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Abstract

Background: Algorithm evaluation provides a means to characterize variability across 
image analysis algorithms, validate algorithms by comparison with human annotations, 
combine results from multiple algorithms for performance improvement, and facilitate 
algorithm sensitivity studies. The sizes of images and image analysis results in pathology 
image analysis pose significant challenges in algorithm evaluation. We present an 
efficient parallel spatial database approach to model, normalize, manage, and query large 
volumes of analytical image result data. This provides an efficient platform for algorithm 
evaluation. Our experiments with a set of brain tumor images demonstrate the 
application, scalability, and effectiveness of the platform. Context: The paper describes 
an approach and platform for evaluation of pathology image analysis algorithms. The 
platform facilitates algorithm evaluation through a high‑performance database built 
on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop 
a framework to support algorithm evaluation by modeling and managing analytical 
results and human annotations from pathology images; (2) Create a robust data 
normalization tool for converting, validating, and fixing spatial data from algorithm or 
human annotations; (3) Develop a set of queries to support data sampling and result 
comparisons; (4) Achieve high performance computation capacity via a parallel data 
management infrastructure, parallel data loading and spatial indexing optimizations 
in this infrastructure. Materials and Methods: We have considered two scenarios 
for algorithm evaluation: (1) algorithm comparison where multiple result sets from 
different methods are compared and consolidated; and (2) algorithm validation where 
algorithm results are compared with human annotations. We have developed a spatial 
normalization toolkit to validate and normalize spatial boundaries produced by image 
analysis algorithms or human annotations. The validated data were formatted based on 
the PAIS data model and loaded into a spatial database. To support efficient data loading, 
we have implemented a parallel data loading tool that takes advantage of multi‑core 
CPUs to accelerate data injection. The spatial database manages both geometric shapes 
and image features or classifications, and enables spatial sampling, result comparison, and 
result aggregation through expressive structured query language (SQL) queries with 
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INTRODUCTION

Digital microscopy for pathology study has recently 
become a popular research area where a large number 
of computer‑based image analysis tools are developed 
to support not only disease diagnosis but also treatment 
efficacy evaluation in clinical and research settings. 
Meanwhile, machine‑based image analysis presents salient 
merits that facilitate researchers for better understanding 
of the underlying biological mechanisms of disease 
progression. In contrast to digital microscopy image 
analysis, the human‑based traditional glass reviewing 
protocols are biased, limited, and qualitative. As a result, 
it is not unusual to see the low inter‑ and intra‑observer 
concordance, and poor reviewing reproducibility. These 
defects severely preclude the possibility of fully leveraging 
pathology imaging data in clinical and biomedical 
research.

The performance of computer‑based analysis is highly 
consistent, whereas performance of human‑based reviews 
can drastically drop when the scope of analysis is scaled up, 
for instance, to the order of millions of nuclei per tumor 
sample. Unlike pathologists, computer‑based analysis 
is not vulnerable to the analytic scale. Furthermore, the 
capacity of large‑scale analysis by machines enables a more 
definitive data process, thereby reducing bias. Analyses 
accommodating large data by machines also facilitate 
discovery of significant associations that would be 
identified at a much larger cost of human labor and time. 
Moreover, machine‑based analysis on digital slides extends 
the scope of descriptive features from those appreciated 
by pathology domain experts to those not perceived by the 
human visual detection system, thereby presenting great 
potential for biologically meaningful subclassification of 
disease and for informing human reviewers of features 

that are clinically relevant. In literature, it has been 
demonstrated that pathology imaging data contains rich 
and biologically meaningful phenotypic information 
that can be extracted by image processing pipelines to 
link to underlying molecular alterations and clinical 
outcomes, potentially providing a high‑throughput 
methodology for clinical diagnosis and investigation.[1‑6] 
Recent advancements in high‑resolution high‑throughput 
digital scanners have also enabled rapid development of 
computer‑based histopathology image analysis for virtual 
microscopy. Additionally, computational and storage 
infrastructures for large‑scale microscopic image analysis 
have been improved to enable high performance and 
parallel computations with large I/O throughput support.

In transition to digital pathology, computer‑based image 
analysis, however, invites one critical problem–evaluation 
and validation of image analysis algorithms. To ensure 
the analysis accuracy and biological meaning of imaging 
information, evaluation and validation of image analysis 
algorithms is an indispensable component in biomedical 
imaging studies. As the efficacy of an analysis pipeline 
generally depends on numerous factors, such as the 
characteristics of specimens and images used in the 
study, types of image processing operations employed, 
and the study objectives, algorithms have to be carefully 
validated. A systematic approach for algorithm evaluation 
can facilitate the development of refined algorithms to 
better support biomedical research and computer‑aided 
diagnosis. It can also substantially help the development 
of common training and test datasets from various 
sources to establish public shared data archives with 
well‑understood ground truth and algorithm performance, 
encouraging further algorithm evaluation in a community 
of researchers. However, an algorithm evaluation 
framework has to address data processing, management, 

spatial extensions. To provide scalable and efficient query support, we have employed 
a shared nothing parallel database architecture, which distributes data homogenously 
across multiple database partitions to take advantage of parallel computation power 
and implements spatial indexing to achieve high I/O throughput. Results: Our work 
proposes a high performance, parallel spatial database platform for algorithm validation 
and comparison. This platform was evaluated by storing, managing, and comparing analysis 
results from a set of brain tumor whole slide images. The tools we develop are open 
source and available to download. Conclusions: Pathology image algorithm validation 
and comparison are essential to iterative algorithm development and refinement. 
One critical component is the support for queries involving spatial predicates and 
comparisons. In our work, we develop an efficient data model and parallel database 
approach to model, normalize, manage and query large volumes of analytical image 
result data. Our experiments demonstrate that the data partitioning strategy and the 
grid‑based indexing result in good data distribution across database nodes and reduce 
I/O overhead in spatial join queries through parallel retrieval of relevant data and quick 
subsetting of datasets. The set of tools in the framework provide a full pipeline to 
normalize, load, manage and query analytical results for algorithm evaluation.
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and query requirements arising from large volumes of 
image data and analysis results. We propose, develop, and 
evaluate a high performance, database‑supported system 
to support validation and comparison of image analysis 
algorithms targeting high‑resolution microscopy images.

Our work is motivated by whole slide image analysis 
studies carried out as part of integrative in silico 
experiments at the In Silico Brain Tumor Research 
Center (ISBTRC).[7] ISBTRC is a collaborative effort of 
four institutions: Emory University, Thomas Jefferson 
University, Henry Ford Hospital, and Stanford University, 
and focuses on integrative translational research 
on brain tumors by analyzing complementary data 
types (genomics, imaging, clinical outcome). Microscopy 
image analysis algorithms are central to in silico 
experiments at ISBTRC. These algorithms are used to 
extract, quantify, and classify the spatial features from 
high‑resolution whole slide tissue images. The results 
from image analyses are correlated with genomic and 
clinical outcome data to identify better biomarkers and 
mechanisms of disease progression. In this paper, we 
focus on segmentation algorithms as a case study. The 
segmentation step in pathology image analysis is critical 
to the success of downstream analysis steps such as 
feature computation and classification.

The need for algorithm evaluation and comparison arises 
in many ISBTRC image analysis cases. (i) Algorithm 
validation. Algorithms are tested, evaluated and improved 
in an iterative manner. This involves a formal testing 
phase where segmentations done by pathologists are 
captured and compared to an algorithm’s output. The 
results are evaluated to assess inter‑observer variability 
between pathologists, between algorithms and humans, 
and between different algorithms. (ii) Algorithm 
consolidation. Multiple algorithms can be developed in 
a study to solve the same problem. Different algorithms 
may have their own unique strengths on analyzing images 
with certain characteristics. In those cases, an array of 
algorithms can be aggregated in a complementary way. 
Consolidating results from multiple algorithms (i.e., an 
ensemble approach) may lead to better analysis 
results. (iii) Algorithm sensitivity studies. An algorithm 
often includes a set of parameters that can be adjusted 
to adapt to different types, resolutions, and qualities of 
images. Exploring the sensitivity of analysis output with 
respect to parameter adjustments can provide a guideline 
for the best deployment of algorithms in different 
scenarios and for rapid development of robust algorithms.

A major challenge to efficient execution of these cases 
is the vast amount of image data and analysis results. 
State‑of‑the‑art tissue slide scanners are capable of 
producing high‑magnification, high‑resolution images 
from whole slides and tissue microarrays within minutes. 
One single whole slide image can contain 1010 pixels 

and 106‑107 biological objects of interest, such as nuclei. 
A brute‑force pair‑wise comparison between results 
from two analysis sets could incur a complexity of 
O (n2)–1012 operations, where n is the number of objects, 
with additional extensive Input/Output (I/O) cost for 
reading the data. An efficient mechanism is needed to 
manage large volumes of results (along with provenance 
information). Moreover, the mechanism should support 
computational and data intensive queries–such as spatial 
join queries for comparison of image markups associated 
with different analysis results.

Algorithm validation has been studied for medical 
imaging.[8] Much work has been done on model design 
for image analysis results, including the work by the NCI 
Annotation and Image Markup project[9] for radiology 
images, the Open Microscopy Environment project for 
cell imaging,[10] and DICOM Structural Reporting for 
human annotations.[11] Biomedical imaging databases 
have been developed for managing results.[10,12‑14] 
However, they are not designed to provide support for 
data querying and retrieval for algorithm evaluation 
workflows. The use of parallel and distributed computing 
for analysis enables researchers to process image data 
rapidly and produce large volumes of analysis results. 
For example, a distributed system has been developed by 
Yang et al., for computer‑aided analysis of digitized breast 
tissue specimens.[15] Our work differs in that we propose a 
database‑based approach to support algorithm evaluation 
by systematically (1) managing large‑scale results from 
algorithms and human annotations, and (2) supporting 
efficient queries with a parallel spatial database 
architecture.

MATERIALS AND METHODS

Algorithm Evaluation Workflows and Queries
A typical algorithm comparison workflow employed 
in ISBTRC studies consists of the following 
steps [Figure 1]: (1) multiple algorithms or algorithms 
with different parameters are applied to non‑overlapping 
image tiles partitioned from whole slide images. Note that 
tiling is a common practice for pathology image analysis. 
Tiling an image is done either by padding tile boundaries 
to include objects on boundaries (in most cases, 
objects, such as cells and nuclei, are relatively small), or 
objects on tile boundaries are discarded when the final 
analysis result is a statistical aggregation; (2) results and 

Figure 1: Algorithm comparison workflow
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provenance information are represented and managed in 
a database; (3) the results are queried for comparisons 
of objects and features extracted by the algorithms–for 
example, to find the overlap‑to‑intersection ratio and 
centroid distance of intersected markups; and (4) for 
algorithm consolidation, analysis results are either filtered 
or aggregated based on certain criteria, and for algorithm 
sensitivity study, changes in results are recorded and 
stored as algorithm parameters are tuned. Algorithms 
are applied to image tiles comprising whole slide images, 
thus the process of executing algorithms and carrying 
out result comparison is highly data and computational 
intensive. In this paper, we focus on the data management 
and query aspect. The workflow execution is left for 
future discussions.

We should note that this workflow can be modified to 
support algorithm validation, in which algorithm results 
are compared with human annotations, as seen in 
Figure 2. Even a single tile derived from a whole‑slide 
image can contain tens of thousands of nuclei, making 
it infeasible for human annotators to mark boundaries 
for all objects in a tile. Thus, the algorithm validation 
workflow divides tiles into smaller regions (subregions) 
where validation work becomes manageable–e.g., a 
subregion could be an 8 × 8 division of a tile. As 
discussed later, we take a stratified sampling approach 
for deciding the sample size and subregion size. In this 
way, an image dataset used in validation is organized by 
three hierarchical spatial concepts in increasing order of 
granularity: Slide, tile, and subregion.

These two workflows involve several common query 
types. The first type of query is the spatial join query, 
i.e., spatial operations used to combine two or more 
datasets with respect to a spatial relationship. Two 
steps are involved in this query type: Spatial filtering 
based on spatial relationships, such as intersection, and 
spatial measurements based on computational geometry 
algorithms, such as area, centroid, distance, and union of 
polygons. In our case, all comparisons on segmentation 
results are performed through spatial joins by computing 
overlap‑to‑intersection ratio and centroid distance of 
markup pairs represented in polygons. The second type 
of query is the spatial containment query. In some cases, 

algorithm‑generated results in certain regions are used for 
validation or comparison purposes. In this case, containing 
regions are pre‑generated for subsequent analysis as a 
filtering condition, with which nuclei in tumor regions 
are retrieved by a spatial containment query that only 
returns markup objects of nuclei contained in elected 
tumor regions. The third type of query involves finding 
objects contained in subregions and computing the 
density of those objects. This type of query is useful in 
spatial sampling approaches for algorithm validation. For 
example, a stratified sampling method can use this type 
of query to select subregions grouped by the densities of 
objects in those subregions.

Statistical Sample Size Estimation
For statistical sample size estimation, it is necessary 
to obtain prior information such as mean, variation or 
proportion in order to carry out the calculation. Once 
the pilot data are available, several validation methods 
on comparing the automatic algorithm and human 
observer (s) can be conducted. Those evaluation metrics 
will be calculated at both nucleus level and region of 
interest level. The mean and standard deviation along 
with other statistical measures will be used in sample size 
consideration.

Total sample size determination. For the distance‑based 
and area‑based approaches, normality will be assumed (if 
highly screwed, logarithm or logit transformation may 
be used). Sample size calculation will be based on the 
hypothesis test that the measure of interest equals to a 
threshold. The estimated sample size would assure that 
there is adequate power to detect a departure from the 
null hypothesized value.

Sample size determination for stratified sampling. 
Before sampling ROIs, an image will be partitioned into 
non‑overlapping tiles. Based on certain feature, those 
tiles can be classified into mutually exclusive categories 
which will serve as strata in stratified sampling process. 
One stratified sampling approach is to use proportionate 
stratification, in which each stratum’s sample size is 
proportional to the total size of that stratum. Sample 

size of each stratum is determined by = h
h

N
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Nh is the sample size for stratum h, Nh is the total size 
for stratum h, N is the total population size, and n is 
the total sample size. Disproportionate stratification 
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in which each stratum’s sample size is proportional 
to the standard deviation of the distribution of the 
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xh is the mean of stratum h and Sh is the sample standard 
deviation of stratum h.

Spatial Data Normalization
One of the major gaps in the process of deriving 
analytical results from image analysis algorithms or 
human annotations is to validate and normalize spatial 
boundaries as valid geometric shapes stipulated by 
spatial databases. For example, the following is a list 
of requirements of a valid polygon based on Open 
Geospatial Consortium standards for simple feature 
access: [16] (i) Polygons are topologically closed; (ii) The 
boundary of a polygon consists of a set of linear rings 
that make up the exterior and interior boundaries; (iii) 
No two rings in the boundary cross, and the rings in 
the boundary of a polygon may intersect at a point but 
only as a tangent; (iv) A polygon may not have cut lines, 
spikes or punctures; (v) The interior of every polygon is 
a connected point set; and (vi) The exterior of a polygon 
with one or more holes is not connected, and each hole 
defines a connected component of the exterior. Note 
that there could be objects in the shape of MultiPolygon, 
which is a collection of multiple polygons. Examples 
include representing lakes in geographic information 
system (GIS) applications, or complex blood vessels 
segmented from whole slide images. Here we focus on 
normalizing polygon objects, which are most frequently 
used in our use case. Normalizing other types such as 
MultiPolygons can be implemented similarly.

Image segmentation algorithms often generate 
segmented contours represented by mask images, and 
tools are used to extract contours from mask images as 
point represented boundaries. For example, OpenCV[17] 
provides a function findcontours to dump contours into 
boundaries consisting of points. The machine generated 
boundaries, however, are often full of invalid geometric 
shapes. Besides algorithm generated boundaries, users 
can also mark contours through free hand drawing with 
whole slide image viewing software such as Aperio’s 
Image Scope.[18] The resulting boundaries are subject to 
human’s ability for precise control of mouse movement 
and are often error‑prone. Based on our observations and 

extensive study of the use cases, we identify the following 
major problematic shapes (here we focus on polygon data 
only):

Open‑ended Contour
Contours where starting and end points are not identical 
[Figure 3a]. A straight‑forward correction is to connect  
the starting and ending points provided there are no 
conflicting segments like self‑intersect. Otherwise, it will 
be further handled as a self‑intersect scenario.

Twisted Contours
Contours whose directions are changing although the 
shapes are correct, and it is impossible to iterate linearly 
on every line segment. This can be fixed by changing the 
order of the points for contours.

Collinear Points
Outlier points that have little effect on the overall 
appearance and structure of a given polygon, which is 
a result of joining adjacent line segments [Figure 3b]. 
These outlier points could be removed by reducing and 
simplifying adjacent segments around these points.

Duplicate Points
Redundant points. These can be simply removed.

Dangling
Extended line segments or a smaller contour connected 
to the main polygon contour. Dangling segments or 
contours [Figure 3c] can be fixed by splitting the contour 
into parts determined by the presence of intersection, 
and each part is tested whether it satisfies the properties 
of a basic polygon; invalid ones are removed.

Multi‑Polygon
Compounded polygons joined by either overlapping or 
tangent boundaries. Multi‑polygon can be considered as a 
special dangling case, except that individual components 
form a polygon with distinct shape and area. Thus, this 
can be handled similarly as the dangling case.

Self‑Intersect
A contour with an edge (line segment) touching or 
crossing another edge of the contour [Figure 3d]. This 
can be resolved by eliminating the exterior coordinates 
originating from the identified intersection point.

Sharp pointed vertex: An angle formed by two‑line 
segments is too narrow. To fix this, the smoothness of 
the contour has to be refined, for example, by defining a 
maximal distance parameter on how a point can be away 
from the main contour.

Pathology Analytical Imaging Database and 
Query Support
Pathology analytic imaging standards (pais) data modeling
To manage algorithm results, human annotations and 
provenance, and to efficiently support complex queries, 
we employ a data model called PAIS.[19,20] The PAIS data 
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model consists of 62 Unified Modeling Language (UML) 
classes, representing information on markups (spatial 
shapes representing regions, cellular or subcellular 
objects), annotations (including calculated features 
or observations such as classifications associated with 
markups), and provenance (image references, analysis, 
algorithm and parameters). PAIS provides highly 
generalized data objects and data types and supports 
flexible relationships across objects. Geometric shapes 
such as polygons are used to represent the boundaries of 
segmented objects, such as tumor regions, blood vessels, 
and nuclei.

Pathology analytic imaging standards database
PAIS employs a spatial database management 
system (DBMS) based implementation for managing 
data–we have used IBM DB2 with spatial extender[21] 
in our implementation.[20] There are three major types 
of tables involved in the PAIS database: (i) Spatial 
tables for markup objects with geometric shapes. 
Spatial DBMS provides extensions to relational DBMS 
to support spatial data types such as ST_POLYGON 
and ST_POLYLINE; (ii) Feature and observation tables 
to capture calculated features, such as area, perimeter, 
and eccentricity, and descriptive observations, such as 
classifications of regions or nuclei; and (iii) Provenance 
tables for image references, subject, specimen, the user 
performing the analysis, the analysis purpose, and the 
invoked algorithms. The database implementation 
provides dozens of functions to support comparison of 
relationships across spatial objects. Some most commonly 
used relationship functions include intersects, overlaps, 
within, contains, and touches, among others. It also 
provides numerous spatial measurement functions, 
including those to compute the area and centroid of a 
spatial object, to calculate the distance of two spatial 

objects, and to generate an intersected region (a spatial 
object generated from two spatial objects). Note that 
PAIS manages image analysis results–original images are 
managed in a separate database.

Representing results in a structural format and managing 
them in a database provide significant advantage for 
expressing complex queries in SQL. Furthermore, 
extended built‑in spatial functions make it easier to 
support workflows involving spatial operations. For 
example, as presented earlier, object densities in image 
subregions can be used as a criterion for stratified 
sampling. Figure 4 illustrates database support for 
performing density computations and stratified sampling.

Database based sampling
To compute the object density for subregions, we partition 
tiles to produce subregions. An initial segmentation of 
all markups is performed by a segmentation algorithm, 
and all segmented markups are stored in a MARKUP_
POLYGON table.[22,23] Then subregion size is defined in 
a way such that each subregion contains a reasonable set 
of objects that could be annotated by a human within 
a single short session, for example, within 10 min by an 
experienced pathologist based on a pilot study. With the 
size information, each tile of an image space is divided 
into subregions and captured in SUBREGION table 
in the database. SUBREGION contains PAIS_UID, 
TILENAME, SUBREGIONNAME, (X, Y) coordinates 
of the top‑left corner of the subregion, WIDTH, 
HEIGHT, and a POLYGON to represent the boundary 
of each subregion. After the production of markups 
and subregions, markup and subregion containment 
relationship can be decided using a spatial containment 
query, as shown in Figure 5a. In this query, the conditions 
specify that markups and regions are from the same tile 

Figure 3: Example use cases of boundary normalization (only a subset is illustrated)
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and same image, and regions contain markups. Note that 
in the query subregions with less significant number of 
objects, e.g., 10 nuclei, are dropped.

Data loading
The performance of loading data into spatial databases 
depends on both computations and disk I/O operations. 
While the performance of traditional data loading is 
normally constrained by disk writing bandwidth, spatial 
data loading is also constrained by the central processing 

unit (CPU) resources available to convert raw text data 
into spatial data structures in the database, such as 
computing minimal boundary boxes and many other 
spatial characteristics. Our profiling shows that the CPU 
utilization is several times higher for loading boundary 
data as spatial objects than as text data in the database, 
and the former takes several times longer time. Since a 
modern computer server often comes with multi‑cores, 
utilizing all the cores for data loading could potentially 
accelerate the spatial computation at loading stage and 
reduce the overall loading time. We propose a parallel data 
loading scheme that can parallelize data loading by user 
specified number of cores. The data loading tool provides 
a job scheduling module that manages raw data to be 
mapped into database tables. The scheduling mechanism 
has one master thread for managing all jobs–each job is 
based on one tile. Each slave thread asks the master thread 
for an available job, and the master thread picks up the 
next available job and assigns it to the slave thread. This is 
repeated until all jobs are assigned and processed.

Evaluating results with SQL queries
Once the data is loaded and indexed by the PAIS database, 
evaluating of results can be supported by expressive 
SQL queries. For example, as shown in Figure 5b, the 
SQL query compares two segmented results from an 
image generated by an algorithm with two different 

Figure 4: Workflow for generating density data for sampling

Figure 5: Example queries. (a) Query to generate subregion 
and markup containment relationships; (b) Query to compare 
segmentation results from two methods

b

a
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parameters. It computes the overlap‑to‑intersection 
ratios and centroid distances of all matched segmented 
nuclei through the ST_Intersects spatial predicate, which 
automatically triggers an efficient spatial index assisted 
query processing. Similarly, image features can also 
be compared by computing the difference of average, 
standard deviation, or histogram. More example SQL 
queries for PAIS can be found at PAIS wiki.[19]

Parallel Database Architecture
A major bottleneck in managing and querying large data 
is the I/O bottleneck. The evaluation of spatial queries in 
our studies has shown that many queries’ execution time 
is spent in I/O, such as aggregation queries. Meanwhile, 
spatial join queries can be highly computational intensive. 
Next we describe the parallel database approach to 
address this issue.

I/O bandwidth can be increased through data partitioning 
and parallel data access. In our work, we have used a 
shared‑nothing parallel database architecture to manage 
and query PAIS data to provide scalable data management 
and to speed up complex queries. Figure 6 illustrates this 
architecture in which multiple database instances are 
run on separate physical nodes. We also refer to these 
nodes as database partitions (Partition 1, Partition 2,…, 
and Partition N). Each partition has its own disks, CPU 
and memory, and the partitions are connected through a 
fast switched network. There is one master partition and 
multiple slave partitions. The master partition accepts 
queries from users, translates and parallelizes queries 
across all partitions, and aggregates the results–this 
enables the simplicity and expressiveness of SQL queries 
as such distributed parallel query execution is transparent 
to users. Our implementation employs IBM DB2’s 
parallel query execution support.[22] This support provides 
a single logical view of partitioned data so that clients 
can compose SQL queries as if they interacted with a 
serial database with no data partitioning.

One major challenge for a shared‑nothing architecture 
is load balancing, i.e., how to distribute data and 
computational load evenly across all partitions. A skewed 
data distribution can lead to bottlenecks and deteriorate 
overall performance. There are two granularities for 
partitioning data: Partitioning based on images and 
partitioning based on tiles. The first approach distributes 
all of the segmentation and feature results obtained from 
a whole image onto the same partition, and the second 
approach distributes all results from a tile onto the 
same partition. The second approach has the benefit of 
speeding up queries on a single image, as tiles could be 
queried simultaneously on multiple partitions.

Whether it is applied to tiles or images, partitioning 
algorithms should try to minimize data communication 
overhead across partitions for efficient spatial joins 
between different result sets. Given multiple algorithm 

results from a list of tiles, an algorithm distributes 
the results across multiple partitions such that (1) the 
amount of results on each partition is close across all 
the partitions and (2) results from different algorithms 
on the same tile are assigned to the same partition. We 
implement two approaches to partition the data based on 
tiles: (i) tilename hashing: Hashing tilename to generate 
partition keys using the database’s built‑in hashing 
function and ii) bin packing of objects in tiles. The later 
algorithm reads the list of tiles and the sizes of result sets 
associated with these tiles for each analysis run. It then 
executes a bin‑packing heuristic, where each partition 
represents a bin, to distribute the tiles across partitions 
as follows. The algorithm sorts the tiles in descending 
order of the total result size of each tile. Starting from 
the top‑most tile, it assigns the tile to the partition with 
the minimum results set size and increments the results 
set size of the partition by the size of the tile’s results set. 
The algorithm proceeds down the sorted list, assigning 
the current tile to the partition with the minimum results 
set size and incrementing the partition’s results set size by 
the tile’s results set size. With partitioning key generated 
by the partitioning methods, during data loading process, 
the partition keys are used to automatically distribute 
the data element to the right partition when the insert 
is executed. Each database partition is stored on the local 
disk attached to the corresponding node.

In order to further reduce I/O overhead, each partition 
creates a spatial index on local data. There are a 
number of indexing and data access methods[23] to 
support efficient spatial queries. These methods can be 
categorized into two main classes: Space based and data 
based. Grid indexing is a common space based approach, 
where space is partitioned into fixed grid cells. R‑Tree 
indexing,[24] on the other hand, is a common data based 
approach. In our work, grid based indexing is used, as 
shown in Figure 7. The red and green spatial boundaries 
represent segmented nuclei by different methods, and 
the orange grid represents the grid index. Each spatial 
region is divided into multi‑level grids and indexed. 
These grids can be used to efficiently identify spatial 

Figure 6: Partitioning based parallel database architecture
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intersections of markups in spatial joins. For example, 
in order to find the intersected areas of the green and 
red markups in grid cell (5,2) based on the minimal 
bounding box of the markup, the grid cell number is first 
generated with the green markups. Then all the markups 
of the other dataset (in red color) that intersect this cell 
are retrieved based on the grid index. These markups 
are further filtered by geometric computation. Thus, the 
total number of markups for comparison is significantly 
reduced via the grid based indexing.

RESULTS AND PERFORMANCE 
EVALUATION

Software Tools
We have developed following software tools to support 
algorithm evaluation, summarized in Table 1. These 
tools include: (i) database tools for creating schemas, 
sampling data and comparing results; (ii) data analysis 
tool for statistical analysis to support sampling and result 
evaluation, (iii) data normalization tool for extracting and 
converting data, validating and fixing spatial boundaries, 
and converting data into PAIS documents; and (iv) 
data loading tool for moving data into the database and 
converting data into structured and spatial data in the 

database. The tools are available to download at PAIS 
Wiki.[19] The source codes are available for download at 
PAIS Google code site.[25]

To setup PAIS database, IBM DB2 database server and 
its spatial extender is needed. DB2 also comes with a free 
single partition express edition DB2 Express‑C. The setup 
of the parallel database server on multiple nodes requires 
sharing of the installed DB2 binaries through network 
sharing, and each node comes with its own running 
instance. Database partitions can be created for each node 
and grouped into a partition group to be used by a PAIS 
database. Once the installation is done, a database can be 
created and spatially enabled, and the PAIS tables can be 
created by the table creation SQL scripts. By following result 
file format specifications, the analysis results from image 
analysis software can be converted into PAIS documents 
with PAIS Document Generator. The documents can 
then be uploaded into the database with PAIS Document 
Uploader. The execution of PAIS Data Loading Manager 
triggers the mapping of PAIS documents in extensible 
markup language (XML) format into PAIS table records. 
After that, SQL queries and interactive statistical analysis 
can be executed. Details on database setup and program 
execution can be found at PAIS wiki.

Performance Evaluation
Experimental setup
We have performed experiments with different partitions 
using IBM DB2 as the underlying relational database 
management system. The cluster machine we use has five 
nodes. Each node has two quad‑core CPUs and 16 GB 
memory (only a single core is used for each database instance) 
and runs 64‑bit CentOS 5.6. We use IBM Infosphere Data 
Warehouse edition Version 9.7.3 with DB2 partitioning 
feature as our database engine. We have DB2 setup with 
five partitions on five cluster nodes. The dataset includes 
18 whole‑slide microscopy images analyzed by two methods. 
The total number of spatial objects is about 18 million and 
the average number of spatial objects per image is 0.5 million. 
Analysis results from different runs are stored in files. We use 
file sizes to estimate the result set sizes for the partitioning 
algorithm in order to avoid the expensive process of parsing 

Table 1: Pathology analytical imaging standards tools

Category Tools Description

Database PAIS schema A set of SQL scripts for creating database tables and indexes
PAIS queries A set of SQL scripts for sampling, comparing and aggregating data

Data analysis Statistical validation tool SAS codes for sampling and statistical analysis of algorithm evaluation results
Data normalization Aperio XML parser Extract and convert boundaries marked in Aperio software into spatial WKT format

PAIS boundary validator Validate spatial boundaries segmented from images or marked on images
PAIS boundary fixer Fixing spatial boundaries that can pass spatial validation by PAIS boundary validator
PAIS document generator Generate PAIS XML documents from text based results

Data loading PAIS document uploader Upload PAIS XML documents to a staging area in the PAIS database
PAIS data loading manager Convert and map XML data into PAIS tables

PAIS: Pathology analytic imaging standards, SQL: Structured query language, SAS: Statistical analysis system, WKT: Well‑known text, XML: Extensible markup language

Figure 7: Fixed grid indexing to support spatial join queries
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the file for spatial objects twice–once for counting the objects 
and once for loading the objects to the database.

Spatial query performance
We report the results of two experiments in Figures 8 
and 9: One experiment looks at the distribution of data 
across backend nodes, the other measures the reduction 
in execution time of spatial joins. The spatial joins in our 
experiments involve comparisons of overlap‑to‑intersection 
ratios and centroid distances between markups from two 
result sets generated for a single whole slide image. Figure 8 
shows the object distribution across five nodes with both 
bin‑packing partitioning method and tilename hashing 
method. As tilenames are generated based on image 
names and coordinates of the title location, the values of 
tilenames take a relatively random distribution. The mean 
number of objects at each node is 3.65 million, and the 
standard deviation for this approach is 0.236 million. The 
bin‑packing approach estimates the number of objects 
based on file sizes, and the standard deviation of object 
distribution is 0.054 million. The results indicate that the 
bin‑packing scheme works well and the file size provides 
a good approximation of the number of spatial objects. 
Figure 8 illustrates spatial join query speed up from a 
single node setup to a five‑node setup for an example 

image with 2 million markup objects. The results show that 
linear speedup is achieved with our partitioning approach. 
The partitioning algorithm allows the DB2’s parallel query 
support to take advantage of partitioned data for higher 
I/O bandwidth. In addition, indexes set up on each node 
reduce the local I/O overhead on each node. A further 
improvement of queries is through pre‑computing centroids 
of polygons when data is loaded. Geometric computation 
such as computing distances and overlaps for spatial queries 
is of high computational complexity and could cost much 
time in query processing. By pre‑computing centroids, 
computation of distances between polygons pairs could be 
much simplified and the queries can be much accelerated.

Parallel data loading performance
In Figure 10, we compare the performance of loading 
spatial data versus non‑spatial data, with the same input 
raw data. With a single thread, spatial data loading 
takes nearly 8 times more time compared to non‑spatial 
data loading, and CPU utilization is three times higher. 
Figure 11 shows the performance of parallel data loading 
for spatial data. By increasing the number of threads 
from 1 to 16, the CPU utilization is 6 times higher, and 
the loading time is dropped by 3.6 times. Clearly, this 
demonstrates that through parallel loading, better CPU 

Figure 8: Performance of data partitioning with five computation 
nodes

Figure 9: Performance of spatial join queries for comparing two 
analysis results for an example image

Figure 10: Spatial data loading versus non‑spatial data loading (a) Central processing unit utilization; (b) loading time

ba
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utilization could accelerate spatial computation and 
boost the performance. When the number of threads 
exceeds the number of CPU cores, the performance 
begins to drop due to the overhead of the context switch 
between threads and resource saturation of the system.

EXAMPLE EVALUATION RESULTS

One of the evaluation queries is to find how algorithm 
parameters can affect the segmentation results. 
By adjusting parameters, we run the algorithm 
NS‑MORPH[1,2] to segment two sets of nuclear boundaries, 
and compare the average overlap ratio of intersecting 
nuclear boundaries between the two result sets. We 
use a dataset of 18 whole‑slide microscopy images. The 
parameters include Tissue Area Percentage (TAP) to judge 
if there is sufficient tissue area in the current tile for 
analysis, Red Blood Cell Minimum Strength (RBCM) of 
any qualified red blood cell for further analysis, Non‑Red 
Blood Cell Maximum Strength (NRBCMS) of any 
non‑red blood cell to be excluded for RBC recognition, 
Foreground Minimum Strength (FMS) of any qualified 
foreground object for further analysis, and Background 
Maximum Strength (BMS) of any background regions to 
be excluded for further analysis. The first set of parameters 
are TAP = 0.9, RBCM = 5, NRBCMS = 4, FMS = 80, 
and BMS = 45, and the second sets are TAP = 0.9, 
RBCM = 5, NRBCMS = 4, FMS = 80, and BMS = 3, 
with the last parameter changed to a smaller value. The 
query returns the average overlap ratio as 75.6% with 
standard deviation of 0.227, and average distance as 1.75 
with standard deviation of 3.30. The query returns 224, 
623 polygons out of total 18,274,876 polygons. We can 
see that as the excluded background strength threshold 
is lowered, the second method segments more objects 
and likely larger nuclei, which leads to lower intersection 
ratio and increasing distances between polygon pairs. As 
another example query, for the two results on all images, 
we query how many nuclear boundaries from result set 

1 intersect two or more nuclear boundaries in result set 
2. This query is also affected by lowering BMS, which 
could produce more polygons and even larger polygons. 
The difference of the results can be quantitatively 
computed based on PAIS database, which can be used to 
support iterative development and refinement of image 
analysis algorithms. Other statistics on the continuity of 
algorithms or parameter comparisons to ensure an optimal 
situation could include agreement indices such as intra 
correlation coefficient (ICC), concordance correlation 
coefficient (CCC) and kappa statistics, which could be 
implemented as user defined aggregate functions or stored 
procedures to run efficiently inside the database.

DISCUSSION

The proposed PAIS pipeline minimizes the introduction of 
individual bias as the outcomes are based on inputs from 
multiple pathologists taking into consideration of inter‑rater 
variation among them. That is, PAIS is optimal and 
suitable for all‑level pathologists in terms of mitigating the 
issue that the results may heavily depend on the accuracy 
and preference of one rater if not controlling for inter‑rater 
variability. Meanwhile, through a comprehensive PAIS based 
framework for managing and evaluating algorithm results or 
human annotations, we can create a curated set of results 
from algorithms and human annotations, together with 
original images, to serve as a repository of nominal ground 
truth. Thus new algorithm results can be formatted and 
loaded into the database for quick evaluation.

One major hurdle for quantitatively evaluating algorithm 
results is irregular shapes generated from segmentation 
algorithms and erroneous human markups. Our studies 
show that a large portion of the data boundaries are 
invalid polygons. For example, the boundaries of 
blood vessels are highly complex polygons. Manual 
segmentation of these structures results in a high rate 
of invalid shapes. We have developed a tool to handle 
these complex cases and correct these errors by using a 
pipeline of components borrowed from existing libraries, 
including Boost[26] and Clipper[27] as well as implemented 
from our custom codes. The boundary fixing tool is 
robust and fixes all boundaries we generated in our use 
cases, including algorithm segmented boundaries and 
human marked boundaries.

The parallel database architecture can be scaled to 
multiple nodes to accelerate queries, through careful 
tuning of the database, including even data distribution, 
co‑location of data, and replication of commonly accessed 
small tables across all nodes. Such optimization also 
depends on the query types to be supported, and careful 
examination of query plans is important.

The database approach provides high expressiveness 
on composing queries, with declarative SQL query 

Figure 11: Performance of parallel data loading
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language, without any need of programming. This makes 
it natural and quick for users to write queries to evaluate 
algorithms.

Our profiling of queries shows that geometric 
computations, for example, ST_Intersects, dominate 
query time to support algorithm evaluation queries. We 
recently developed a graphical processing unit (GPU) 
based algorithm that accelerates intersection queries 
through high data parallelism and computation 
parallelism running on a large number of GPU 
cores.[28] This approach achieves high efficiency using 
cost‑effective hybrid CPU‑GPU architecture. We are 
exploring generalizing the GPU approach for different 
types of spatial operations, and having them integrated 
into databases.

CONCLUSIONS

Pathology image algorithm validation and comparison 
are essential to iterative algorithm development and 
refinement. A critical component for this is to support 
efficient spatial queries. In our work, we develop an 
efficient data model and parallel database approach 
to model, normalize, manage and query large volumes 
of analytical image result data. Our experiments 
demonstrate that the data partitioning strategy and 
grid‑based indexing result in good data distribution 
across database nodes and reduce I/O overhead in spatial 
join queries through parallel retrieval of relevant data and 
quick subsetting of datasets. The parallel data loading 
tool can take advantage of multi‑cores of a CPU to 
significantly accelerate data loading of normalized spatial 
data. The set of tools in the framework provide a full 
pipeline to normalize, load, manage and query analytical 
results to support algorithm evaluation.

REFERENCES

1. Cooper LA, Kong J, Gutman DA, Wang F, Cholleti SR, Pan TC, et al. An 
integrative approach for in silico glioma research. IEEE Trans Biomed Eng 
2010;57:2617‑21.

2. Kong J, Cooper L, Wang F, Chisolm C, Moreno C, Kurc T, et al. 
A comprehensive framework for classification of nuclei in digital microscopy 
imaging: An Application to diffuse gliomas. In: Proc IEEE Int Symp Biomed 
Imaging 2011:2128‑31.

3. Kong J, Cooper LA, Wang F, Gutman DA, Gao J, Chisolm C, et al. Integrative, 
multimodal analysis of glioblastoma using TCGA molecular data, pathology 
images, and clinical outcomes. IEEE Trans Biomed Eng 2011;58:3469‑74.

4. Cooper LA, Kong J, Gutman DA, Wang F, Gao J, Appin C, et al. Integrated 
morphologic analysis for the identification and characterization of disease 
subtypes. J Am Med Inform Assoc 2012;19:317‑23.

5. Cooper LA, Kong J, Wang F, Kurc T, Moreno CS, Brat DJ, et al. Morphological 
signatures and genomic correlates in glioblastoma. Proc IEEE Int Symp 

Biomed Imaging 2011:1624‑7.
6. Kong J, Cooper L, Moreno C, Wang F, Kurc T, Saltz J, et al. In silico analysis 

of nuclei in glioblastoma using large‑scale microscopy images improves 
prediction of treatment response. Conf Proc IEEE Eng Med Biol Soc 
2011;2011:87‑90.

7. In Silico Center for Translational Neuro‑oncology Informatics, 
2012. Available from: http://web.cci.emory.edu/confluence/display/
INSILICO/. [Last accessed on 2012 Dec 4].

8. Clunie D. Algorithm Validation Toolkit (AVT), Presentation at the 2008 
Radiological Society of North America Annual Meeting. Available from: 
http://www.dclunie.com/papers/AVT‑RSNA‑2008‑RC730‑DAC2.pdf. [Last 
accessed on 2012 Dec 4].

9. Channin DS, Mongkolwat P, Kleper V, Sepukar K, Rubin DL. The caBIG 
annotation and image Markup project. J Digit Imaging 2010;23:217‑25.

10. Goldberg IG, Allan C, Burel JM, Creager D, Falconi A, Hochheiser H, et al. 
The Open Microscopy Environment (OME) Data Model and XML file: 
Open tools for informatics and quantitative analysis in biological imaging. 
Genome Biol 2005;6:R47.

11. Clunie DA. DICOM structured reporting and cancer clinical trials results. 
Cancer Inform 2007;4:33‑56.

12. Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS. Bisque: A platform 
for bioimage analysis and management. Bioinformatics 2010;26:544‑52.

13. Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, et al. The 
cell‑centered database: A database for multiscale structural and protein 
localization data from light and electron microscopy. Neuroinformatics 
2003;1:379‑95.

14. Yang L, Tuzel O, Chen W, Meer P, Salaru G, Goodell LA, et al. PathMiner: 
A Web‑based tool for computer‑assisted diagnostics in pathology. IEEE 
Trans Inf Technol Biomed 2009;13:291‑9.

15. Yang L, Chen W, Meer P, Salaru G, Feldman MD, Foran D. High‑throughput 
analysis of breast cancer specimens on the grid. Med Image Comput 
Comput Assist Interv 2007;10:617‑25.

16. Open GIS Implementation specification for geographic information‑simple 
feature access, 2012. Available from: http://www.opengeospatial.org/
standards/sfs. [Last accessed on 2012 Dec 4].

17. Open CV, 2012. Available from: http://www.opencv.org/. [Last accessed on 
2012 Dec 4].

18. Aperio Image Scope, 2012. Available from: http://www.aperio.com. [Last 
accessed on 2012 Dec 4].

19. Pathology Analytical Imaging Informatics Standards Wiki, 2012. Available 
from: https://web.cci.emory.edu/confluence/display/PAIS. [Last accessed on 
2012 Dec 4].

20. Wang F, Kong J, Cooper L, Pan T, Kurc T, Chen W, et al. A data model and 
database for high‑resolution pathology analytical image informatics. J Pathol 
Inform 2011;2:32.

21. DB2 Spatial, 2012. Available from: http://www.ibm.com/software/data/
spatial/db2spatial/. [Last accessed on 2012 Dec 4].

22. Baru C, Fecteau G. An overview of DB2 parallel edition. In: ACM SIGMOD. 
New York: ACM; 1995. p. 460‑2.

23. Gaede V, Gunther O. Multidimensional access methods. ACM Comput Surv 
1998;30:170‑231.

24. Guttman A. R‑trees: A dynamic index structure for spatial searching. In: 
SIGMOD Conference. New York: ACM; 1984. p. 47‑57.

25. PAIS Google code, 2012. Available from: http://code.google.com/p/
openpais/. [Last accessed 2012 Dec 4].

26. Boost C++ libraries, 2012. Available from: http://www.boost.org/. [Last 
accessed on 2012 Dec 4].

27. Clipper–An open source freeware polygon clipping library, 2012. Available 
from: http://www.angusj.com/delphi/clipper.php. [Last accessed on 
2012 Dec 4].

28. Wang K, Huai Y, Lee R, Wang F, Zhang X, Saltz J. Accelerating pathology 
image data cross‑comparison on CPU‑GPU hybrid systems. In: VLDB 
Conference. Vol. 5. Istanbul, Turkey: VLDB Endowment; 2012. p. 1543‑54.


