
J Pathol Inform Editor-in-Chief:
 Anil V. Parwani , Liron Pantanowitz,
 Pittsburgh, PA, USA Pittsburgh, PA, USA

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS
HTML format

Research Article

A high‑performance spatial database based approach for pathology
imaging algorithm evaluation

Fusheng Wang1,2, Jun Kong2, Jingjing Gao2, Lee A.D. Cooper1,2, Tahsin Kurc1,2, Zhengwen Zhou3,
David Adler4, Cristobal Vergara‑Niedermayr5, Bryan Katigbak6, Daniel J. Brat1,2,7, Joel H. Saltz1,2

1Department of Biomedical Informatics, Emory University, USA, 2Center for Comprehensive Informatics, Emory University, USA, 4IBM Spatial Database Technology, USA,
5Oracle, USA, 3Department of Mathematics and Computer Science, Emory University, USA, 6A‑IT Software Services, Singapore, 7Pathology and Laboratory Medicine,
School of Medicine, Emory University, USA

E‑mail: *Fusheng Wang ‑ fusheng.wang@emory.edu
*Corresponding author

Received: 11 September 12 Accepted: 06 December 2012 Published: 14 March 13

Abstract

Background: Algorithm evaluation provides a means to characterize variability across
image analysis algorithms, validate algorithms by comparison with human annotations,
combine results from multiple algorithms for performance improvement, and facilitate
algorithm sensitivity studies. The sizes of images and image analysis results in pathology
image analysis pose significant challenges in algorithm evaluation. We present an
efficient parallel spatial database approach to model, normalize, manage, and query large
volumes of analytical image result data. This provides an efficient platform for algorithm
evaluation. Our experiments with a set of brain tumor images demonstrate the
application, scalability, and effectiveness of the platform. Context: The paper describes
an approach and platform for evaluation of pathology image analysis algorithms. The
platform facilitates algorithm evaluation through a high‑performance database built
on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop
a framework to support algorithm evaluation by modeling and managing analytical
results and human annotations from pathology images; (2) Create a robust data
normalization tool for converting, validating, and fixing spatial data from algorithm or
human annotations; (3) Develop a set of queries to support data sampling and result
comparisons; (4) Achieve high performance computation capacity via a parallel data
management infrastructure, parallel data loading and spatial indexing optimizations
in this infrastructure. Materials and Methods: We have considered two scenarios
for algorithm evaluation: (1) algorithm comparison where multiple result sets from
different methods are compared and consolidated; and (2) algorithm validation where
algorithm results are compared with human annotations. We have developed a spatial
normalization toolkit to validate and normalize spatial boundaries produced by image
analysis algorithms or human annotations. The validated data were formatted based on
the PAIS data model and loaded into a spatial database. To support efficient data loading,
we have implemented a parallel data loading tool that takes advantage of multi‑core
CPUs to accelerate data injection. The spatial database manages both geometric shapes
and image features or classifications, and enables spatial sampling, result comparison, and
result aggregation through expressive structured query language (SQL) queries with

Copyright: © 2013 Wang F. This is an open‑access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

This article may be cited as:
Wang F, Kong J, Gao J, Cooper LA, Kurc T, Zhou Z, et al. A high‑performance spatial database based approach for pathology imaging algorithm evaluation. J Pathol Inform 2013;4:5.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2013/4/1/5/108543

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

INTRODUCTION

Digital microscopy for pathology study has recently
become a popular research area where a large number
of computer‑based image analysis tools are developed
to support not only disease diagnosis but also treatment
efficacy evaluation in clinical and research settings.
Meanwhile, machine‑based image analysis presents salient
merits that facilitate researchers for better understanding
of the underlying biological mechanisms of disease
progression. In contrast to digital microscopy image
analysis, the human‑based traditional glass reviewing
protocols are biased, limited, and qualitative. As a result,
it is not unusual to see the low inter‑ and intra‑observer
concordance, and poor reviewing reproducibility. These
defects severely preclude the possibility of fully leveraging
pathology imaging data in clinical and biomedical
research.

The performance of computer‑based analysis is highly
consistent, whereas performance of human‑based reviews
can drastically drop when the scope of analysis is scaled up,
for instance, to the order of millions of nuclei per tumor
sample. Unlike pathologists, computer‑based analysis
is not vulnerable to the analytic scale. Furthermore, the
capacity of large‑scale analysis by machines enables a more
definitive data process, thereby reducing bias. Analyses
accommodating large data by machines also facilitate
discovery of significant associations that would be
identified at a much larger cost of human labor and time.
Moreover, machine‑based analysis on digital slides extends
the scope of descriptive features from those appreciated
by pathology domain experts to those not perceived by the
human visual detection system, thereby presenting great
potential for biologically meaningful subclassification of
disease and for informing human reviewers of features

that are clinically relevant. In literature, it has been
demonstrated that pathology imaging data contains rich
and biologically meaningful phenotypic information
that can be extracted by image processing pipelines to
link to underlying molecular alterations and clinical
outcomes, potentially providing a high‑throughput
methodology for clinical diagnosis and investigation.[1‑6]
Recent advancements in high‑resolution high‑throughput
digital scanners have also enabled rapid development of
computer‑based histopathology image analysis for virtual
microscopy. Additionally, computational and storage
infrastructures for large‑scale microscopic image analysis
have been improved to enable high performance and
parallel computations with large I/O throughput support.

In transition to digital pathology, computer‑based image
analysis, however, invites one critical problem–evaluation
and validation of image analysis algorithms. To ensure
the analysis accuracy and biological meaning of imaging
information, evaluation and validation of image analysis
algorithms is an indispensable component in biomedical
imaging studies. As the efficacy of an analysis pipeline
generally depends on numerous factors, such as the
characteristics of specimens and images used in the
study, types of image processing operations employed,
and the study objectives, algorithms have to be carefully
validated. A systematic approach for algorithm evaluation
can facilitate the development of refined algorithms to
better support biomedical research and computer‑aided
diagnosis. It can also substantially help the development
of common training and test datasets from various
sources to establish public shared data archives with
well‑understood ground truth and algorithm performance,
encouraging further algorithm evaluation in a community
of researchers. However, an algorithm evaluation
framework has to address data processing, management,

spatial extensions. To provide scalable and efficient query support, we have employed
a shared nothing parallel database architecture, which distributes data homogenously
across multiple database partitions to take advantage of parallel computation power
and implements spatial indexing to achieve high I/O throughput. Results: Our work
proposes a high performance, parallel spatial database platform for algorithm validation
and comparison. This platform was evaluated by storing, managing, and comparing analysis
results from a set of brain tumor whole slide images. The tools we develop are open
source and available to download. Conclusions: Pathology image algorithm validation
and comparison are essential to iterative algorithm development and refinement.
One critical component is the support for queries involving spatial predicates and
comparisons. In our work, we develop an efficient data model and parallel database
approach to model, normalize, manage and query large volumes of analytical image
result data. Our experiments demonstrate that the data partitioning strategy and the
grid‑based indexing result in good data distribution across database nodes and reduce
I/O overhead in spatial join queries through parallel retrieval of relevant data and quick
subsetting of datasets. The set of tools in the framework provide a full pipeline to
normalize, load, manage and query analytical results for algorithm evaluation.
Key words: Algorithm validation, parallel database, pathology imaging, spatial database

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.108543

Quick Response Code:

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

and query requirements arising from large volumes of
image data and analysis results. We propose, develop, and
evaluate a high performance, database‑supported system
to support validation and comparison of image analysis
algorithms targeting high‑resolution microscopy images.

Our work is motivated by whole slide image analysis
studies carried out as part of integrative in silico
experiments at the In Silico Brain Tumor Research
Center (ISBTRC).[7] ISBTRC is a collaborative effort of
four institutions: Emory University, Thomas Jefferson
University, Henry Ford Hospital, and Stanford University,
and focuses on integrative translational research
on brain tumors by analyzing complementary data
types (genomics, imaging, clinical outcome). Microscopy
image analysis algorithms are central to in silico
experiments at ISBTRC. These algorithms are used to
extract, quantify, and classify the spatial features from
high‑resolution whole slide tissue images. The results
from image analyses are correlated with genomic and
clinical outcome data to identify better biomarkers and
mechanisms of disease progression. In this paper, we
focus on segmentation algorithms as a case study. The
segmentation step in pathology image analysis is critical
to the success of downstream analysis steps such as
feature computation and classification.

The need for algorithm evaluation and comparison arises
in many ISBTRC image analysis cases. (i) Algorithm
validation. Algorithms are tested, evaluated and improved
in an iterative manner. This involves a formal testing
phase where segmentations done by pathologists are
captured and compared to an algorithm’s output. The
results are evaluated to assess inter‑observer variability
between pathologists, between algorithms and humans,
and between different algorithms. (ii) Algorithm
consolidation. Multiple algorithms can be developed in
a study to solve the same problem. Different algorithms
may have their own unique strengths on analyzing images
with certain characteristics. In those cases, an array of
algorithms can be aggregated in a complementary way.
Consolidating results from multiple algorithms (i.e., an
ensemble approach) may lead to better analysis
results. (iii) Algorithm sensitivity studies. An algorithm
often includes a set of parameters that can be adjusted
to adapt to different types, resolutions, and qualities of
images. Exploring the sensitivity of analysis output with
respect to parameter adjustments can provide a guideline
for the best deployment of algorithms in different
scenarios and for rapid development of robust algorithms.

A major challenge to efficient execution of these cases
is the vast amount of image data and analysis results.
State‑of‑the‑art tissue slide scanners are capable of
producing high‑magnification, high‑resolution images
from whole slides and tissue microarrays within minutes.
One single whole slide image can contain 1010 pixels

and 106‑107 biological objects of interest, such as nuclei.
A brute‑force pair‑wise comparison between results
from two analysis sets could incur a complexity of
O (n2)–1012 operations, where n is the number of objects,
with additional extensive Input/Output (I/O) cost for
reading the data. An efficient mechanism is needed to
manage large volumes of results (along with provenance
information). Moreover, the mechanism should support
computational and data intensive queries–such as spatial
join queries for comparison of image markups associated
with different analysis results.

Algorithm validation has been studied for medical
imaging.[8] Much work has been done on model design
for image analysis results, including the work by the NCI
Annotation and Image Markup project[9] for radiology
images, the Open Microscopy Environment project for
cell imaging,[10] and DICOM Structural Reporting for
human annotations.[11] Biomedical imaging databases
have been developed for managing results.[10,12‑14]
However, they are not designed to provide support for
data querying and retrieval for algorithm evaluation
workflows. The use of parallel and distributed computing
for analysis enables researchers to process image data
rapidly and produce large volumes of analysis results.
For example, a distributed system has been developed by
Yang et al., for computer‑aided analysis of digitized breast
tissue specimens.[15] Our work differs in that we propose a
database‑based approach to support algorithm evaluation
by systematically (1) managing large‑scale results from
algorithms and human annotations, and (2) supporting
efficient queries with a parallel spatial database
architecture.

MATERIALS AND METHODS

Algorithm Evaluation Workflows and Queries
A typical algorithm comparison workflow employed
in ISBTRC studies consists of the following
steps [Figure 1]: (1) multiple algorithms or algorithms
with different parameters are applied to non‑overlapping
image tiles partitioned from whole slide images. Note that
tiling is a common practice for pathology image analysis.
Tiling an image is done either by padding tile boundaries
to include objects on boundaries (in most cases,
objects, such as cells and nuclei, are relatively small), or
objects on tile boundaries are discarded when the final
analysis result is a statistical aggregation; (2) results and

Figure 1: Algorithm comparison workflow

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

provenance information are represented and managed in
a database; (3) the results are queried for comparisons
of objects and features extracted by the algorithms–for
example, to find the overlap‑to‑intersection ratio and
centroid distance of intersected markups; and (4) for
algorithm consolidation, analysis results are either filtered
or aggregated based on certain criteria, and for algorithm
sensitivity study, changes in results are recorded and
stored as algorithm parameters are tuned. Algorithms
are applied to image tiles comprising whole slide images,
thus the process of executing algorithms and carrying
out result comparison is highly data and computational
intensive. In this paper, we focus on the data management
and query aspect. The workflow execution is left for
future discussions.

We should note that this workflow can be modified to
support algorithm validation, in which algorithm results
are compared with human annotations, as seen in
Figure 2. Even a single tile derived from a whole‑slide
image can contain tens of thousands of nuclei, making
it infeasible for human annotators to mark boundaries
for all objects in a tile. Thus, the algorithm validation
workflow divides tiles into smaller regions (subregions)
where validation work becomes manageable–e.g., a
subregion could be an 8 × 8 division of a tile. As
discussed later, we take a stratified sampling approach
for deciding the sample size and subregion size. In this
way, an image dataset used in validation is organized by
three hierarchical spatial concepts in increasing order of
granularity: Slide, tile, and subregion.

These two workflows involve several common query
types. The first type of query is the spatial join query,
i.e., spatial operations used to combine two or more
datasets with respect to a spatial relationship. Two
steps are involved in this query type: Spatial filtering
based on spatial relationships, such as intersection, and
spatial measurements based on computational geometry
algorithms, such as area, centroid, distance, and union of
polygons. In our case, all comparisons on segmentation
results are performed through spatial joins by computing
overlap‑to‑intersection ratio and centroid distance of
markup pairs represented in polygons. The second type
of query is the spatial containment query. In some cases,

algorithm‑generated results in certain regions are used for
validation or comparison purposes. In this case, containing
regions are pre‑generated for subsequent analysis as a
filtering condition, with which nuclei in tumor regions
are retrieved by a spatial containment query that only
returns markup objects of nuclei contained in elected
tumor regions. The third type of query involves finding
objects contained in subregions and computing the
density of those objects. This type of query is useful in
spatial sampling approaches for algorithm validation. For
example, a stratified sampling method can use this type
of query to select subregions grouped by the densities of
objects in those subregions.

Statistical Sample Size Estimation
For statistical sample size estimation, it is necessary
to obtain prior information such as mean, variation or
proportion in order to carry out the calculation. Once
the pilot data are available, several validation methods
on comparing the automatic algorithm and human
observer (s) can be conducted. Those evaluation metrics
will be calculated at both nucleus level and region of
interest level. The mean and standard deviation along
with other statistical measures will be used in sample size
consideration.

Total sample size determination. For the distance‑based
and area‑based approaches, normality will be assumed (if
highly screwed, logarithm or logit transformation may
be used). Sample size calculation will be based on the
hypothesis test that the measure of interest equals to a
threshold. The estimated sample size would assure that
there is adequate power to detect a departure from the
null hypothesized value.

Sample size determination for stratified sampling.
Before sampling ROIs, an image will be partitioned into
non‑overlapping tiles. Based on certain feature, those
tiles can be classified into mutually exclusive categories
which will serve as strata in stratified sampling process.
One stratified sampling approach is to use proportionate
stratification, in which each stratum’s sample size is
proportional to the total size of that stratum. Sample

size of each stratum is determined by = h
h

N
n n

N
, where

Nh is the sample size for stratum h, Nh is the total size
for stratum h, N is the total population size, and n is
the total sample size. Disproportionate stratification
with optimum allocation would be another choice,
in which each stratum’s sample size is proportional
to the standard deviation of the distribution of the
feature being stratified on, so that more samples

would be
=

= −

∑

2
2

1

1
(1)

hH
h h

h h h

n S N
SE

N N n
 allocated to the

stratum with higher variability to achieve the sample
strategy with the lease sampling variance. The way of
optimal allocation, called Neyman allocation, is given Figure 2: Algorithm validation workflow

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

by
=

=
∑ 1

h h
h H

i ii

N
n n

N

s

s
, where Nh is the sample size for

stratum h, n is the total sample size, Nh is the total size
for stratum h, and σh is the standard deviation of stratum
h (obtained from pilot data). Consequently, the overall

sample mean is
=

= ∑ 1

H h
h h

N
x x

N
, And, the standard

error is
=

= −

∑

2
2

1

1
(1)

hH
h h

h h h

n S N
SE

N N n
, with a (1‑α)100%

confidence interval as ± 1 2
x z SE

a , where ± 1 2
x z SE

a

xh is the mean of stratum h and Sh is the sample standard
deviation of stratum h.

Spatial Data Normalization
One of the major gaps in the process of deriving
analytical results from image analysis algorithms or
human annotations is to validate and normalize spatial
boundaries as valid geometric shapes stipulated by
spatial databases. For example, the following is a list
of requirements of a valid polygon based on Open
Geospatial Consortium standards for simple feature
access: [16] (i) Polygons are topologically closed; (ii) The
boundary of a polygon consists of a set of linear rings
that make up the exterior and interior boundaries; (iii)
No two rings in the boundary cross, and the rings in
the boundary of a polygon may intersect at a point but
only as a tangent; (iv) A polygon may not have cut lines,
spikes or punctures; (v) The interior of every polygon is
a connected point set; and (vi) The exterior of a polygon
with one or more holes is not connected, and each hole
defines a connected component of the exterior. Note
that there could be objects in the shape of MultiPolygon,
which is a collection of multiple polygons. Examples
include representing lakes in geographic information
system (GIS) applications, or complex blood vessels
segmented from whole slide images. Here we focus on
normalizing polygon objects, which are most frequently
used in our use case. Normalizing other types such as
MultiPolygons can be implemented similarly.

Image segmentation algorithms often generate
segmented contours represented by mask images, and
tools are used to extract contours from mask images as
point represented boundaries. For example, OpenCV[17]
provides a function findcontours to dump contours into
boundaries consisting of points. The machine generated
boundaries, however, are often full of invalid geometric
shapes. Besides algorithm generated boundaries, users
can also mark contours through free hand drawing with
whole slide image viewing software such as Aperio’s
Image Scope.[18] The resulting boundaries are subject to
human’s ability for precise control of mouse movement
and are often error‑prone. Based on our observations and

extensive study of the use cases, we identify the following
major problematic shapes (here we focus on polygon data
only):

Open‑ended Contour
Contours where starting and end points are not identical
[Figure 3a]. A straight‑forward correction is to connect
the starting and ending points provided there are no
conflicting segments like self‑intersect. Otherwise, it will
be further handled as a self‑intersect scenario.

Twisted Contours
Contours whose directions are changing although the
shapes are correct, and it is impossible to iterate linearly
on every line segment. This can be fixed by changing the
order of the points for contours.

Collinear Points
Outlier points that have little effect on the overall
appearance and structure of a given polygon, which is
a result of joining adjacent line segments [Figure 3b].
These outlier points could be removed by reducing and
simplifying adjacent segments around these points.

Duplicate Points
Redundant points. These can be simply removed.

Dangling
Extended line segments or a smaller contour connected
to the main polygon contour. Dangling segments or
contours [Figure 3c] can be fixed by splitting the contour
into parts determined by the presence of intersection,
and each part is tested whether it satisfies the properties
of a basic polygon; invalid ones are removed.

Multi‑Polygon
Compounded polygons joined by either overlapping or
tangent boundaries. Multi‑polygon can be considered as a
special dangling case, except that individual components
form a polygon with distinct shape and area. Thus, this
can be handled similarly as the dangling case.

Self‑Intersect
A contour with an edge (line segment) touching or
crossing another edge of the contour [Figure 3d]. This
can be resolved by eliminating the exterior coordinates
originating from the identified intersection point.

Sharp pointed vertex: An angle formed by two‑line
segments is too narrow. To fix this, the smoothness of
the contour has to be refined, for example, by defining a
maximal distance parameter on how a point can be away
from the main contour.

Pathology Analytical Imaging Database and
Query Support
Pathology analytic imaging standards (pais) data modeling
To manage algorithm results, human annotations and
provenance, and to efficiently support complex queries,
we employ a data model called PAIS.[19,20] The PAIS data

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

model consists of 62 Unified Modeling Language (UML)
classes, representing information on markups (spatial
shapes representing regions, cellular or subcellular
objects), annotations (including calculated features
or observations such as classifications associated with
markups), and provenance (image references, analysis,
algorithm and parameters). PAIS provides highly
generalized data objects and data types and supports
flexible relationships across objects. Geometric shapes
such as polygons are used to represent the boundaries of
segmented objects, such as tumor regions, blood vessels,
and nuclei.

Pathology analytic imaging standards database
PAIS employs a spatial database management
system (DBMS) based implementation for managing
data–we have used IBM DB2 with spatial extender[21]
in our implementation.[20] There are three major types
of tables involved in the PAIS database: (i) Spatial
tables for markup objects with geometric shapes.
Spatial DBMS provides extensions to relational DBMS
to support spatial data types such as ST_POLYGON
and ST_POLYLINE; (ii) Feature and observation tables
to capture calculated features, such as area, perimeter,
and eccentricity, and descriptive observations, such as
classifications of regions or nuclei; and (iii) Provenance
tables for image references, subject, specimen, the user
performing the analysis, the analysis purpose, and the
invoked algorithms. The database implementation
provides dozens of functions to support comparison of
relationships across spatial objects. Some most commonly
used relationship functions include intersects, overlaps,
within, contains, and touches, among others. It also
provides numerous spatial measurement functions,
including those to compute the area and centroid of a
spatial object, to calculate the distance of two spatial

objects, and to generate an intersected region (a spatial
object generated from two spatial objects). Note that
PAIS manages image analysis results–original images are
managed in a separate database.

Representing results in a structural format and managing
them in a database provide significant advantage for
expressing complex queries in SQL. Furthermore,
extended built‑in spatial functions make it easier to
support workflows involving spatial operations. For
example, as presented earlier, object densities in image
subregions can be used as a criterion for stratified
sampling. Figure 4 illustrates database support for
performing density computations and stratified sampling.

Database based sampling
To compute the object density for subregions, we partition
tiles to produce subregions. An initial segmentation of
all markups is performed by a segmentation algorithm,
and all segmented markups are stored in a MARKUP_
POLYGON table.[22,23] Then subregion size is defined in
a way such that each subregion contains a reasonable set
of objects that could be annotated by a human within
a single short session, for example, within 10 min by an
experienced pathologist based on a pilot study. With the
size information, each tile of an image space is divided
into subregions and captured in SUBREGION table
in the database. SUBREGION contains PAIS_UID,
TILENAME, SUBREGIONNAME, (X, Y) coordinates
of the top‑left corner of the subregion, WIDTH,
HEIGHT, and a POLYGON to represent the boundary
of each subregion. After the production of markups
and subregions, markup and subregion containment
relationship can be decided using a spatial containment
query, as shown in Figure 5a. In this query, the conditions
specify that markups and regions are from the same tile

Figure 3: Example use cases of boundary normalization (only a subset is illustrated)

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

and same image, and regions contain markups. Note that
in the query subregions with less significant number of
objects, e.g., 10 nuclei, are dropped.

Data loading
The performance of loading data into spatial databases
depends on both computations and disk I/O operations.
While the performance of traditional data loading is
normally constrained by disk writing bandwidth, spatial
data loading is also constrained by the central processing

unit (CPU) resources available to convert raw text data
into spatial data structures in the database, such as
computing minimal boundary boxes and many other
spatial characteristics. Our profiling shows that the CPU
utilization is several times higher for loading boundary
data as spatial objects than as text data in the database,
and the former takes several times longer time. Since a
modern computer server often comes with multi‑cores,
utilizing all the cores for data loading could potentially
accelerate the spatial computation at loading stage and
reduce the overall loading time. We propose a parallel data
loading scheme that can parallelize data loading by user
specified number of cores. The data loading tool provides
a job scheduling module that manages raw data to be
mapped into database tables. The scheduling mechanism
has one master thread for managing all jobs–each job is
based on one tile. Each slave thread asks the master thread
for an available job, and the master thread picks up the
next available job and assigns it to the slave thread. This is
repeated until all jobs are assigned and processed.

Evaluating results with SQL queries
Once the data is loaded and indexed by the PAIS database,
evaluating of results can be supported by expressive
SQL queries. For example, as shown in Figure 5b, the
SQL query compares two segmented results from an
image generated by an algorithm with two different

Figure 4: Workflow for generating density data for sampling

Figure 5: Example queries. (a) Query to generate subregion
and markup containment relationships; (b) Query to compare
segmentation results from two methods

b

a

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

parameters. It computes the overlap‑to‑intersection
ratios and centroid distances of all matched segmented
nuclei through the ST_Intersects spatial predicate, which
automatically triggers an efficient spatial index assisted
query processing. Similarly, image features can also
be compared by computing the difference of average,
standard deviation, or histogram. More example SQL
queries for PAIS can be found at PAIS wiki.[19]

Parallel Database Architecture
A major bottleneck in managing and querying large data
is the I/O bottleneck. The evaluation of spatial queries in
our studies has shown that many queries’ execution time
is spent in I/O, such as aggregation queries. Meanwhile,
spatial join queries can be highly computational intensive.
Next we describe the parallel database approach to
address this issue.

I/O bandwidth can be increased through data partitioning
and parallel data access. In our work, we have used a
shared‑nothing parallel database architecture to manage
and query PAIS data to provide scalable data management
and to speed up complex queries. Figure 6 illustrates this
architecture in which multiple database instances are
run on separate physical nodes. We also refer to these
nodes as database partitions (Partition 1, Partition 2,…,
and Partition N). Each partition has its own disks, CPU
and memory, and the partitions are connected through a
fast switched network. There is one master partition and
multiple slave partitions. The master partition accepts
queries from users, translates and parallelizes queries
across all partitions, and aggregates the results–this
enables the simplicity and expressiveness of SQL queries
as such distributed parallel query execution is transparent
to users. Our implementation employs IBM DB2’s
parallel query execution support.[22] This support provides
a single logical view of partitioned data so that clients
can compose SQL queries as if they interacted with a
serial database with no data partitioning.

One major challenge for a shared‑nothing architecture
is load balancing, i.e., how to distribute data and
computational load evenly across all partitions. A skewed
data distribution can lead to bottlenecks and deteriorate
overall performance. There are two granularities for
partitioning data: Partitioning based on images and
partitioning based on tiles. The first approach distributes
all of the segmentation and feature results obtained from
a whole image onto the same partition, and the second
approach distributes all results from a tile onto the
same partition. The second approach has the benefit of
speeding up queries on a single image, as tiles could be
queried simultaneously on multiple partitions.

Whether it is applied to tiles or images, partitioning
algorithms should try to minimize data communication
overhead across partitions for efficient spatial joins
between different result sets. Given multiple algorithm

results from a list of tiles, an algorithm distributes
the results across multiple partitions such that (1) the
amount of results on each partition is close across all
the partitions and (2) results from different algorithms
on the same tile are assigned to the same partition. We
implement two approaches to partition the data based on
tiles: (i) tilename hashing: Hashing tilename to generate
partition keys using the database’s built‑in hashing
function and ii) bin packing of objects in tiles. The later
algorithm reads the list of tiles and the sizes of result sets
associated with these tiles for each analysis run. It then
executes a bin‑packing heuristic, where each partition
represents a bin, to distribute the tiles across partitions
as follows. The algorithm sorts the tiles in descending
order of the total result size of each tile. Starting from
the top‑most tile, it assigns the tile to the partition with
the minimum results set size and increments the results
set size of the partition by the size of the tile’s results set.
The algorithm proceeds down the sorted list, assigning
the current tile to the partition with the minimum results
set size and incrementing the partition’s results set size by
the tile’s results set size. With partitioning key generated
by the partitioning methods, during data loading process,
the partition keys are used to automatically distribute
the data element to the right partition when the insert
is executed. Each database partition is stored on the local
disk attached to the corresponding node.

In order to further reduce I/O overhead, each partition
creates a spatial index on local data. There are a
number of indexing and data access methods[23] to
support efficient spatial queries. These methods can be
categorized into two main classes: Space based and data
based. Grid indexing is a common space based approach,
where space is partitioned into fixed grid cells. R‑Tree
indexing,[24] on the other hand, is a common data based
approach. In our work, grid based indexing is used, as
shown in Figure 7. The red and green spatial boundaries
represent segmented nuclei by different methods, and
the orange grid represents the grid index. Each spatial
region is divided into multi‑level grids and indexed.
These grids can be used to efficiently identify spatial

Figure 6: Partitioning based parallel database architecture

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

intersections of markups in spatial joins. For example,
in order to find the intersected areas of the green and
red markups in grid cell (5,2) based on the minimal
bounding box of the markup, the grid cell number is first
generated with the green markups. Then all the markups
of the other dataset (in red color) that intersect this cell
are retrieved based on the grid index. These markups
are further filtered by geometric computation. Thus, the
total number of markups for comparison is significantly
reduced via the grid based indexing.

RESULTS AND PERFORMANCE
EVALUATION

Software Tools
We have developed following software tools to support
algorithm evaluation, summarized in Table 1. These
tools include: (i) database tools for creating schemas,
sampling data and comparing results; (ii) data analysis
tool for statistical analysis to support sampling and result
evaluation, (iii) data normalization tool for extracting and
converting data, validating and fixing spatial boundaries,
and converting data into PAIS documents; and (iv)
data loading tool for moving data into the database and
converting data into structured and spatial data in the

database. The tools are available to download at PAIS
Wiki.[19] The source codes are available for download at
PAIS Google code site.[25]

To setup PAIS database, IBM DB2 database server and
its spatial extender is needed. DB2 also comes with a free
single partition express edition DB2 Express‑C. The setup
of the parallel database server on multiple nodes requires
sharing of the installed DB2 binaries through network
sharing, and each node comes with its own running
instance. Database partitions can be created for each node
and grouped into a partition group to be used by a PAIS
database. Once the installation is done, a database can be
created and spatially enabled, and the PAIS tables can be
created by the table creation SQL scripts. By following result
file format specifications, the analysis results from image
analysis software can be converted into PAIS documents
with PAIS Document Generator. The documents can
then be uploaded into the database with PAIS Document
Uploader. The execution of PAIS Data Loading Manager
triggers the mapping of PAIS documents in extensible
markup language (XML) format into PAIS table records.
After that, SQL queries and interactive statistical analysis
can be executed. Details on database setup and program
execution can be found at PAIS wiki.

Performance Evaluation
Experimental setup
We have performed experiments with different partitions
using IBM DB2 as the underlying relational database
management system. The cluster machine we use has five
nodes. Each node has two quad‑core CPUs and 16 GB
memory (only a single core is used for each database instance)
and runs 64‑bit CentOS 5.6. We use IBM Infosphere Data
Warehouse edition Version 9.7.3 with DB2 partitioning
feature as our database engine. We have DB2 setup with
five partitions on five cluster nodes. The dataset includes
18 whole‑slide microscopy images analyzed by two methods.
The total number of spatial objects is about 18 million and
the average number of spatial objects per image is 0.5 million.
Analysis results from different runs are stored in files. We use
file sizes to estimate the result set sizes for the partitioning
algorithm in order to avoid the expensive process of parsing

Table 1: Pathology analytical imaging standards tools

Category Tools Description

Database PAIS schema A set of SQL scripts for creating database tables and indexes
PAIS queries A set of SQL scripts for sampling, comparing and aggregating data

Data analysis Statistical validation tool SAS codes for sampling and statistical analysis of algorithm evaluation results
Data normalization Aperio XML parser Extract and convert boundaries marked in Aperio software into spatial WKT format

PAIS boundary validator Validate spatial boundaries segmented from images or marked on images
PAIS boundary fixer Fixing spatial boundaries that can pass spatial validation by PAIS boundary validator
PAIS document generator Generate PAIS XML documents from text based results

Data loading PAIS document uploader Upload PAIS XML documents to a staging area in the PAIS database
PAIS data loading manager Convert and map XML data into PAIS tables

PAIS: Pathology analytic imaging standards, SQL: Structured query language, SAS: Statistical analysis system, WKT: Well‑known text, XML: Extensible markup language

Figure 7: Fixed grid indexing to support spatial join queries

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

the file for spatial objects twice–once for counting the objects
and once for loading the objects to the database.

Spatial query performance
We report the results of two experiments in Figures 8
and 9: One experiment looks at the distribution of data
across backend nodes, the other measures the reduction
in execution time of spatial joins. The spatial joins in our
experiments involve comparisons of overlap‑to‑intersection
ratios and centroid distances between markups from two
result sets generated for a single whole slide image. Figure 8
shows the object distribution across five nodes with both
bin‑packing partitioning method and tilename hashing
method. As tilenames are generated based on image
names and coordinates of the title location, the values of
tilenames take a relatively random distribution. The mean
number of objects at each node is 3.65 million, and the
standard deviation for this approach is 0.236 million. The
bin‑packing approach estimates the number of objects
based on file sizes, and the standard deviation of object
distribution is 0.054 million. The results indicate that the
bin‑packing scheme works well and the file size provides
a good approximation of the number of spatial objects.
Figure 8 illustrates spatial join query speed up from a
single node setup to a five‑node setup for an example

image with 2 million markup objects. The results show that
linear speedup is achieved with our partitioning approach.
The partitioning algorithm allows the DB2’s parallel query
support to take advantage of partitioned data for higher
I/O bandwidth. In addition, indexes set up on each node
reduce the local I/O overhead on each node. A further
improvement of queries is through pre‑computing centroids
of polygons when data is loaded. Geometric computation
such as computing distances and overlaps for spatial queries
is of high computational complexity and could cost much
time in query processing. By pre‑computing centroids,
computation of distances between polygons pairs could be
much simplified and the queries can be much accelerated.

Parallel data loading performance
In Figure 10, we compare the performance of loading
spatial data versus non‑spatial data, with the same input
raw data. With a single thread, spatial data loading
takes nearly 8 times more time compared to non‑spatial
data loading, and CPU utilization is three times higher.
Figure 11 shows the performance of parallel data loading
for spatial data. By increasing the number of threads
from 1 to 16, the CPU utilization is 6 times higher, and
the loading time is dropped by 3.6 times. Clearly, this
demonstrates that through parallel loading, better CPU

Figure 8: Performance of data partitioning with five computation
nodes

Figure 9: Performance of spatial join queries for comparing two
analysis results for an example image

Figure 10: Spatial data loading versus non‑spatial data loading (a) Central processing unit utilization; (b) loading time

ba

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

utilization could accelerate spatial computation and
boost the performance. When the number of threads
exceeds the number of CPU cores, the performance
begins to drop due to the overhead of the context switch
between threads and resource saturation of the system.

EXAMPLE EVALUATION RESULTS

One of the evaluation queries is to find how algorithm
parameters can affect the segmentation results.
By adjusting parameters, we run the algorithm
NS‑MORPH[1,2] to segment two sets of nuclear boundaries,
and compare the average overlap ratio of intersecting
nuclear boundaries between the two result sets. We
use a dataset of 18 whole‑slide microscopy images. The
parameters include Tissue Area Percentage (TAP) to judge
if there is sufficient tissue area in the current tile for
analysis, Red Blood Cell Minimum Strength (RBCM) of
any qualified red blood cell for further analysis, Non‑Red
Blood Cell Maximum Strength (NRBCMS) of any
non‑red blood cell to be excluded for RBC recognition,
Foreground Minimum Strength (FMS) of any qualified
foreground object for further analysis, and Background
Maximum Strength (BMS) of any background regions to
be excluded for further analysis. The first set of parameters
are TAP = 0.9, RBCM = 5, NRBCMS = 4, FMS = 80,
and BMS = 45, and the second sets are TAP = 0.9,
RBCM = 5, NRBCMS = 4, FMS = 80, and BMS = 3,
with the last parameter changed to a smaller value. The
query returns the average overlap ratio as 75.6% with
standard deviation of 0.227, and average distance as 1.75
with standard deviation of 3.30. The query returns 224,
623 polygons out of total 18,274,876 polygons. We can
see that as the excluded background strength threshold
is lowered, the second method segments more objects
and likely larger nuclei, which leads to lower intersection
ratio and increasing distances between polygon pairs. As
another example query, for the two results on all images,
we query how many nuclear boundaries from result set

1 intersect two or more nuclear boundaries in result set
2. This query is also affected by lowering BMS, which
could produce more polygons and even larger polygons.
The difference of the results can be quantitatively
computed based on PAIS database, which can be used to
support iterative development and refinement of image
analysis algorithms. Other statistics on the continuity of
algorithms or parameter comparisons to ensure an optimal
situation could include agreement indices such as intra
correlation coefficient (ICC), concordance correlation
coefficient (CCC) and kappa statistics, which could be
implemented as user defined aggregate functions or stored
procedures to run efficiently inside the database.

DISCUSSION

The proposed PAIS pipeline minimizes the introduction of
individual bias as the outcomes are based on inputs from
multiple pathologists taking into consideration of inter‑rater
variation among them. That is, PAIS is optimal and
suitable for all‑level pathologists in terms of mitigating the
issue that the results may heavily depend on the accuracy
and preference of one rater if not controlling for inter‑rater
variability. Meanwhile, through a comprehensive PAIS based
framework for managing and evaluating algorithm results or
human annotations, we can create a curated set of results
from algorithms and human annotations, together with
original images, to serve as a repository of nominal ground
truth. Thus new algorithm results can be formatted and
loaded into the database for quick evaluation.

One major hurdle for quantitatively evaluating algorithm
results is irregular shapes generated from segmentation
algorithms and erroneous human markups. Our studies
show that a large portion of the data boundaries are
invalid polygons. For example, the boundaries of
blood vessels are highly complex polygons. Manual
segmentation of these structures results in a high rate
of invalid shapes. We have developed a tool to handle
these complex cases and correct these errors by using a
pipeline of components borrowed from existing libraries,
including Boost[26] and Clipper[27] as well as implemented
from our custom codes. The boundary fixing tool is
robust and fixes all boundaries we generated in our use
cases, including algorithm segmented boundaries and
human marked boundaries.

The parallel database architecture can be scaled to
multiple nodes to accelerate queries, through careful
tuning of the database, including even data distribution,
co‑location of data, and replication of commonly accessed
small tables across all nodes. Such optimization also
depends on the query types to be supported, and careful
examination of query plans is important.

The database approach provides high expressiveness
on composing queries, with declarative SQL query

Figure 11: Performance of parallel data loading

J Pathol Inform 2013, 1:5 http://www.jpathinformatics.org/content/4/1/5

language, without any need of programming. This makes
it natural and quick for users to write queries to evaluate
algorithms.

Our profiling of queries shows that geometric
computations, for example, ST_Intersects, dominate
query time to support algorithm evaluation queries. We
recently developed a graphical processing unit (GPU)
based algorithm that accelerates intersection queries
through high data parallelism and computation
parallelism running on a large number of GPU
cores.[28] This approach achieves high efficiency using
cost‑effective hybrid CPU‑GPU architecture. We are
exploring generalizing the GPU approach for different
types of spatial operations, and having them integrated
into databases.

CONCLUSIONS

Pathology image algorithm validation and comparison
are essential to iterative algorithm development and
refinement. A critical component for this is to support
efficient spatial queries. In our work, we develop an
efficient data model and parallel database approach
to model, normalize, manage and query large volumes
of analytical image result data. Our experiments
demonstrate that the data partitioning strategy and
grid‑based indexing result in good data distribution
across database nodes and reduce I/O overhead in spatial
join queries through parallel retrieval of relevant data and
quick subsetting of datasets. The parallel data loading
tool can take advantage of multi‑cores of a CPU to
significantly accelerate data loading of normalized spatial
data. The set of tools in the framework provide a full
pipeline to normalize, load, manage and query analytical
results to support algorithm evaluation.

REFERENCES

1. Cooper LA, Kong J, Gutman DA, Wang F, Cholleti SR, Pan TC, et al. An
integrative approach for in silico glioma research. IEEE Trans Biomed Eng
2010;57:2617‑21.

2. Kong J, Cooper L, Wang F, Chisolm C, Moreno C, Kurc T, et al.
A comprehensive framework for classification of nuclei in digital microscopy
imaging: An Application to diffuse gliomas. In: Proc IEEE Int Symp Biomed
Imaging 2011:2128‑31.

3. Kong J, Cooper LA, Wang F, Gutman DA, Gao J, Chisolm C, et al. Integrative,
multimodal analysis of glioblastoma using TCGA molecular data, pathology
images, and clinical outcomes. IEEE Trans Biomed Eng 2011;58:3469‑74.

4. Cooper LA, Kong J, Gutman DA, Wang F, Gao J, Appin C, et al. Integrated
morphologic analysis for the identification and characterization of disease
subtypes. J Am Med Inform Assoc 2012;19:317‑23.

5. Cooper LA, Kong J, Wang F, Kurc T, Moreno CS, Brat DJ, et al. Morphological
signatures and genomic correlates in glioblastoma. Proc IEEE Int Symp

Biomed Imaging 2011:1624‑7.
6. Kong J, Cooper L, Moreno C, Wang F, Kurc T, Saltz J, et al. In silico analysis

of nuclei in glioblastoma using large‑scale microscopy images improves
prediction of treatment response. Conf Proc IEEE Eng Med Biol Soc
2011;2011:87‑90.

7. In Silico Center for Translational Neuro‑oncology Informatics,
2012. Available from: http://web.cci.emory.edu/confluence/display/
INSILICO/. [Last accessed on 2012 Dec 4].

8. Clunie D. Algorithm Validation Toolkit (AVT), Presentation at the 2008
Radiological Society of North America Annual Meeting. Available from:
http://www.dclunie.com/papers/AVT‑RSNA‑2008‑RC730‑DAC2.pdf. [Last
accessed on 2012 Dec 4].

9. Channin DS, Mongkolwat P, Kleper V, Sepukar K, Rubin DL. The caBIG
annotation and image Markup project. J Digit Imaging 2010;23:217‑25.

10. Goldberg IG, Allan C, Burel JM, Creager D, Falconi A, Hochheiser H, et al.
The Open Microscopy Environment (OME) Data Model and XML file:
Open tools for informatics and quantitative analysis in biological imaging.
Genome Biol 2005;6:R47.

11. Clunie DA. DICOM structured reporting and cancer clinical trials results.
Cancer Inform 2007;4:33‑56.

12. Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS. Bisque: A platform
for bioimage analysis and management. Bioinformatics 2010;26:544‑52.

13. Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, et al. The
cell‑centered database: A database for multiscale structural and protein
localization data from light and electron microscopy. Neuroinformatics
2003;1:379‑95.

14. Yang L, Tuzel O, Chen W, Meer P, Salaru G, Goodell LA, et al. PathMiner:
A Web‑based tool for computer‑assisted diagnostics in pathology. IEEE
Trans Inf Technol Biomed 2009;13:291‑9.

15. Yang L, Chen W, Meer P, Salaru G, Feldman MD, Foran D. High‑throughput
analysis of breast cancer specimens on the grid. Med Image Comput
Comput Assist Interv 2007;10:617‑25.

16. Open GIS Implementation specification for geographic information‑simple
feature access, 2012. Available from: http://www.opengeospatial.org/
standards/sfs. [Last accessed on 2012 Dec 4].

17. Open CV, 2012. Available from: http://www.opencv.org/. [Last accessed on
2012 Dec 4].

18. Aperio Image Scope, 2012. Available from: http://www.aperio.com. [Last
accessed on 2012 Dec 4].

19. Pathology Analytical Imaging Informatics Standards Wiki, 2012. Available
from: https://web.cci.emory.edu/confluence/display/PAIS. [Last accessed on
2012 Dec 4].

20. Wang F, Kong J, Cooper L, Pan T, Kurc T, Chen W, et al. A data model and
database for high‑resolution pathology analytical image informatics. J Pathol
Inform 2011;2:32.

21. DB2 Spatial, 2012. Available from: http://www.ibm.com/software/data/
spatial/db2spatial/. [Last accessed on 2012 Dec 4].

22. Baru C, Fecteau G. An overview of DB2 parallel edition. In: ACM SIGMOD.
New York: ACM; 1995. p. 460‑2.

23. Gaede V, Gunther O. Multidimensional access methods. ACM Comput Surv
1998;30:170‑231.

24. Guttman A. R‑trees: A dynamic index structure for spatial searching. In:
SIGMOD Conference. New York: ACM; 1984. p. 47‑57.

25. PAIS Google code, 2012. Available from: http://code.google.com/p/
openpais/. [Last accessed 2012 Dec 4].

26. Boost C++ libraries, 2012. Available from: http://www.boost.org/. [Last
accessed on 2012 Dec 4].

27. Clipper–An open source freeware polygon clipping library, 2012. Available
from: http://www.angusj.com/delphi/clipper.php. [Last accessed on
2012 Dec 4].

28. Wang K, Huai Y, Lee R, Wang F, Zhang X, Saltz J. Accelerating pathology
image data cross‑comparison on CPU‑GPU hybrid systems. In: VLDB
Conference. Vol. 5. Istanbul, Turkey: VLDB Endowment; 2012. p. 1543‑54.

