacity, per-
centage sand and bulk density, were extracted from the
SoilGrids database [42] (http://www.soilgrids.org/) at a
depth of 60-100 cm. These soil characteristics may be
expected to have direct (via microhabitat) and indirect
(small mammal burrowing conditions) effects on flea
species distributions [35, 43—-46].

To remove collinearity between climate-based predic-
tors and to summarize seasonality, we performed har-
monic regressions for all of the climate variables using
monthly data from January 2001 until June 2014 (follow-
ing the methods of [47]) (see Additional file 1 for R
script). These Fourier-transformed variables (“harmonic
variables” hereafter) represent key temporal climate
trends, reflecting different measures of seasonality [47].
Maximum, minimum, mean, range, and coefficient of
variation (CV) values were also calculated for each cli-
mate variable. The correlation between all predictor var-
iables was then calculated to identify collinear
predictors, with the most strongly correlated variable ex-
cluded and the process repeated until the strongest cor-
relation was weaker than |0.7|. When choosing between

two strongly correlated variables, the preference was to
drop harmonic variables rather than the other more
biologically-interpretable variables (i.e. maximum, mini-
mum, mean, range, CV, topography, and soil variables).
Through this process an initial set of 68 predictor vari-
ables was reduced to 19 predictors with minimal collinear-
ity (see Additional files 2 and 3) and with clear ecological
relevance, avoiding the inclusion of variables that are ir-
relevant and/or will inflate models [7, 9, 47, 48]. The raw
data associated with predictor variables are available upon
request from the authors. All analyses were conducted in
R v3.1.3 [49] and ArcGIS 10.1 [50].

Species distribution modelling relates species presence
(or presence and absence) data to environmental variables
to predict the distribution of species over a specified geo-
graphic range [51]. In this study MaxEnt models, based on
the maximum entropy algorithm, were used with
presence-only data (MaxEnt v3.3.3; [52, 53]). To account
for potentially spatially-biased sampling of fleas across our
study region (e.g. due to more studies being conducted in
protected areas), MaxEnt models were adjusted for un-
even sampling by incorporating background data reflect-
ing patterns in sampling effort [31, 32] (see Fig. 1). All
1064 localities from which flea species occurrences have
been published were therefore included as background
points to distinguish false absences (lack of survey data)
from true absences (species was not recorded) (Fig. 1).

For each flea species variable importance (i.e. relative
contribution of each predictor variable) was calculated
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Table 1 Microhabitat preference, host specificity, number of unique occurrence records and two measures of model performance

(AUC and TSS) for each flea species

Species Microhabitat preference Host specificity® Occurrence records AUCP TssP
Chiastopsylla coraxis nest opportunistic 51 0.907 0.694
Chiastopsylla mulleri simplex fur/nest specific 26 0.948 0.752
Chiastopsylla pitchfordi nest opportunistic 58 0.907 0.706
Chiastopsylla quadrisetis fur/nest specific 15 0.940 0.804
Chiastopsylla rossi nest opportunistic 88 0.545 0.067
Ctenopthalmus calceatus fur/nest opportunistic 85 0.848 0.518
Demeillonia granti fur specific 15 0.737 0.386
Dinopsyllus ellobius fur/nest opportunistic 439 0.646 0.231
Dinopsyllus lypusus fur opportunistic 34 0.894 0.545
Epirimia aganippes fur opportunistic 52 0.738 0.280
Listropsylla agrippinae fur opportunistic 150 0.760 0.360
Listropsylla chelura chelura nest specific 50 0.821 0454
Listropsylla dorripae nest specific 70 0.695 0.277
Listropsylla fouriei nest specific 13 0.665 0.272
Listropsylla prominens fur opportunistic 28 0.882 0.519
Praopsylla powelli fur/nest specific 15 0.885 0.560
Xenopsylla eridos nest opportunistic 134 0810 0499
Xenopsylla mulleri nest specific 10 0978 0.763
Xenopsylla pirei nest opportunistic 284 0.737 0423
Xenopsylla trifaria nest specific 24 0.733 0.363
Xenopsylla versuta fur/nest specific 32 0.890 0.636

?Opportunistic (recorded from > 2 host species) and specific (recorded from < 2 host species)
PAUC, area under the curve of the receiver operating characteristic (ROC); TSS, True Skill Statistic

using the full dataset. The mean importance of each
variable type (the average of all related individual pre-
dictor variables) was determined for each group of flea
species (microhabitat preference and host specificity).
Model performance was evaluated using 10-fold cross-
validation to calculate the area under the curve (AUC)
of the receiver operating characteristic (ROC; [54]) in
MaxEnt and the true skill statistic calculated from Max-
Ent output in R (TSS; [55], see Additional file 4). Ana-
lysis of variation (ANOVA) was used to test if AUC and
TSS values differed according to species’ microhabitat
preference and host specificity. Non-metric multi-
dimensional scaling (NMDS) and analysis of similarity
(ANOSIM; implemented from the vegan package in R)
were used to test if differences in variable importance
were related to microhabitat preference or host specificity.

Results

A total of 21 flea species from small mammals were
selected with known microhabitat preference, host
specificity, and sufficient occurrence records (Table 1).
Overall, model performance was highly variable be-
tween flea species (AUC from 0.545 to 0.978; TSS
from 0.067 to 0.804; Table 1), but was good to

excellent on average (mean + SE, AUC =0.799 + 0.026;
TSS = 0.464 £ 0.045).

For flea microhabitat preference, there was no signifi-
cant difference in AUC (F;, ;3=0.120, P=0.735) or TSS
(F;, 13=0.101, P=0.756) values between fur (AUC=
0.802 + 0.035; TSS =0.418+0.050) and nest (AUC =
0.780 + 0.041; TSS = 0.452 + 0.070) fleas. In addition, im-
portance of the predictor variables did not differ signifi-
cantly between fur and nest fleas (ANOSIM: R* = 8.7 %,
P =0.204; Fig. 2). Variable importance averaged by vari-
able type (ie. day temperature, LAI, NDVI, rainfall,
water vapour and soil; Table 2), revealed that
temperature-related variables were most important for
predicting species distributions, and this was particu-
larly so for fur fleas (Fig. 3). Rainfall was the second
most important variable type for predicting the occur-
rence of nest fleas (having a significantly higher rela-
tive contribution to nest fleas than fur fleas; Fig. 3).
Considering variables individually, minimum day
temperature and minimum water vapour contributed
significantly more strongly to fur than nest fleas while
minimum rainfall contributed significantly more to-
wards predicting the distribution of nest fleas than
fur fleas (see Additional file 5).
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Fig. 2 NMDS ordination plot showing the relationship between microhabitat preference of flea species and the variable importance of predictors
included in each species distribution model. The best linear fit of all variables that had a significant (P < 0.05) influence are indicated. Variable
codes: DT6, 6th harmonic component of daytime land surface temperature; DTMIN, minimum daytime land surface temperature; RFMIN,
minimum rainfall; REMAX, maximum rainfall; WV6, 6th harmonic regression component of water vapour

Table 2 Final list of variable type and individual predictor
variables used for modelling flea species with different life

histories

Variable type

Predictor variable

Day temperature

LAl

NDVI

Rainfall

Water vapour

Soil

6th harmonic component of daytime land surface
temperature

7th harmonic component of daytime land surface
temperature

Minimum daytime land surface temperature
3rd harmonic component of daily LAI

4th harmonic component of daily LAI

4th harmonic component of daily NDVI

7th harmonic component of daily NDVI

4th harmonic component of daily rainfall

6th harmonic component of daily rainfall

7th harmonic component of daily rainfall
Minimum rainfall

Maximum rainfall

4th harmonic component of daily water vapour
5th harmonic component of daily water vapour
6th harmonic component of daily water vapour
Minimum water vapour

Soil percentage sand

Soil organic carbon

Soil pH

In the case of host specificity, there was no significant
difference in AUC (F; »,=0.427, P=0.520) or TSS (F
24=0.699, P=0.411) values between host-opportunistic
(AUC=0.789 £ 0.035; TSS=0.440+0.059) and host-
specific (AUC = 0.829 + 0.036; TSS = 0.527 + 0.065) species.
However, there was a strong and significant difference in
variable importance between host-opportunistic and host-
specific fleas (ANOSIM: R*=31.3 %, P=0.003; Fig. 4).
When averaging variable importance by type, day
temperature, followed by rainfall, was the most important
predictor for both host-opportunistic and host-specific
fleas. However, day temperature contributed more strongly
towards host-opportunistic than host-specific fleas,
whereas rainfall contributed equally towards both host-
opportunistic and host-specific fleas (Fig. 5). Further,
NDVI contributed more strongly towards host-specific
than host-opportunistic fleas (Fig. 5). Considering vari-
ables individually, minimum day temperature contributed
significantly more towards host-opportunistic than host-
specific fleas (see Additional file 5).

Discussion

The study confirms that contemporary SD modelling,
that includes climatic and landscape variables, has po-
tential for improving predictions of changes in the distri-
bution of flea species. The model performance for fleas
was good overall, with life history not having a signifi-
cant effect on model performance. However, the import-
ance of predictor variables differed considerably between
species with different life history strategies, suggesting
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variable type based on microhabitat preference (see Table 2 for variable category information). Significant differences in the contribution of
predictor variable types between the two categories of species are indicated by asterisks: *** P < 0.001, ** P<0.01, * P <0.05
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differential sensitivity to climate (temperature and rain-
fall) and landscape feature (NDVI) variables among
groups of fleas.

Abiotic conditions such as air temperature, relative
humidity and precipitation are important for fleas [1, 10,

33-36] especially at the regional scale [20, 56]. In par-
ticular, air temperature and relative humidity can have a
direct (influence on egg production and rate of ovipos-
ition, development and survival of pre-imaginal fleas,
and survival of imagoes) [34-36] and/or indirect affect
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Fig. 4 NMDS ordination plot showing the relationship between host specificity of flea species and the variable importance of predictors included
in each species distribution model. The best linear fit of all variables that had a significant (P < 0.05) influence are indicated. Variable codes: DT6,
6th harmonic component of daytime land surface temperature; DT7, 7th harmonic component of daytime land surface temperature; DTMIN,
minimum daytime land surface temperature; NDVI7, 7th harmonic component of NDVI; REMIN, minimum rainfall; REMAX, maximum rainfall; WV6,
6th harmonic regression component of water vapour; WYMIN, minimum water vapour; SPS, soil percentage sand
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variable type based on host specificity (see Table 2 for variable category information). Significant differences in the contribution of predictor
variable types between the two categories of species are indicated by asterisks: *** P < 0.001, ** P<0.01, * P<0.05
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(influence hosts abundance and distribution) on flea sur-
vival [1, 14, 20]. However, flea species also vary in terms
of preferred temperature range (reviewed by [14]) and
although there is evidence that phylogenetic relatedness
may explain this pattern for certain flea taxa it appears
not to be consistent across all taxa [14, 20, 57]. In the
present study we found that temperature is an important
predictor of flea species ranges, irrespective of life his-
tory, but that the relative importance of temperature dif-
fered between flea life histories. In particular, the higher
importance of temperature for host-opportunistic com-
pared to host-specific fleas may be related to their
physiological limits [34—36]. Host-opportunistic fleas
generally have a wider tolerance range (climate and host
composition), are geographically more widespread and
are likely to experience more environmental heterogen-
eity throughout their geographical range [14, 20-22]. In
contrast, host-specific fleas generally have narrower tol-
erance ranges (climate and host composition), are less
widespread and are likely to experience more environ-
mental homogeneity throughout their geographical
range [14, 20-22]. Thus, although temperature is im-
portant, especially for the development of immature nest
stages in general, it is evidently less important for host-
specific fleas in this study.

Host-specific fleas seems to be more influenced by var-
iables related to host availability as evident from the
higher NDVI importance for host-specific compared to
host-opportunistic fleas in the current study. NDVI has
been used as a measure of the amount of suitable habitat
for arthropod vectors [37, 38] and may also be a good
proxy for several aspects of habitat quality that are of
relevance to fleas. Abiotic factors influence vegetation

and thus food supply [58-62] and actual or perceived
predation risk [63-65] which will affect small mammal
host abundance and distribution [38-40], this in turn
may directly influence flea abundance and distribution
[20]. In the current study, environmental stability could
facilitate small mammal host population stability and
subsequent flea population stability and specialization
[66, 67], because host-specific fleas tolerate restricted
abiotic and biotic conditions [68]. In contrast, host-
opportunistic fleas can tolerate variable environments
(e.g. seasonal environments that have greater variabil-
ity in NDVI) that could facilitate less stable small
mammal host populations and are thus less affected
by NDVI [38].

Predictor importance for individual variables also dif-
fered between species with different microhabitat prefer-
ences. Temperature was again overall the most
important predictor for both fur and nest fleas. However,
the difference in the importance of temperature was
even more pronounced when compared with level of
host-specificity (as discussed above), with temperature
being more important for fur fleas as opposed to nest
fleas. Fur fleas spend more time on the body of the host
and as a result are potentially exposed to higher fluctua-
tions in ambient temperature and relative humidity com-
pared to nest fleas (see [46]). It has been suggested that
nest fleas may have evolved to spend more time in nests
due to more constant and buffered microclimatic condi-
tions brought about by the physical properties of nests
[1, 69, 70]. Although discrepancies in the fur versus nest
dichotomy are mainly attributed to ambient temperature
in the literature (see [14] and references within), it has
also been suggested that within-host among-flea
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difference can be explained by this dichotomy, whereas
between-host within-flea differences are better explained
by between-host difference in nest construction [71, 72].

Studies on different nest types (burrows, above-ground
nests and nest within rock crevices) all demonstrate that
microclimatic conditions are more stable in nests com-
pared to the external environment [43-46]. Other fac-
tors that can facilitate higher and more stable humidity
levels in the nest include, the presence of nest material
[46, 73] and higher soil water capacity of the mineral
and organic enriched nest soil [74], due to the activities
of hosts in nests [46, 73]. In support of this, rainfall con-
tributed significantly more towards explaining the distri-
bution of nest compared to fur fleas in the current
study. Rainwater naturally filters down into soil layers
which can contribute to maintaining higher and more
stable humidity levels in the nest of hosts [43, 45, 46].
The type and complexity of host nests are influenced by
the soil texture [46, 75]. It is therefore not surprising
that soil was more important for nest compared to fur
fleas. It is evident from this study that the interplay
between temperature, rainfall and potentially relative
humidity with nest construction can facilitate the separ-
ation of fleas into different microhabitat types.

Our study suggests that SD modelling can be a useful
tool for studying the drivers of flea species distributions
and also the underlying ecology of these species, but
caution needs to be taken when deciding which pre-
dictor variables to include. While our results highlight
how contemporary models can perform well, it is un-
clear to what extent the inclusion of biotic interactions
(e.g. host availability and competition) could further im-
prove model accuracy and transferability [7, 56]. Specif-
ically, modelling and comparing flea species with
different levels of host-specificity could possibly benefit
from including accurate host species occurrence data.
Furthermore, it is important to remember that ecological
patterns are affected by processes that act at different
scales [76]. For example, the assembly of flea compound
(all species infesting a host community) communities is
strongly affected by host filters (e.g. evolutionary, bio-
geographic and historical forces) at the continental scale,
while at the regional and local scale it is more strongly
affected by the abiotic filters (e.g. topography, NDVI,
and climate) (see [17—20]. Therefore, the value of the in-
clusion of host species data (and the predominant im-
portance of temperature in our models) may be
contingent on the spatial scale of analysis.

Conclusions

Five of the flea species in our study (Chiastopsylla rossi,
Dinopsyllus lypusus, Listropsylla dorripae, Xenopsylla
pirei, and Xenopsylla versuta) have been implicated as
possible vectors of diseases in South Africa (e.g. plague
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[29]). As a consequence, accurate forecasts of the future
distributions of these species are valuable for the field of
epidemiology. Our results suggest that despite differ-
ences in their degree of host specificity, SD models
should perform well for all of these species. However,
due to differential sensitivity to different groups of cli-
matic and landscape variables, host-specific and general-
ist flea species are likely to respond very differently to
changes in abiotic conditions. As a result, our results
suggest the importance of explicitly considering species
life history as a potential mediating variable when pre-
dicting flea species distributions.

Additional files

Additional file 1: Calculation of coefficients of harmonic regression for
climate variables and topography in R. Description of data: R script
illustrating the production of the coefficients of harmonic regression for
climate variables and topography. (R 3 kb)

Additional file 2: Collinearity among the 19 final individual predictor
variables. All final predictor variables had correlation values below 0.7 or
above—0.7. Description of data: The table contains collinearity among
final 19 predictor variables chosen for modelling. (XLSX 14 kb)

Additional file 3: List of predictor variables indicating their respective
reference codes. Description of data: The table contains a list of all
predictor variables considered for this study and their abbreviations as
reference codes. (XLSX 11 kb)

Additional file 4: Calculation of the true skill statistic (TSS) for each
replicate of the 10-fold cross-validation from MaxEnt output in R. Description
of data: R script illustrating the calculation of the true skill statistic (TSS) for
each replicate of the 10-fold cross-validation from MaxEnt output. (R 2 kb)

Additional file 5: Variable importance (i.e. percent relative predictor
variable individual contribution) in MaxEnt models, averaged across flea
species based on (a) microhabitat preference and (b) host specificity (see
Additional file 2 for variable reference code). Significant differences in the
contribution of predictor variables between the two categories of species
are indicated by asterisks: *** P < 0001, ** P < 0.01, * P < 0.05. Description of
data: The bar plot figure illustrate variable importance (i.e. percent relative
predictor variable individual contribution) in MaxEnt models, averaged
across flea species based on microhabitat preference and host specificity.
(BMP 7730 kb)
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