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Abstract

The objective of the present study was to investigate the specific effects of Iron(III)-salophene (Fe-SP) on viability,
morphology, proliferation, cell cycle progression, ROS generation and pro-apoptotic MAPK activation in neuroblastoma (NB)
cells. A NCI-DTP cancer screen revealed that Fe-SP displayed high toxicity against cell lines of different tumor origin but not
tumor type-specificity. In a viability screen Fe-SP exhibited high cytotoxicity against all three NB cell lines tested. The
compound caused cell cycle arrest in G1 phase, suppression of cells progressing through S phase, morphological changes,
disruption of the mitochondrial membrane depolarization potential, induction of apoptotic markers as well as p38 and JNK
MAPK activation, DNA degradation, and elevated generation of reactive oxygen species (ROS) in SMS-KCNR NB cells. In
contrast to Fe-SP, non-complexed salophene or Cu(II)-SP did not raise ROS levels in NB or SKOV-3 ovarian cancer control
cells. Cytotoxicity of Fe-SP and activation of caspase-3, -7, PARP, pro-apoptotic p38 and JNK MAPK could be prevented by
co-treatment with antioxidants suggesting ROS generation is the primary mechanism of cytotoxic action. We report here
that Fe-SP is a potent growth-suppressing and cytotoxic agent for in vitro NB cell lines and, due to its high tolerance in
previous animal toxicity studies, a potential therapeutic drug to treat NB tumors in vivo.
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Introduction

Neuroblastoma (NB) is the most common extracranial solid

tumor and predominantly occurs in children below the age of five.

NB accounts for 7–10% of all childhood cancers and in the

majority of patients older than 1 year of age the disease is fatal.

About 500 new cases of NB are diagnosed in the US each year

resulting in 300 deaths annually [1,2]. Multimodality treatment

methods include surgery, radiation therapy, chemotherapy and

autologous stem-cell transplantation [3,4]. These treatment

modalities are employed either alone or in combination depending

on the location, the biological characteristics of the tumor cells, the

stage and the risk group to which the patient belongs. More than

50% of children with high-risk disease will experience a relapse

due to drug-resistant residual disease [5,6]. Eradication of

refractory microscopic disease remains one of the most significant

challenges in the treatment of the high-risk NB and innovative

treatments are needed.

The present report describes the selective cytotoxic effects of

organometallic complex Iron(III)-salophene [7] on NB cell lines.

In previous reports Fe-SP displayed selective cytotoxicity against

ovarian epithelial adenocarcinoma cell lines at concentrations

between 100 nM and 1 mM, while the viability of epithelial cervix

adenocarcinoma or primary fibroblasts was not affected. Fe-SP

treatment of ovarian cancer cells revealed apparent hallmarks of

apoptosis, chromatin fragmentation, a loss of mitochondrial

transmembrane depolarization potential (DYm), activation of

extrinsic and intrinsic apoptosis pathways, exerted effects as an

anti-proliferative agent and caused S-phase arrest [8]. Moreover,

when injected intraperitoneally in rats, Fe-SP did not show any

systemic toxicity at concentrations that revealed chemotherapeu-

tic response in an ovarian cancer cell model in vivo [8]. However,

the underlying mechanisms by which Fe-SP exerts effects in

cancer cells as well as the tumor types that can potentially be

targeted remain to be defined. In the present study, we examined

activities of Fe-SP against a spectrum of cancer types in a

National Cancer Institute-Developmental Therapeutics Program

(NCI-DTP) cancer cell growth screen as well as in a viability

assay including various NB cell lines. Moreover, we analyzed

generation of reactive oxygen species (ROS) by Fe-SP in NB as

well as ovarian cancer cells and its impact on activation of

apoptotic markers and various mitogen-activated protein kinases

(MAPKs).
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Results

Fe-SP displays differential effects on the viability and
growth of various human cancer cell lines

In an initial approach to analyze the effects of Iron(III)-

salophene (Fe-SP) on NB cells we performed a viability assay

employing three NB cell lines, SH-SY5Y, parent cell line SK-N-

SH and SMS-KCNR. In addition, PC-3 and HUVEC were added

to the panel to allow comparison of the effects between NB cells

and cells derived from another human tumor or angiogenic cells.

The cells were treated for 24 h with various concentrations (0.1–

3 mM) of either Fe-SP or non-complexed salophene (SP) as an

additional control to untreated controls. SP treatment at #3 mM

did not affect the viability of any of these cell lines (Fig. 1A). Fe-SP,

at 3 mM, exerted high cytotoxic effects on all cells except SH-

SY5Y. Remarkably, the response to Fe-SP at concentrations

#1 mM appeared to be cell type specific with NB cells severely

affected, while the effect on prostate cells was less pronounced. Fe-

SP at the concentration of 3 mM is similarly cytotoxic to HUVEC

cells as compared to tumor cells, but surprisingly at concentrations

#1 mM Fe-SP stimulated the growth of these endothelial cells.

This effect was consistently observed throughout multiple viability

assays and should be investigated in future studies.

The NCI-DTP performed a screen on Fe-SP as a growth

suppressor against a panel of 60 human cancer cell lines derived

from nine tumor types (ovarian, breast, colon, lung, melanoma,

leukemia, renal, prostate, central nervous system) (Fig. 1B). The

concentration of the drug achieving 50% growth inhibition (GI50),

total growth inhibition (TGI), and 50% cytotoxicity (LC50) was

determined by using the dose-response curves with five concen-

tration points of Fe-SP ranging from 10 nM to 100 mM (Fig. 1C).

Fe-SP treatment revealed selective growth inhibitory effects

against a broad range of cancer cell lines except for NCI/ADR-

RES breast cancer cells. Relatively high inhibitory activities by Fe-

SP treatment (GI50 less than 1.061026 M) were achieved against

all six leukemia cell lines, 4 of 7 melanoma cancer (LOX IMVI,

MALME-3M, SK-MEL-28, UACC-62), 4 of 8 breast cancer

(MCF-7, HS 578T, MDA-MB-435, MDA-MB-468), 1 of 2

prostate cancer (PC-3), 3 of 7 colon cancer (HCT-116, KM12,

SW-620), 1 of 6 CNS cancer (U251), 1 of 8 renal cancer (RXF

393) and 1 of 9 non-small cell lung cancer (NCI-H522) cell lines.

In summary, Fe-SP displayed dose-dependent and selective

cytotoxicity depending on the cell line treated.

Selective morphological changes, disruption of DYm,
and induction of apoptosis in NB cells after Fe-SP
treatment

To analyze morphological changes of SMS-KCNR NB cells we

carried out light (DIC) and fluorescence microscopy of nuclear

chromatin staining. Membrane permeable Hoechst 33342 nuclear

stain was directly added to the non-permeabilized cells without

any fixative. Untreated SMS-KCNR cells displayed a homoge-

nous morphology with nuclei lightly and evenly stained by

Hoechst 33342 (Fig. 2A). In contrast, after treatment with

0.4 mM of Fe-SP, SMS-KCNR cells displayed changes in

morphology with hallmark features of apoptosis including cell

shrinkage, highly condensed and densely stained nuclei in half of

the population.

To understand the mechanism(s) involved in the response of NB

cells to Fe-SP treatment we examined the mitochondrial

transmembrane depolarization potential (DYm) of SMS-KCNR

by flow-cytometry. The NB cells were double-stained with PI

(chromatin stain in cells with ruptured cell membrane) and

Rhodamine 123 which accumulates in mitochondria and directly

correlates to the integrity of DYm. The majority of untreated

SMS-KCNR cells were viable (Figure 2B, upper panel, Q4) as

depicted by uptake of Rhodamine 123 without nuclear PI staining.

In contrast, Fe-SP treatment (0.8 mM. 24 h) revealed loss of the

DYm in the majority of cells (Q1 + Q3) with 36.9% of the cells still

possessing intact cell membranes (Q3) and 24.5% exhibiting

ruptured cell membranes and according loss of DYm (Q1). The

controls with background staining of intact cells by Rhodamine

123 (Q1) indicating a loss of DYm were comparable for untreated

SMS-KCNR (1.6%) and Fe-SP treated cells (1.7%). Loss of DYm

due to chemical agents has been reported to be an indicator of

onset of early apoptotic events [9].

To determine the percentage of apoptotic versus necrotic cells

after Fe-SP treatment SMS-KCNR cells were treated with 0.2 or

0.8 mM Fe-SP or non-complexed SP for 24 h. Floating and

attached cells were collected and combined and flow cytometry

performed. The quantification of apoptotic cells was determined

by staining with Annexin V, and of necrotic cells by 7-AAD

staining. Combination staining with both markers allowed

discrimination between early apoptotic cells (Annexin V positive),

late apoptotic cells (Annexin V and 7-AAD positive), and necrotic

cell death (7-AAD positive). For Fe-SP treated cells, 27.7% and

43.9% were apoptotic with 0.2 and 0.8 mM treatments, respec-

tively, as determined by the combination of cells both in early (Q4)

and late apoptosis (Q2) (Figure 2C). In contrast only 4.2% of non-

treated cells underwent apoptosis. Necrosis (Q1 + Q2; Figure 2C)

was observed for 18.2% (0.2 mM) and 41.2% (0.8 mM) of Fe-SP

treated cells (the majority of which were in late apoptotic state;

Q2), while necrosis remained at background levels of 2.6% in non-

treated cells.

A common method to detect cellular apoptotic events is a

TUNEL assay. The assay relies on the presence of nicks in the

DNA of apoptotic and some necrotic cells, which can be identified

by terminal transferase that will catalyze the addition of labeled

dUTP (here: FITC). SMS-KCNR cells were treated with either

0.8 or 1.6 mM Fe-SP for 24 h. To identify cell nuclei,

counterstaining with propidium iodide (Pi), which intercalates in

DNA, was carried out. TUNEL-positive nuclei were identified by

yellow spots resulting from an overlay of the image with apoptotic

stain (FITC) and nuclear stain (Pi). As shown (Fig. 3D) no cells

before treatment (top panel), a significant portion of the population

treated with 0.8 mM (middle panel) and all cells at 1.6 mM Fe-SP

(bottom panel) were TUNEL-positive cells indicating fragmented

DNA.

Anti-proliferative effect and cell cycle arrest after
treatment of NB cells with Fe-SP

As described in the previous sections Fe-SP is a selective

cytotoxic drug in NB cells. To investigate if Fe-SP exerts anti-

proliferative effects we performed a BrdU incorporation assay. Fe-

SP treatment for 24 h dose-dependently reduced cell proliferation

(Fig. 3A) with an IC50 value of 300 nM. At the sub-cytotoxic drug

concentration of 100 nM Fe-SP BrdU incorporation into DNA

was reduced by 48% (Fig. 3A).

In addition to the cell proliferation assay, cell cycle analysis of

propidium iodide stained SMS-KCNR cells by flow cytometry was

carried out. Fe-SP treatment for 24 h led to an increase in the

count of apoptotic sub-diploidal/2n cells (sub-G1, Fig. 3B) in a

dose-dependent manner (Fig. 3C). With respect to cycling cells,

Fe-SP caused a dose-dependent decrease of cells in S-phase and an

increase in G0/G1 phase. 61% of untreated cells are in G0/G1

and 30% are in S phase while treatment with 0.8 mM Fe-SP

increased G1 cells to 76% and reduced to 17% in S phase. In

summary, upon NB treatment with Fe-SP a developing arrest of
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cells in G1 and suppression of cells progressing through S phase of

the cell cycle was observed.

Cytotoxicity of Fe-SP or Cu-SP in NB cells, generation of
intracellular Reactive Oxygen Species (ROS) and
inhibition of cytotoxicity by antioxidant ascorbic acid

Cytotoxic action by organometallic compounds can often be

linked to the generation of ROS [10], as shown previously in our

lab for HNTMB (not related to salophene) treatment of ovarian

cancer cells [11]. Like SP, HNTMB can chelate iron and copper

of different oxidation states and as a copper-complex displays

properties as an anti-cancer drug and alternative to platinum

derivatives in the treatment of various solid tumors. In contrast to

HNTMB, SP displays high cytotoxicity to ovarian cancer cells

only when bound to iron but not copper [8]. We tested the effect

of SP when either complexed as Fe(III)-SP or Cu(II)-SP in NB cell

lines and determined the associated generation of ROS.

SMS-KCNR cells were treated for 24 h with various concen-

trations (0.1–3 mM) of either Fe-SP or Cu-SP or the respective

metal chloride salts alone (FeCl3, CuCl2) as negative controls. In

ovarian cancer cell lines neither Fe3+ (#60 mM) nor Cu2+

(#30 mM) displays significant cytotoxic effects [8]. Accordingly,

we did not observe a significant decline of viability in NB cells

when treated with the metal chlorine salts (Fig. 4A). In contrast to

Figure 1. Comparative analysis of the cytotoxic effect of Fe-SP on NB and other cancer cell lines. (A) Viability of NB cell lines upon
Fe-SP treatment. The cytotoxic effect of Fe-SP (0–3 mM) on human NB cell lines (SK-N-SH, SH-SY5Y, SMS-KCNR) was compared to a human cancer
cell line of different origin (PC-3) and endothelial cells (HUVEC). Treatment with SP served as a negative control. The MTS viability assay was carried
out as described (Materials and Methods). Data are expressed as the mean of the triplicate determinations (X6SD) of a representative experiment in
% cell viability of untreated cells [100%]. (B,C) Differential effect of Fe-SP on cell growth in a NCI60 cancer cell line screen. Fe-SP effects
were screened in a NCI60 cell line growth assay (http://dtp.nci.nih.gov/screening.html). Cells were treated in 96 well plates and cell growth of the TCA
fixed treated and untreated cells assessed after 48 h.
doi:10.1371/journal.pone.0019049.g001

ROS Mediated Cytotoxicity of Iron(III)-Salophene

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e19049



ROS Mediated Cytotoxicity of Iron(III)-Salophene

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e19049



Fe-SP, which displayed high cytotoxicity even at 300 nM, the

cytotoxicity of Cu-SP at 3 mM did not exceed 23% and was only

marginally higher than that of the copper-salt alone (Fig. 4A).

Next, we determined if SMS-KCNR NB cells and as additional

comparison, SKOV-3 ovarian cancer cells, following treatment

with Fe-SP or Cu-SP, displayed an increased generation of ROS.

Hydrogen peroxide (H2O2), hydroxyl radicals (HON), and peroxyl

radicals (ROON) were detected via Carboxy-H2DCFDA, which is

a fluorescein derivative that is cell-permeable and non-fluorescent.

In the presence of a cellular oxidant, the molecule is oxidized and

produces green-fluorescence that is detected by flow cytometry. As

shown in Fig. 4B, ROS generation in NB cells or SKOV-3 cells

(insert) remained unchanged as compared to untreated controls

when Cu-SP was used. However, ROS generation increased (shift

in relative fluorescence intensity, Fig. 4B) following treatment of

cells with 1.6 mM Fe-SP (for 4 h) for NB cells as well as for SKOV-

3 cells (insert) which correlated with a reduction in cell viability by

these compounds at the same concentration (Fig. 4A for NB cells;

see reference 8 for SKOV-3 cells).

To determine if generation of ROS by Fe-SP is a major

mechanism of cytotoxic action we next performed the viability

assay with SMS-KCNR cells or as comparison SKOV-3 cells,

treated (for 24 h) with antioxidant ascorbic acid alone or in

combination with 1.6 mM Fe-SP. Ascorbic acid is known to inhibit

the intracellular accumulation of ROS upon drug treatment in

various cell types including neuroblastoma (e.g. treated with

fenretinide) [12]. As shown in Fig. 4C (bar diagram), co-treatment

with Fe-SP and ascorbic acid almost completely inhibited the

cytotoxic effect of the drug in NB cells. While ascorbic acid alone

led to a slight reduction of viability (92%) and Fe-SP alone was

cytotoxic (25% viability) the combination of both drug and

antioxidant restored the viability of NB cells (to 84%). The same

observation applies to SKOV-3 cells (Fig. 4C; insert) where

ascorbic acid lead to a complete inhibition (viability restored to

101%) of the cytotoxic effect of Fe-SP (viability of 3.6%).

The proof that antioxidants not only inhibit the cytotoxicity of

Fe-SP but also block its underlying mechanism of action, i.e.,

increased generation of ROS, is shown in Fig. 4D. The generation

of ROS in SMS-KCNR NB was measured after treatment with

1.6 mM Fe-SP alone or in combination with antioxidant ascorbic

acid (200 mM). The ROS generation upon treatment with ascorbic

acid alone (negative control) remained unchanged as compared to

untreated cells. The ROS generation by NB cells increased (shift in

relative fluorescence intensity) following treatment of cells with

1.6 mM Fe-SP for 24 h (positive control), and upon co-treatment

ROS generation decreased to nearly the level of the controls

(Fig. 4D). In summary, ROS generation induced by Fe-SP in NB

cells is the primary mechanism of cytotoxic action.

Expression of apoptotic markers and MAPK after Fe-SP
treatment with and with out inhibition of ROS
generation

To define key signaling responses of SMS-KCNR NB cells to

treatment with Fe-SP we analyzed by western blot the activation/

inactivation of various apoptotic markers such as caspases as well

as the expression and activation/phosphorylation of cellular

MAPKs involved in pro-apoptotic signaling. Moreover, we

analyzed the role of ROS in regulation of these factors and the

subsequent onset of cell death by treating cells with antioxidant

ascorbic acid alone or in combination with Fe-SP.

Drug treatment leading to programmed cell death (apoptosis)

results in the activation of initiator caspases which subsequently

activate downstream effector caspases that are responsible for the

cleavage of many intracellular proteins, leading to the morpho-

logical and biochemical changes associated with apoptosis.

Immunoblotting of PAGE-separated cellular lysates revealed that

Fe-SP (at 0.8 mM) caused a rapid (within 6 h) and sustained

activation/cleavage of effector caspases such as caspase-3 and -7

(Fig. 4E, left panels). These observations were accompanied with

the inactivation/cleavage of downstream target PARP which

participates in and is a hallmark event of cells undergoing

apoptosis. Signals for these three apoptotic markers peaked within

14 h of treatment. The level of pro-survival marker XIAP, a direct

inhibitor of effector caspases such as caspase-3, was gradually

down-regulated by the treatment of Fe-SP (0.8 mM) in a time-

dependant manner. Since the treatment of SMS-KCNR by Fe-SP

led to ROS induced cytotoxicity (Fig. 4A–C) we investigated the

effect of antioxidant ascorbic acid (at 200 mM) on caspase-3, -7,

PARP and XIAP. Inhibition of ROS production completely

abolished Fe-SP-induced activation of caspases, inhibited PARP

and restored expression of pro-survival marker XIAP to its basal

level within the experimental period (as show for 24 h treatment,

Fig. 4E right panels). We also investigated the role of ROS

induction and the effect of ROS inhibition on the expression and

activation of p38 and SAP/JNK in SMS-KCNR cells. Both these

MAPKs are crucial factors in signaling cascades responding to

inflammatory cytokines, stress, UV light, osmotic shock, cytotoxic

drugs and diverse pro-apoptotic stimuli [13]. Fe-SP treatment at

0.8 mM did not significantly affect the level of total p38 or JNK but

induced rapid (within 3 h) and sustained phosphorylation of both

p38 and SAP/JNK (Fig. 4E, left panels). Activation of these pro-

apoptotic markers by Fe-SP was completely blocked by co-

treatment of the cells with antioxidant ascorbic acid (Fig. 4E, right

panels). In summary, ROS generation induced by Fe-SP in NB

cells is the primary mechanism of cytotoxic action and causes

induction of apoptosis, reduction of DNA repair mechanisms and

activation of pro-apoptotic MAPK.

Figure 2. Morphology changes, mitochondrial membrane depolarization potential, apoptotic and necrotic effects and DNA
fragmentation in NB cells after Fe-SP treatment. (A) Morphological appearance/DAPI staining. SMS-KCNR NB cells were treated for 24 h
with Fe-SP at a concentration of 0.4 mM before microscopic analysis by DIC or fluorescence analysis after chromatin staining (DAPI) as described
(Materials and Methods). Images obtained from a representative experiment are shown. Bar = 10 mm. (B) Mitochondrial membrane
depolarization potential (DYm) analysis. SMS-KCNR NB cells were treated for 24 h with 0.8 mM Fe-SP or SP control, fixed and stained with PI
and Rhodamine 123 as described (Materials and Methods). Fluorescence of the single cell population was measured by flow cytometry (right panel)
and the transmembrane depolarization potential of the single cell populations plotted. Intact cells = Q4, loss of DYm = Q3, ruptured cell membrane
(and loss of DYm) = Q1 and Q2. (C) Apoptotic and necrotic cell population. SMS-KCNR NB cells were treated with 0.2 or 0.8 mM Fe-SP or for 24 h
and floating and attached cells collected and combined. The quantification of apoptotic cells (Annexin V plasma membrane staining) and necrotic
cells (7-AAD DNA staining) of SKOV-3 cells was carried out by flow cytometry as described (Materials and Methods). Viable cells = Q3, necrosis = Q1,
early apoptosis = Q4, late apoptosis/necrosis = Q2. (D) Analysis of DNA fragmentation in a TUNEL Assay. SMS-KCNR NB cells were treated with
Fe-SP (0.8, 1.6 mM) for 24 h. A TUNEL assay was carried out by co-staining with fluorescein-12-dUTP (labeling of DNA nicks in apoptotic cells) and of
chromatin with propidium iodide (Materials and Methods). During fluorescent microscopy, representative images were taken, apoptotic stain (green)
and nuclear stain (red) overlaid. TUNEL positive nuclei due to DNA fragmentation appear as yellow areas. Bar = 10 mM.
doi:10.1371/journal.pone.0019049.g002
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Discussion

The structure and synthesis of the novel compound iron-

salophene (Fe-SP) and its potency as a growth-suppressing agent

on ovarian cancer (OC) cells in vitro and in animal models in vivo

have been previously described [7,8]. Salophenes represent

compounds defined by two Schiff’s bases connecting three

aromatic moieties that potently bind to transition metals and

are closely related to salens that are constituted of aliphatic

diamines ([7] and references therein). The present study

investigates the cytotoxic, anti-proliferative and apoptotic effect

of Fe-SP on various human neuroblastoma (NB) cell lines and

defines the excessive generation of ROS as the underlying

mechanistic cause of the drugs anti-cancer activity in NB as well

as in OC cells.

In an initial approach to analyze the effects of Fe-SP on NB cells

we performed a viability assay employing three cell lines: SH-

SY5Y neuronal (N)-type cells, their parent cell line SK-N-SH

which is MYCN deficient and displays both (N)- and stromal (S)-

type NB cells [14], and SMS-KCNR cells which feature MYCN

amplification and generally exhibit a uniform phenotype with

small, round (N)-type cells that have short neuritic processes [15].

HUVEC (endothelial cells) were included to allow comparison of

the effects between NB cells and angiogenic cells. PC-3 cells

(prostate adenocarcinoma) were added to the panel as a control

since the effect of Fe-SP on these cells has been described

previously [8]. More importantly, we desired to define the effect of

Fe-SP with respect to tumor origin in a NCI-DTP study against a

panel of cell lines which does not include NB cell lines but PC-3

cells, which served as internal standard for the present study.

Figure 3. Fe-SP inhibits proliferation of NB cells. (A) BrdU incorporation assay. SMS-KCNR NB cells were treated with various concentrations
(0.1–3 mM) of Fe-SP for 24 h. A colorimetric assay (based on BrdU incorporation) was carried out as described (Materials and Methods). Data are
expressed as the mean of the triplicate determinations (X6SD) in % of absorbance by triplicate samples of untreated cells [ = 100%]. (B,C) Fe-SP
blocks cell cycle progression in G1 phase. SMS-KCNR NB cells were treated with 0.2, 0.4 and 0.8 mM Fe-SP for 24. Cell cycle analysis by FACS
based on propidium-iodide intercalation into the cellular chromatin was carried out as described (Materials and Methods). Data are presented as (A)
relative fluorescence intensity in a 2-dimensional FACS profile (ModFit LT software; black lines = data line and model fit line of entire population;
shaded areas = model components/subpopulations of G0/G1, S, G2/M, apoptotic cells or in (B) a table. Standardized gating was used for all samples.
Ten thousand events were analyzed for each sample.
doi:10.1371/journal.pone.0019049.g003
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Remarkably, Fe-SP showed high cytotoxicity against all three NB

cell lines tested by us while the NCI-DTP screen suggested that Fe-

SP in general does display cell line-specificity but not tumor type-

specificity (with GI50 values at 57 nM Fe-SP for HL-60 leukemia

cells but at 0.5 mM for K-562 leukemia cells or .100 mM Fe-SP

for ADR-RES breast cancer cells but 0.4 mM for HS 578T breast

cancer cells; also see result section). Thus, Fe-SP may be a

potential drug to treat a broad range of NB tumor types but not

generally be considered as a standard drug against tumors of

different origin.

The present state of research in the field of organometallic

compounds such as salophenes or salens allows us to only speculate

on the possible mechanism(s) of cytotoxic action of Fe-SP in cancer

cells. Few data on the effect of transition metal complexes in

general on the cell cycle exist, such as the arrest of a

neuroblastoma cell line in G1-phase when treated with an isatin-

schiff base copper(II) complex [16]. Similarly, few publications

examining the change in cell cycle progression following treatment

with either a salen (Cr(III)-salen treatment of fibroblasts) [17] or

salophene metallocomplex (Fe-SP treatment of OC cells) exist [7].

Figure 4. Effect of Fe-SP or Cu-SP on viability, ROS generation, and induction of apoptic markers and MAPK expression. (A)
Cytotoxicity of Fe-SP or Cu-SP in NB cells. The viability assay was carried out after 24 h treatment of SMS-KCNR NB cells with 0–3 mM of Fe-SP,
Cu-SP or respective metal salts. Experiments were performed in triplicates; data are expressed as the mean of the triplicate determinations (X6SD) of
a representative experiment in % cell viability of untreated cells [ = 100%]. (B) Generation of intracellular Reactive Oxygen Species (ROS)
after Fe-SP treatment. Generation of intracellular ROS following SMS-KCNR NB cells (large panels) or SKOV-3 OC control cells (small panels) after
treatment for 4 h with 1.6 mM of Fe-SP or Cu-SP was measured by flow cytometry (see Materials and Methods). Data are presented as relative
fluorescence intensity in a 2-dimensional FACS profile. Standardized gating was used for all samples. (C) Fe-SP cytotoxicity is blocked by
antioxidant ascorbic acid. Cells were treated with with1.6 mM Fe-SP alone or in combination with antioxidant ascorbic acid. Viability of SMS-KCNR
NB cells is presented as bar diagram and in percentages and of SKOV-3 OC control cells in percentages (insert). (D) Inhibiton of ROS generation in
NB cells after Fe-SP treatment. Generation of intracellular ROS in SMS-KCNR NB was measured after treatment with 1.6 mM Fe-SP alone or in
combination with antioxidant ascorbic acid (200 mM). (E) Expression of apoptotic markers and MAPK in NB cells after Fe-SP treatment
with and without inhibiton of ROS generation. SMS-KCNR NB cells were treated with 0.8 mM Fe-SP in the absence (3, 6, 14, 24 h treatment, left
panel) or presence of ascorbic acid (200 mM, 24 h treatment, right panel). Immunoblotting was carried out with primary antibodies against PARP-1,
caspase-3, -7, pro-survival marker XIAP (inhibitor of effector caspases), and pro-apoptotic MAPK SAP/JNK or p38 in the active (phosphorylated) or
inactive form. As an internal standard for equal loading blots were probed with an anti-GAPDH.
doi:10.1371/journal.pone.0019049.g004
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We show here that Fe-SP dose-dependently reduced the

proliferation of NB cells (IC50 at 300 nM) even at the minimally

cytotoxic concentration of 100 nM. Additional cell cycle analysis

of NB cells after Fe-SP treatment revealed a dose-dependent

increase in the sub-diploidal population which represents cells with

significant DNA damage, indicating a late apoptotic stage which

substantiates the finding by the TUNEL assay. Fe-SP at in the

range of 200–800 nM also caused dose-dependent arrest of cell

cycle progression. The percentage of cells in the G1 subpopulation

increased, causing reduction of progression of cells into S-phase

while the G2/M population remained similar to untreated

controls. Blocking the progression of dividing cells through S-

phase reduces the opportunity of DNA repair to counteract drug

effect. Future studies could focus on cell cycle checkpoints affected

by Fe-SP in synchronized NB cancer cells. Generally, targeting cell

cycle regulators has been suggested as a supplemental approach to

anti-cancer therapies [18,19].

A remarkable feature of salens, not yet analyzed for salophenes,

is their affinity towards a variety of aromatic neutral molecules

[20,21]. Salens when complexed with transition metals induce

DNA scission controlled by the type and charge of the central

metal ion core [22–24]. Accordingly, for OC cells [7,8] and in the

present report for NB cells we observed high cytotoxicity, DNA

fragmentation and induction of apoptosis by the Fe(III)-SP

complex. It has been postulated that Fe-salen in cooperation with

the quinine system facilitates the formation of O2
2 species to

produce free hydroxy radicals responsible for DNA cleavage [25].

The present study shows that the cytotoxic effect and induction of

apoptosis by Fe-SP is predominantly mediated by the excessive

generation of ROS in cell lines derived from NB or OC. ROS

have been implicated in cancer initiation and progression [26,27].

Cancer cells, presumably through mitochondria dysfunction and

increased metabolism, generate a relatively high level of ROS.

However, their tolerance to ROS compares to non-transformed

cells. Accordingly, further upregulation of cellular ROS, such as

shown here after treatment with Fe-SP, has been suggested as a

strategy to selectively target cancer cells over normal cells [28–30].

Generally, ROS are tightly regulated in balance with cellular

defensive antioxidants, such as catalase and SOD, and can

participate in a multitude of cellular functions including signal

transduction [31].

In the present study, we report that Fe-SP in NB cells induced

sustained activation of p38 and JNK, two MAPK mediating

cellular signaling pathways in response to inflammatory cytokines,

UV light, pro-apoptotic stimuli or cytotoxic drugs. Recent studies

proved that the activation of both these pro-apoptotic MAPKs in a

ROS-dependent manner mediated the cytotoxic action of

chemotherapeutic drugs in cancer cell lines including NB

[12,32]. The present study not only determined that Fe-SP

induced ROS generation is the primary mechanism of cytotoxic

action but is also responsible for strong activation of p38 and JNK,

which can completely be abolished by cellular co-treatment with

exogenous antioxidants. Interestingly, several studies have shown

that ROS generation is the key mechanism of cytotoxicity for

several common chemotherapeutic drugs that are in clinical use or

in trials to treat NB which include daunorubicin, cyclophospha-

mide, cisplatin, fenretinide [12,33–35]. In NB cells fenretinide-

mediated ROS induced sustained activation of JNK/p38 MAPK

and apoptosis [12] in a similar manner as shown here for relatively

low concentrations of Fe-SP. Excessive ROS generation also

appears to be linked to cytotoxicity of low Fe-SP doses in OC cells

in vitro as shown in the present study but Fe-SP in vivo does not

cause any symptoms of toxicity [8]. In two independent

experiments, when rats received Fe-SP intraperitoneally, systemic

toxicity at high concentrations (4.0 mg/Kg body weight) was not

observed while treatment in an OC rat model revealed

chemotherapeutic response even at low concentrations (of 0.5–

1 mg/Kg body weight) including complete responses within 12

days of treatment [8].

In summary, the present work, along with our previously

published studies [7,8], suggest that Fe-SP can be developed for

the treatment of NB. Potentially, Fe-SP-mediated ROS generation

may exert synergistic effects when combined with other agents,

thought to modulate the antioxidant functions of cancer cells, for

example 2-methoxyestradiol (SOD inhibitor), tetrathiomolybdate

or ATN-224 (copper-depletion agents to target Cu/Zn SOD) and

buthionine-sulfoximine (inhibitor of glutathione/GSH synthesis).

Buthionine-sulfoximine has been intensively investigated and in

NB cells potentiated the chemotherapeutic effect of melphalan

[36]. In line with these findings, it can also be postulated that the

use of different agents leading to GSH depletion (such as

isothiocyanate and aziridine analogues) may express therapeutic

potential to sensitize cells when combined with ROS-generating

chemotherapy through drugs such as Fe-SP.

We suggest future studies to determine the chemotherapeutic

effect of Fe-SP in NB animal models as well as the investigation of

synergistic effects of Fe-SP with redox-modulating agents. In

addition, the role of Fe-SP-induced and ROS-mediated signaling

by p38 and JNK MAPK in apoptotic and/or tumorigenic events

can be investigated by co-treatment with MAPK inhibitors or

growth factors (e.g. EGF) modulating the pro-apoptotic response

of NB or OC cells [8,37].

The present report suggests that Fe-SP is a potent growth-

suppressing and cytotoxic agent in vitro for NB derived cell lines

and a potential therapeutic drug to treat such tumors in vivo either

alone or in combination with standard therapeutics, cell cycle- or

redox-modulating agents.

Materials and Methods

Cell Culture
The SMS-KCNR human NB cell line was a gift from Dr.

Giselle Saulnier-Sholler (University of Vermont, Burlington, VT).

SK-N-SH and SH-SY5Y (human NB), SKOV-3 (human ovarian

adenocarcinoma) and PC-3 (prostate adenocarcinoma) were

obtained from American Type Culture Collection (Manassas,

VA). HUVEC (human umbilical vein endothelial cells) were

obtained from Lonza Inc. (Allendale, NJ). SH-SY5Y cells were

grown in complete DMEM media containing 10% FBS, 100

units/ml of penicillin, 100 mg/mL of streptomycin, supplemented

with 1% non-essential amino acids (Invitrogen catalog#11140).

SMS-KCNR and SK-N-SH, cells were maintained in complete

RPMI media (10% fetal bovine serum, FBS, 100 units/mL of

penicillin, 100 mg/mL of streptomycin). The other cell lines used

were cultured according to the providers’ recommendations. Cells

were maintained at 37uC with 5% CO2 in a humidified incubator.

For all cell assays, after seeding, cells were allowed to attach

overnight in complete medium before treatment. Antioxidant

ascorbic acid (Sigma-Aldrich, Saint Lois, MO) was added to some

assays at the concentration of 200 mM (SMS-KCNR) or 700 mM

(SKOV-3).

Cell Viability Assay
Viability of Fe-SP or vehicle treated cells was determined by the

CellTiter 96 AQueous-One-Solution Assay (Promega, Madison,

WI, USA). The assay was carried out as described previously [8]

with incubation periods as indicated.
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NCI 60 cell line assay
Fe-SP was screened through the NCI-DTP 60 human cancer

cell line panel under the in vitro cell line screening project

(IVCLSP) as described previously [11] and www.dtp.nci.nih.gov in

a colorimetric assay. Percentage growth inhibition was calculated

(time zero = Tz; control growth = C, and test growth in the

presence of drug at the drug concentration = Ti) as: [(Ti-Tz)/(C-

Tz)]6100 for concentrations for which Ti./ = Tz, [(Ti-Tz)/

Tz)]6100 for concentrations for which Ti,Tz the percentage

growth was calculated.

Morphological Studies
SMS-KCNR cells were seeded (16104/chamber) into a Lab-

Tek Chamber-Slide System (Nalge Nunc., Naperville, IL) and

treated for 24 h with 0.4 mM Fe-SP alongside with non-treated

cells. The cells were fixed in PBS, 2% PFA, 0.2% Triton X for

20 min at RT and stained for 10 min with 200 ng/mL 49-6-

Diamidino-2-Phenylindole (DAPI) in PBS before mounting.

Representative images were taken with an inverted microscope

(Nikon Eclipse TE2000-E, CCD camera) and 206 objective.

Analysis of Mitochondrial Transmembrane Depolarization
Potential (DYm)

SMS-KCNR cells (16106) were seeded into 6-well plates and

treated with 0.8 mM Fe-SP for 24 h. The cells were incubated with

Rhodamine 123 (13 mM) for 30 min at 37uC prior to completion

of the drug treatment. Rhodamine 123 is a cationic dye which

localizes in the mitochondria of viable cells. The cells were

washed, harvested, resuspended in medium containing Propidium

Iodide (7.5 mM) and analyzed by flow cytometry. Data was

acquired on a BD FACSort flow cytometer using CellQuest

software (BD Immunocytometry-Systems, San Jose, CA) and

analyzed (ModFit LT software, Verity Software House, Inc.,

Topsham, ME). Ten thousand cells were analyzed for each

sample.

Determination of Apoptotic and Necrotic Cells (by FACS)
The quantification of apoptotic cells was determined by

combination staining with Annexin V and 7-Amino-actinomycin

(Apoptosis detection kit; BD Biosciences, San Jose, CA) allowing

discrimination between early apoptotic cells (Annexin V positive),

late apoptotic cells (Annexin V and 7-AAD positive), and necrotic

cell death (7-AAD positive). SMS-KCNR cells were seeded into

100 mm2 tissue culture dishes (16106 cells/dish), treated (24 h,

0.8 mM), floating and attached cells combined, washed once with

PBS, pH 7.4, (2506g, 5 min) and stained. Analysis followed

immediately on a Becton Dickinson (San Jose, CA) FACSCalibur.

Ten thousand events were analyzed for each sample.

TUNEL Assay
DNA fragmentation was detected using the DeadEndTM

Fluorometric TUNEL System assay (Promega, Madison, WI)

according to the manufacturer’s recommendations. SMS-KCNR

cells (156103/well) were plated into 96 well flat bottom plates

(Corning, Inc., Corning, NY), treated with 0.8 or 1.6 mM Fe-SP

for 24 h and the assay carried out as described previously [7].

Fluorescence of apoptotic cells (green; labeling of DNA nicks by

fluorescein-12-dUTP) and of chromatin (red; staining of chroma-

tin with propidium iodide) was detected by fluorescence

microscopy with an inverted microscope (Nikon Eclipse

TE2000-E) and a 106 objective. Four randomly chosen

microscopic fields were captured.

Cell Proliferation Assay
Cell proliferation was determined by a BrdU assay (Roche

Applied Science, Indianapolis, IN, USA) measuring the incorpo-

ration of the pyrimidine analogue, 5-bromo-20-deoxyuridine

(BrdU) during DNA synthesis. SMS-KCNR (156103) were seeded

into 96-well flat bottom plates (Corning Incorporated, Corning,

NY, USA) before treatment with Fe-SP (0–3 mM) for 24 h. The

assay was carried out as described previously [37].

Cell Cycle Analysis
Cell cycle analysis and quantification of apoptosis was carried

out by flow cytometry. SMS-KCNR (56105) cells were seeded into

6-well culture plates (Corning Inc., Corning, NY) and treated

under the condition as indicated. After 24 h cells were collected,

fixed and stained with propidium iodide (100 mg/mL) in PBS

containing sodium citrate (1 mg/mL), Triton-X-100, and RNAse

(20 mg/mL) for 30 min. Data was acquired on a BD FACSort flow

cytometer using CellQuest software (BD Immunocytometry

Systems, San Jose, CA) and analyzed by using ModFit LT

software (Verity Software House, Inc., Topsham, ME). Ten

thousand events were analyzed for each sample. Appropriate

gating was used to select the single cell population and used on all

samples, ensuring that the measurements were made on a

standardized cell population.

Western Blot Analysis
SMS-KCNR cells (16106) were seeded into 100 mm2 tissue

culture dishes and treated with Fe-SP as indicated. The cells were

scraped off and lysed on ice with Cell Extraction Buffer (BioSource

International, Inc., CA.) supplemented with a protease inhibitor

cocktail and phenylmethylsulfonyl fluoride (Sigma-Aldrich, MO)

according to the manufacturers’ recommendations. After centri-

fugation, the supernatant was kept and Bio-Rad DC Protein Assay

kit (Hercules, CA.) was used to quantify protein concentrations.

Protein electrophoresis was performed by using the Xcell

SureLockTM mini-cell electrophoresis system in a NuPAGE 4–

12% Tris-Bis Gel in NuPAGE MES SDS running buffer,

transferred onto a PVDF membrane, blocked with 5% nonfat

dry milk in PBS-Tween and probed against primary antibodies

(cleaved Caspase 3 #9661, cleaved Caspase 7 #9491, cleaved

PARP #9541, XIAP #2045, P38 #9212, p-P38 #9211, JNK

#9258, p-JNK #4668 ; all from Cell Signaling Technologies,

Beverly, MA; GAPDH #sc-47724 from Santa Cruz Biotechnol-

ogies, Santa Cruz, CA). The bands were visualized using

horseradish peroxidase-conjugated secondary antibody (Amer-

sham-Pharmacia Biotech, Piscataway, NJ), followed by enhanced

chemiluminescence (Upstate, Waltham, MA) and documented by

autoradiography (F-Bx810 Film, Phenix, Hayward, CA).

Detection of intracellular ROS
Detection of intracellular ROS after treatment with non-

complexed or Fe(III)- or Cu(II)- complexed salophene was

measured by flow cytometry using carboxy-H2DCFDA dye

(Invitrogen, Carlsbad, CA) as a probe. In the presence of a

cellular oxidant, the compound produces green-fluorescence that

is detected by flow cytometry. This dye detects the following ROS:

hydrogen peroxide (H2O2), hydroxyl radical (HON), and peroxyl

radical (ROON). SMS-KCNR (1.06106) cells were seeded into

100 mm2 cell and treated under the condition as indicated.

Following treatment, cells were further incubated with 25 mM of

carboxy-H2DCFDA for 30 min at 37uC with 5% CO2 in a

humidified incubator. Cells were harvested by trypsinization,

centrifuged, washed once with PBS and suspended in PBS. Data
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was acquired on a BD FACSort flow cytometer using CellQuest

software (BD Immunocytometry Systems, San Jose, CA) and

analyzed by using ModFit LT software (Verity Software House,

Inc., Topsham, ME).
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