Squeezing formaldehyde into C₆₀ fullerene.

Vijyesh K. Vyas, George R. Bacanu, Murari Soundararajan, Elizabeth S. Marsden, Tanzeeha Jafari, Anna Shugai, Mark E. Light, Urmas Nagel, Toomas Rõõm,* Malcolm H. Levitt,* Richard J. Whitby.*

Supplementary information.

Contents

1. Characterisation data and pictures of NMR's.

- 1.1 $CH_2O@2, {}^{13}CH_2O@2, CD_2O@2$
- 1.2 CH₂O@4, ¹³CH₂O@4, CD₂O@4
- 1.3 CH₂O@C₆₀, ¹³CH₂O@C₆₀, CD₂O@C₆₀
- 1.4 CH₂O@6
- 1.5 CO₂@**2**
- 2.1 Kinetics of loss of CH₂O from CH₂O@1 and CH₂O@2.
 2.2 Kinetics of loss of CO₂ from CO₂@2.
- 3. Electrochemistry of CH₂O@C₆₀

4. **DFT calculations**

4.1 Binding energies and activation energies for entry / exit of CH_2O , H_2O and CO_2 into 1 and 2.

- 4.2 Properties of $CH_2O@C_{60}$.
 - 4.2.1 Minimised structures of $CH_2O@C_{60}$ and C_{60} .
 - 4.2.2 Molecular orbital energies of $CH_2O@C_{60}$ and C_{60} .
 - 4.2.3 Translational modes of CH₂O@C₆₀.
 - 4.2.4 Calculation of excited state energies.
 - 4.2.5 NMR calculations on $CH_2O@C_{60}$ and C_{60} .

5. NMR studies on CH₂O@C₆₀

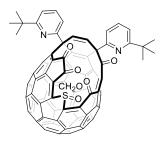
- 5.1 ¹H spin-lattice relaxation of ${}^{13}CH_2O@C_{60}$.
- 5.2 13 C spin-lattice relaxation of CH₂O@C₆₀.
- 5.3 ¹H spin-lattice relaxation of $CH_2O(2)$ and monomeric CH_2O .
- 6. THz and IR studies on CH₂O@C₆₀.
- 7. X-ray structure of CH₂O@C₆₀ nickel(II) octaethylporphyrin complex.
- 8. Photochemistry apparatus.
- 9. References

List of Supplementary Figures and Tables.

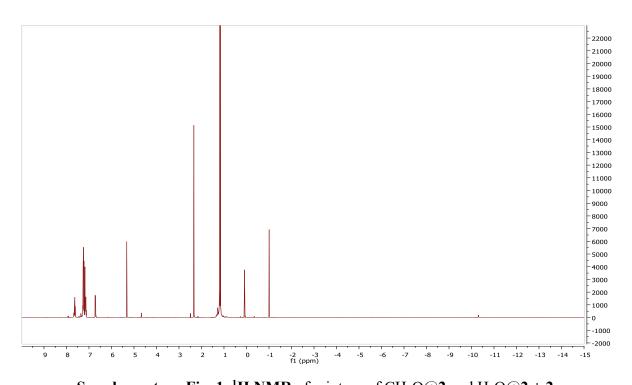
Supplementary Fig. 1. ¹H NMR of mixture of $CH_2O(a)2$ and $H_2O(a)2 + 2$. Supplementary Fig. 2. ¹³C NMR of mixture of $CH_2O(a)2$ and $H_2O(a)2$. Supplementary Fig. 3. ¹³C NMR of H₂O@2. Supplementary Fig. 4. ¹H NMR of mixture of CH₂O@3 and H₂O@3. Supplementary Fig. 5. ¹H NMR of mixture of CH₂O@4 and H₂O@4 in CDCl₃. Supplementary Fig. 6. ¹H NMR of mixture of $CH_2O@4$ and $H_2O@4$ in $o-C_6D_4Cl_2-d_4$. Supplementary Fig, 7. ¹³C NMR of CH₂O@4 and H₂O@4. Supplementary Fig. 8. ¹H NMR of mixture of CH₂O@5 and H₂O@5. Supplementary Fig. 9. ¹H NMR of CH₂O@C₆₀. Supplementary Fig. 10. ¹³C NMR of CH₂O@C₆₀ Supplementary Fig. 11. FT-IR comparison for C₆₀ and CH₂O@C₆₀ Supplementary Fig. 12. UV-vis spectra of $CH_2O@C_{60}$ and C_{60} . Supplementary Fig. 13. ¹H NMR of CH₂O(*a*)6 and H₂O(*a*)6. Supplementary Fig. 14. ¹³C NMR of CH₂O@6 and H₂O@6. Supplementary Fig. 15. ¹H NMR of $CO_2(a)$ + $H_2O(a)$ 2. Supplementary Fig. 16. ¹³C NMR of CO₂@2. Supplementary Fig. 17. 1st order plots for loss of CH₂O from CH₂O@1 at 25 °C and 40 °C, loss of CH₂O from CH₂O@2 at 55 °C and loss of CO₂ from CO₂@2 at 55 °C. **Supplementary Fig. 18.** Cyclic Voltammetry of C_{60} and $CH_2O@C_{60}$. Supplementary Fig. 19. Minimum energy conformers of $CH_2O@C_{60}$. Supplementary Fig. 20. HOMO and LUMO of CH₂O@C₆₀ 66 iso. Supplementary Fig. 21. ¹H T₁ relaxation curves (Inversion Recovery) of ¹³CH₂O@C₆₀ ¹H satellites Supplementary Fig. 22. ¹³C T₁ relaxation curve (Inversion Recovery) of CH₂O(a)C₆₀ Supplementary Fig. 23. ¹H T₁ relaxation curve (Inversion Recovery) of CH₂O(a)2 Supplementary Fig. 24. ¹H T₁ relaxation curve (Inversion Recovery) of monomeric CH₂O **Supplementary Fig. 25.** Comparison of transmission spectra of $CH_2O@C_{60}$ and 4He@C60. Supplementary Fig. 26. Absorption spectrum of CH₂O@C₆₀ at 5K and ortho-para conversion of CH₂O@C₆₀ at 5K. Supplementary Fig. 27. DFT minimised position of the CH₂O in the X-ray structure of $CH_2O(a)C_{60}$ nickel(II) octaethylporphyrin complex. Supplementary Fig. 28. Single crystal x-ray structure of the nickel(II) octaethylporphyrin/benzene solvate of CH₂O@C₆₀ Supplementary Fig. 29. Custom built photochemistry apparatus. Supplementary Table 1. Loss of CH₂O from CH₂O@1 Supplementary Table 2. Loss of CH₂O from CH₂O(*a*)2 at 55 °C Supplementary Table 3. Loss of CO₂ from CO₂@2 at 55 °C Supplementary Table 4. Reduction potential of C_{60} and $CH_2O@C_{60}$ Supplementary Table 5. DFT energies for complexation in Hartree. Supplementary Table 6. Calculated free energies of binding, entry and exit of the endohedral species. Supplementary Table 7. Diameters of $CH_2O(a)C_{60}$ and C_{60} . **Supplementary Table 8.** Calculated diameters of $CH_2O(a)C_{60}$ and C_{60} cages. Supplementary Table 9. Calculated Molecular Orbital Energies of CH₂O(a)C₆₀ and C₆₀.

Supplementary Table 10. Calculated rotational and translational modes of CH_2O in $CH_2O@C_{60}$.

Supplementary Table 11. Singlet excited state energies for CH₂O@C₆₀ and C₆₀.

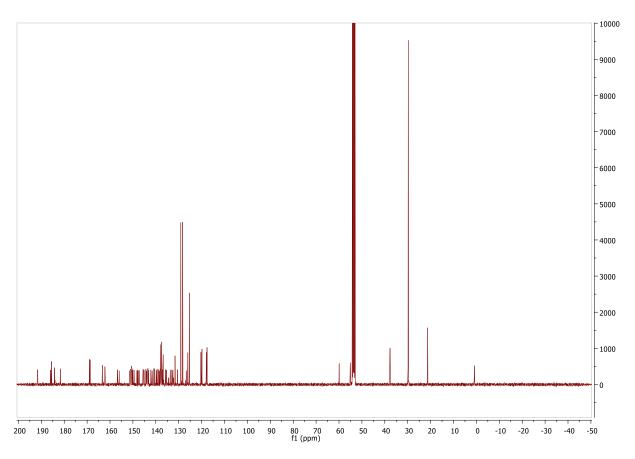

Supplementary Table 12. Calculated ¹³C NMR shifts for C₆₀ and CH₂O@C₆₀ **Supplementary Table 13.** Summary of ¹³C calculated Chemical shift changes on CH₂O incorporation.

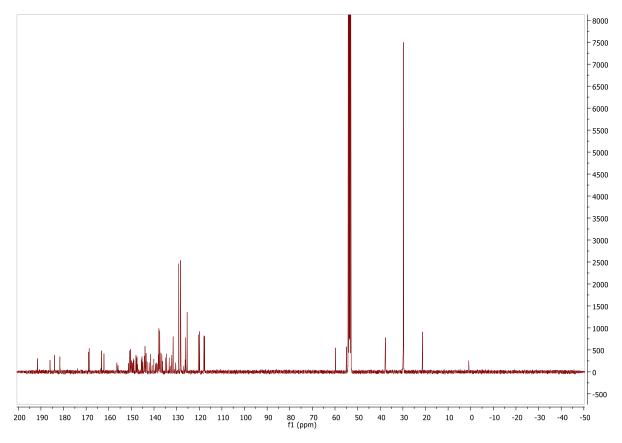
1. Characterisation data.


¹H and ¹³C NMR spectra for all compounds were recorded on Bruker AVIIIHD400 or AVIIIHD500 FT-NMR spectrometers, in the indicated solvent at 298 K. ¹H chemical shifts are reported as values in ppm referenced to residual solvent (CHCl₃, δ =7.26 ppm, CHDCl₂, δ = 5.32 ppm, *o*-C₆D₃HCl₂, δ = 6.93 and 7.19 ppm, C₆D₅CD₂H, δ = 2.09 ppm) and the following abbreviations are used to assign multiplicity and may be compounded: s = singlet, d = doublet, t = triplet, and m = multiplet. Coupling constants, *J*, are measured in Hertz (Hz). ¹³C NMR spectra were ¹H decoupled except where stated and are referenced to solvents, *o*-C₆D₄Cl₂ at δ = 127.19 ppm (centre of the 1:1:1 triplet)², CDCl₃ at δ = 77.24 ppm (centre of the triplet) and CD₂Cl₂ = 53.84 ppm (central peak of pentet), toluene-*d*₈, δ = 137.86 ppm (downfield singlet); the solvent chemical shift is referenced to TMS (δ = 0.00 ppm). ²H NMR were taken using deuterated TMS as an external reference but were referenced to natural abundance deuterated solvent CDCl₃, δ =7.26 ppm, C₆H₅CH₂D, δ = 2.09 ppm.

Negative ion electrospray mass spectra were recorded using a MaXis time of flight (TOF) mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany). IR spectra of CH₂O@C₆₀ and C₆₀ were obtained by using a Nicolet 380 FTIR instrument with Smart orbit ATR accessory. UV measurements were recorded on an Ocean Optics DH-2000-BAL spectrometer with a 1 cm path length cell.

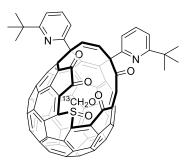
1.1 CH₂O@2


¹**H** NMR (400 MHz, CD₂Cl₂) δ 7.649 (*t*, *J* = 7.8 Hz, 0.30H, pyridyl of H₂O@**2** and **2**), 7.643 (*t*, *J* = 7.8 Hz, 0.70H, pyridyl of CH₂O@**2**), 7.635 (*t*, *J* = 7.9 Hz, 0.30H, pyridyl of H₂O@**2** and **2**), 7.628 (*t*, *J* = 7.9 Hz, 0.70H, pyridyl of CH₂O@**2**), 7.283-7.127 (m, 5H, pyridyl and alkenyl protons, region mainly obscured by the toluene), 6.715 (d, *J* = 10.1 Hz, 0.70H, alkenyl in CH₂O@**2**), 6.695 (d, *J* = 10.1 Hz, 0.30H, alkenyl in H₂O@**2** and **2**), 1.191 (*s*, 2.7H, *t*-butyl for H₂O@**2** and **2**), 1.187 (*s*, 6.3H, *t*-butyl for CH₂O@**2**), 1.165 (*s*, 2.7H, *t*-butyl for H₂O@**2** and **2**), 1.160 (*s*, 6.3H, *t*-butyl for CH₂O@**2**), -1.007 (*s*, 1.4H, endohedral CH₂O@**2**), -10.308 (br s, 0.5H, endohedral H₂O@**2**).


Supplementary Fig. 1. ¹H NMR of mixture of CH₂O@**2** and H₂O@**2** + **2**. ¹³C NMR of CH₂O@**2** (101 MHz, CD₂Cl₂) δc 191.86 (C), 186.23 (C), 185.77 (CH2), 184.46 (C), 181.91 (C), 169.17 (C), 168.88 (C), 163.57 (C), 162.45 (C), 156.97 (C), 156.21 (C), 151.64 (C), 151.5 (C), 151.27 (C), 151.03 (C), 150.87 (C), 150.82 (C), 150.8 (C), 150.72 (C), 150.6 (C), 150.53 (C), 150.35 (C), 149.78 (C), 149.68 (C), 148.47 (C), 148.16 (C), 147.86 (C), 147.46

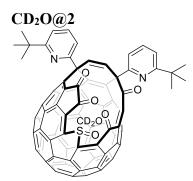
(C), 145.81 (C), 145.64 (C), 145.35 (C), 144.59 (C), 144.47 (C), 144.35 (C), 144.14 (C), 143.94 (C), 143.83 (C), 143.67 (C), 143.64 (C), 143.44 (C), 142.38 (C), 141.82 (C), 141.05 (C), 140.66 (C), 139.95 (C), 139.61 (C), 139.07 (C), 138.66 (C), 138.31 (C), 138.22 (C), 138.16 (C), 138.07 (CH), 137.68 (CH), 137.6 (C), 137.31 (C), 137.07 (C), 137 (C), 136.95 (C), 136.03 (C), 135.59 (C), 133.92 (C), 133.23 (C), 132.76 (C), 131.83 (CH), 130.7 (C), 126.89 (C), 126.42 (C), 126.26 (CH), 120.52 (CH), 120.08 (CH), 118.1 (CH), 117.85 (CH), 60.14 (C), 55.3 (C), 37.98 (C), 37.93 (C), 29.97 (6xCH3). One quaternary peak not identified. The peaks for CH₂O@**2** were identified by comparing with the ¹³C spectra of H₂O@**2** (below). There is a toluene impurity which could not be removed without also losing the CH₂O.

¹³C NMR of H₂O@2 (101 MHz, CD₂Cl₂) δ_{C} 191.71 (C), 186.21 (C), 184.23 (C), 181.81 (C), 169.16 (C), 168.88 (C), 163.44 (C), 162.35 (C), 156.65 (C), 156.14 (C), 151.48 (C), 151.14 (2 x C), 150.64 (C), 150.62 (C), 150.51 (C), 150.31 (C), 150.16 (C), 150.1 (C), 150.02 (C), 149.75 (C), 149.38 (C), 149.12 (C), 148.2 (C), 148.01 (C), 147.73 (C), 147.52 (C), 145.78 (C), 145.55 (C), 145.18 (C), 144.5 (C), 144.21 (2 x C), 144.16 (C), 143.79 (C), 143.73 (C), 143.61 (C), 143.52 (C), 143.25 (C), 142.37 (C), 141.71 (C), 141.05 (C), 140.3 (C), 139.64 (C), 139.21 (C), 138.83 (C), 138.3 (C), 138.11 (2x C), 138.07 (CH), 137.79 (C), 137.69 (CH), 137.42 (C), 137 (C), 136.82 (C), 136.74 (C), 136.48 (C), 135.05 (C), 134.62 (C), 133.5 (C), 133.02 (C), 132.39 (C), 131.76 (CH), 130.64 (C), 126.45 (C), 126.21 (CH), 120.48 (CH), 120.05 (CH), 118.12 (CH), 117.85 (CH), 60.03 (C), 55.14 (C), 37.96 (C), 37.9 (C), 29.96 (6 x CH3). 4 quaternary peaks not observed. Many of the peaks are broadened by equilibrium with empty sulfoxide occurring on the NMR timescale. Approximately 10% empty **2** is present but peaks not reported.


Supplementary Fig. 2. ¹³C NMR of mixture of $CH_2O@2$ and $H_2O@2$.

Supplementary Fig. 3. ¹³C NMR of H₂O@2.

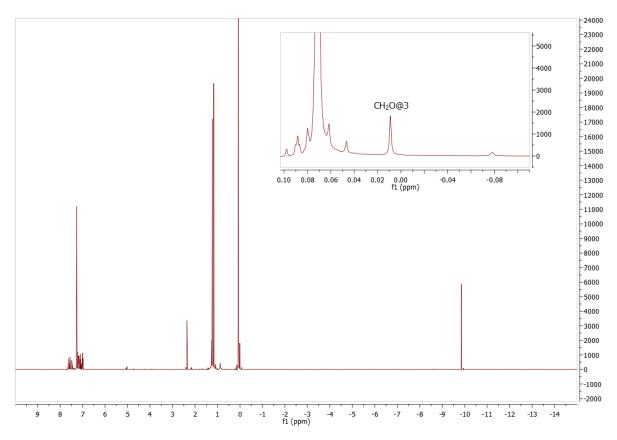
HRMS (ESI+) (m/z): Calculated for $[C_{83}H_{29}N_2O_6S]^+$ 1181.1741, found 1181.1731 (CH₂O filled). Calculated for $[C_{82}H_{27}N_2O_5S]^+$ 1151.1635, found 1151.1628 (empty).


¹³CH₂O@2

The mixture of ${}^{13}CH_2O@2$ and $H_2O@2$ and 2 with CH₂O filling of 24%.

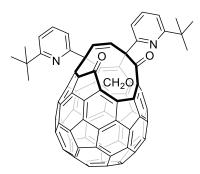
¹H NMR (400 MHz, CDCl₃) δ 7.619 (t, J = 7.8 Hz, 0.76H, pyridyl of H₂O@2 and 2), 7.613 (t, J = 7.8 Hz, 0.24H, pyridyl of CH₂O@2), 7.602 (t, J = 7.9 Hz, 0.76H, pyridyl of H₂O@2 and 2), 7.595 (t, J = 7.9 Hz, 0.24H, pyridyl of CH₂O@2), 7.282-7.130 (m, 5H, pyridyl and alkenyl protons, region mainly obscured by the toluene), 6.751 (d, J = 10.3 Hz, 0.24H, alkenyl in CH₂O@2), 6.766 (d, J = 10.3 Hz, 0.76H, alkenyl in H₂O@2 and 2), 1.179 (s, 6.8H, t-butyl for H₂O@2 and 2), 1.175 (s, 2.2H, t-butyl for CH₂O@2), 1.139 (s, 6.8H, t-butyl for H₂O@2 and 2), 1.135 (s, 2.2H, t-butyl for CH₂O@2), -0.903 (d, J = 174.2 Hz, 0.48H, endohedral CH₂O@2), -10.280 (br s, 1.3H, endohedral H₂O@2).

¹³C NMR (101 MHz, CDCl₃, proton decoupled) δc 185.70 ppm (endohedral ¹³CH₂O). HRMS (ESI+) (*m/z*): Calculated for [¹³CC₈₂H₂₉N₂O₆S]⁺ 1182.1774, found 1182.1791 (¹³CH₂O@**2**). Calculated for [C₈₂H₂₇N₂O₅S]⁺ 1151.1635, found 1151.1656 (empty **2**).

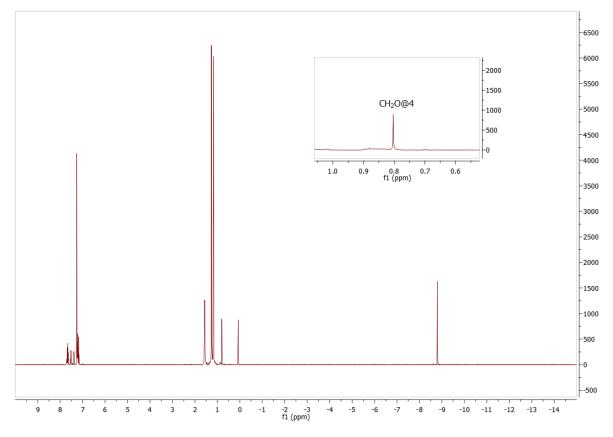

The mixture of CD₂O@2 and H₂O@2 + 2 with a ratio of 25:75 ²H NMR (77 MHz, CHCl₃) δ -0.848 ppm.

HRMS (ESI+) (*m/z*): Calculated for $[C_{83}H_{27}D_2N_2O_6S]^+$ 1183.1866, found 1183.1791 (CD₂O@**2**). Calculated for $[C_{82}H_{27}N_2O_5S]^+$ 1151.1635, found 1151.1646 (empty **2**). Calculated for $[C_{82}H_{29}N_2O_6S]^+$ 1169.1741, found 1169.1734 (H₂O@**2**).

1.2 CH₂O@4

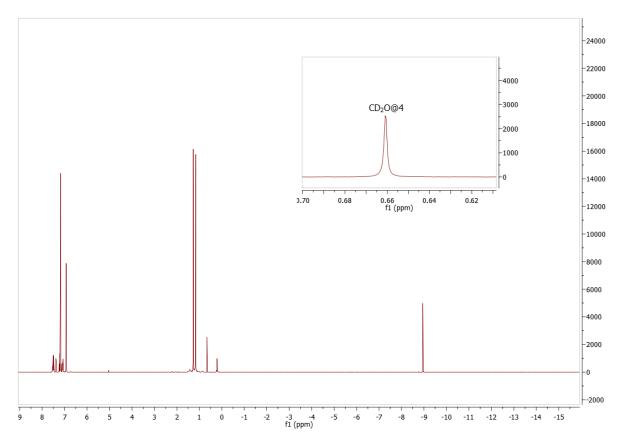

Intermediate $CH_2O@3$ (31 : 69 mixture with $H_2O@3$).

¹H NMR (400 MHz, CDCl₃) δ 7.639 (t, J = 7.9 Hz, 0.31H, pyridyl of H₂O@**3**), 7.631 (t, J = 7.9 Hz, 0.69H, pyridyl of H₂O@**3**), 7.563 (t, J = 7.8 Hz, 0.69H, pyridyl of H₂O@**3**), 7.557 (t, J = 7.8 Hz, 0.31H, pyridyl of CH₂O@**3**), 7.479 (dd, J = 7.8, 0.8 Hz, 0.31H, pyridyl of CH₂O@**3**), 7.468 (dd, J = 7.8, 0.8 Hz, 0.69H, pyridyl of H₂O@**3**), 7.285 – 7.155 (m, 3H, pyridyl protons, region mainly obscured by the toluene), 7.137 (d, J = 10.1 Hz, 0.31H, alkenyl in CH₂O@**3**), 7.102 (d, J = 10.1 Hz, 0.69H, alkenyl in H₂O@**3**), 7.032 (d, J = 10.1 Hz, 0.31H, alkenyl in CH₂O@**3**), 6.997 (d, J = 10.1 Hz, 0.69H, alkenyl in H₂O@**3**), 1.234 (*s*, 2.8H, *t*-butyl for CH₂O@**3**), 1.227 (*s*, 6.2H, *t*-butyl for H₂O@**3**), 1.168 (*s*, 6.2H, *t*-butyl for H₂O@**3**), 1.163 (*s*, 2.8H, *t*-butyl for CH₂O@**3**), -0.009 (s, 0.62H, endohedral CH₂O@**3**), -9.852 (s, 1.30H, endohedral H₂O@**3**).


Supplementary Fig. 4. ¹H NMR of mixture of CH₂O@3 and H₂O@3.

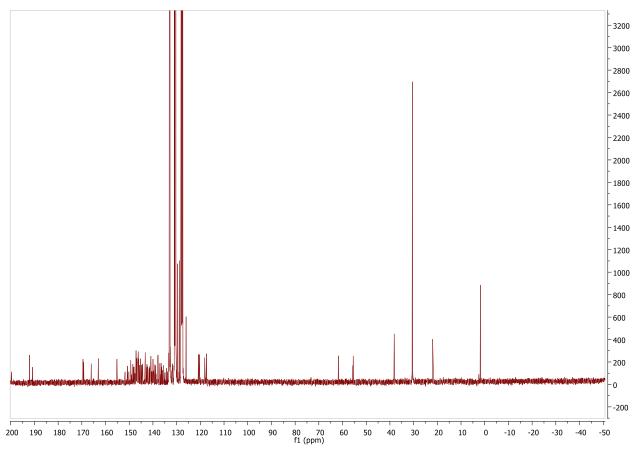
CH₂O@4 (mixture with H₂O@4 with a ratio of 35:65. (<5% empty 4 also present but could not be quantified)).

¹H NMR (400 MHz, CDCl₃) δ 7.697 (t, J = 7.8 Hz, 0.35H, pyridyl for CH₂O@4), 7.685 (t, J = 7.8 Hz, 0.65H, pyridyl for H₂O@4), 7.657 (t, J = 7.8 Hz, 1H, pyridyl for CH₂O@4 + H₂O@4), 7.531 (dd, J = 7.8 Hz, 0.8 Hz, 0.35H, pyridyl for CH₂O@4), 7.512 (dd, J = 7.8 Hz, 0.8 Hz, 0.8 Hz, 0.65H, pyridyl for H₂O@4), 7.387 (dd, J = 7.8 Hz, 0.8 Hz, 0.35H, pyridyl for CH₂O@4), 7.385 (dd, J = 7.8 Hz, 0.8 Hz, 0.65H, pyridyl for H₂O@4), 7.242 (d, J = 10.0 Hz, 0.35H, alkenyl for CH₂O@4), 7.231 (dd, J = 7.8 Hz, 0.8 Hz, 0.8 Hz, 2H, pyridyl for CH₂O@4 + H₂O@4), 7.224 (d, J = 10.0 Hz, 0.65H, alkenyl for H₂O@4), 7.222 (d, J = 10.0 Hz, 0.35H, alkenyl for CH₂O@4),

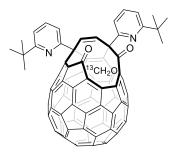

7.171 (d, J = 10.0 Hz, 0.65H, alkenyl for H₂O@4), 1.263 (s, 5.8H, *t*-butyl of H₂O@4), 1.260 (s, 3.2H, *t*-butyl of CH₂O@4), 1.187 (s, 3.2H, *t*-butyl of CH₂O@4), 1.176 (s, 5.8H, *t*-butyl of H₂O@4 and 4), 0.803 (s, 0.70H, endohedral CH₂O@4), -8.797 (s, 1.14H, endohedral H₂O@4).

Supplementary Fig. 5. ¹H NMR of mixture of CH₂O@4 and H₂O@4 in CDCl₃.

¹H NMR (400 MHz, *o*-C₆D₄Cl₂-*d*₄) δ 7.536 (t, *J* = 7.8 Hz, 0.35H, pyridyl for CH₂O@4), 7.522 (t, *J* = 7.8 Hz, 0.65H, pyridyl for H₂O@4), 7.520 -7.460 (m, 2H, pyridyl for CH₂O@4 and H₂O@4), 7.378 (dd, *J* = 7.8, 0.8 Hz, 0.35H, pyridyl for CH₂O@4), 7.377 (dd, *J* = 7.8, 0.8 Hz, 0.65H, pyridyl for H₂O@4), 7.245 (d, *J* = 10.0 Hz, 0.35H, alkenyl for CH₂O@4), 7.227 (d, *J* = 10.0 Hz, 0.65H, alkenyl for H₂O@4) 7.105 - 7.005 (m, 2H, pyridyl of CH₂O@4 and H₂O@4), 1.271 (*s*, 5.9H, *t*-butyl for H₂O@4), 1.268 (*s*, 3.1H, *t*-butyl for CH₂O@2), 1.173 (*s*, 3.1H, *t*-butyl for CH₂O@4), 1.163 (*s*, 5.9H, *t*-butyl for H₂O@4), 0.661 (*s*, 0.70H, CH₂O@4), -8.947 (*s*, 1.2H, H₂O@4).


One alkenyl proton is obscured by solvent.

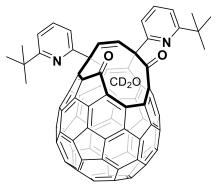
Supplementary Fig. 6. ¹H NMR of mixture of CH₂O@4 and H₂O@4 in o-C₆D₄Cl₂-d₄.


 $CH_2O(a)_4 + H_2O(a)_4 {}^{13}C NMR (101 MHz, o-C_6D_4Cl_2): 199.17 (C), 199.02* (C), 191.47 (C),$ 190.19* (CH₂), 168.97* (C), 168.92 (C), 168.64* (C), 168.62 (C), 165.52* (C), 165.44 (C), 162.45* (C), 162.44 (C), 154.60 (C), 151.16* (C), 150.09 (C), 149.55* (C), 148.77 (C), 148.75* (C), 148.67* (C), 148.64* (C), 148.46* (C), 147.87 (C), 147.77 (C), 147.66 (C), 147.39 (C), 146.98* (C), 146.67* (C), 146.65* (C), 146.56* (C), 146.52 (C), 146.51 (C), 146.43* (C), 146.35 (C), 146.25 (C), 146.23* (C), 146.21 (C), 146.11* (C), 146.07 (C), 145.94* (C), 145.92* (C), 145.90* (C), 145.88* (C), 145.75 (C), 145.74* (C), 145.67 (C), 145.64* (C), 145.63 (C), 145.59 (C), 145.58 (C), 145.47 (C), 145.45 (C), 145.38 (C), 145.01 (C), 144.84* (C), 144.77* (C), 144.62 (C), 144.60 (C), 144.52 (C), 144.18 (C), 143.86 (C), 143.81 (C), 143.72* (C), 142.77* (C), 142.65 (C), 142.60 (C), 142.08 (C), 141.93* (C), 141.92 (C), 141.87* (C), 141.81 (C), 141.72* (C), 141.65* (C), 141.60 (C), 141.51* (C), 140.99* (C), 140.77 (C), 140.44 (C), 140.40* (C), 140.29 (C), 140.26 (C), 140.17 (C), 140.08 (C), 140.05* (C), 139.90* (C), 139.86* (C), 139.82* (C), 139.60* (C), 139.56 (C), 139.47 (C), 139.39 (C), 139.38 (C), 139.15* (C), 139.04* (C), 138.76* (C), 138.61 (C), 138.44 (C), 138.33 (C), 138.08* (C), 137.58 (C), 137.45* (CH), 137.41 (CH), 137.36 (C), 137.25* (CH), 137.23 (CH), 136.49* (C), 136.48 (C), 136.13* (C), 135.94 (C), 135.76* (C), 135.72 (C), 135.40* (C),

134.88 (C), 134.31* (C), 133.73 (C), 133.27* (C), 132.75 (C), 132.70* (CH), 132.63 (CH), 132.57 (C), 132.19 (C), 131.49* (C), 131.11 (C), 130.01 CHa, 129.93* CH^a, 120.20* (CH), 120.18 (CH), 119.83* (CH), 119.79 (CH), 117.60* (CH), 117.55 (CH), 116.84 (CH), 61.20* (C), 61.15 (C), 55.09* (C), 54.89 (C), 37.70* (C), 37.68 (C), 37.59 (C), 29.94 (CH₃), 29.92 (CH₃). * signals from CH₂O@4 identified from size and comparison with spectra of pure H₂O@4. ^a – from DEPT135 spectra (obscured by o-C₆D₄Cl₂- d_4 peaks in normal spectra).

Supplementary Fig. 7. ¹³C NMR of CH₂O@4 and H₂O@4.

HRMS (ESI+) (m/z): Calculated for $[C_{83}H_{29}N_2O_3]^+$ 1101.2173, found 1101.2163 (CH2O@4). Calculated for $[C_{82}H_{27}N_2O_2]^+$ 1071.2067, found 1071.2056 (empty 4). Calculated for $[C_{82}H_{29}N_2O_3]^+$ 1089.2173, found 1089.2168 (H₂O@4). ¹³CH₂O@4

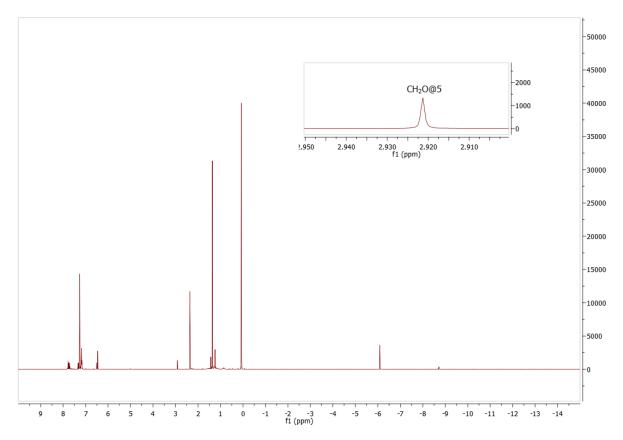


Obtained as mixture of ${}^{13}CH_2O@4$ and $H_2O@4$ with 8% filling of CH_2O (with a small amount of empty 4 also present).

¹³C NMR (101 MHz, CDCl₃, without proton decoupling) δ 190.47 (t, J = 175.0 Hz, ¹³CH₂O@4).

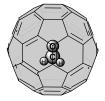
HRMS (ESI+) (m/z): Calculated for $[{}^{13}CC_{82}H_{29}N_2O_3]^+$ 1102.2206, found 1102.2177 (${}^{13}CH_2O@4$). Calculated for $[C_{82}H_{27}N_2O_2]^+$ 1071.2067, found 1071.2037 (empty 4). Calculated for $[C_{82}H_{29}N_2O_3]^+$ 1089.2173, found 1089.2149 (H₂O@4).

$CD_2O@4$


Obtained as a mixture of $CD_2O@4$ and $H_2O@4$ with 7% CH_2O filling (with a small amount of empty 4 also present)

HRMS (ESI+) (*m/z*): Calculated for $[C_{83}H_{27}D_2N_2O_3]^+$ 1103.2298, found 1103.2271(CD₂O@**4**). Calculated for $[C_{82}H_{27}N_2O_2]^+$ 1071.2067, found 1071.2052 (empty **4**). Calculated for $[C_{82}H_{29}N_2O_3]^+$ 1089.2173, found 1089.2158 (H₂O@**4**).

1.3 CH₂O@C₆₀

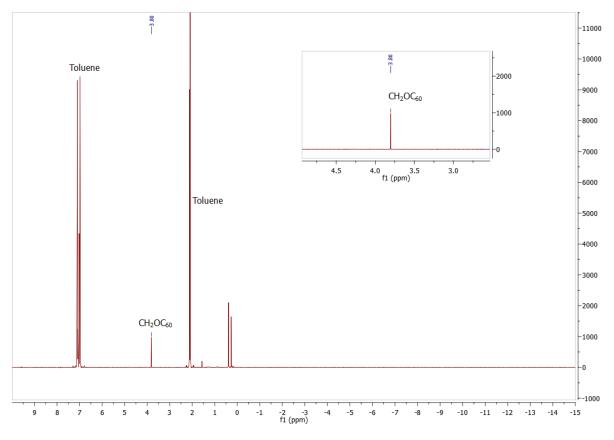

Intermediate CH₂O@**5** and H₂O@**5** with a ratio of 22:78. ~ 5% empty **5** also present but could not be measured (signals very close to H₂O@**5**).

¹H NMR (400 MHz, CDCl₃) δ 7.783 (t, *J* = 7.7 Hz, 0.46H, pyridyl of CH₂O@**5**), 7.777 (t, *J* = 7.7 Hz, 1.54H, pyridyl H₂O@**5**), 7.725 (dd, *J* = 7.7, 0.9 Hz, 0.46H, pyridyl of CH₂O@**5**), 7.715 (dd, *J* = 7.7, 0.9 Hz, 1.54H, pyridyl H₂O@**5**), 7.326 (dd, *J* = 7.7, 0.9 Hz, 0.46H, pyridyl of CH₂O@**5**), 7.325 (dd, *J* = 7.7, 0.9 Hz, 1.54H, pyridyl of H₂O@**5**) 6.503 (s, 0.46H, alkenyl of CH₂O@**5**), 6.467 (s, 0.1.54H, alkenyl of H₂O@**5**) 2.922 (s, 0.46H, endohedral CH₂O@**5**), 1.359 (s, 18H, *t*-butyl of CH₂O@**5** + H₂O@**5**), -6.086 (s, 1.43H, endohedral H₂O@**5**).

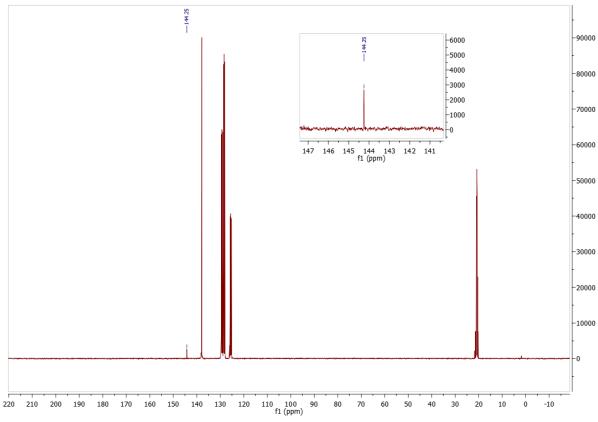
Supplementary Fig. 8. ¹H NMR of mixture of CH₂O@5 and H₂O@5.

CH₂O@C₆₀.

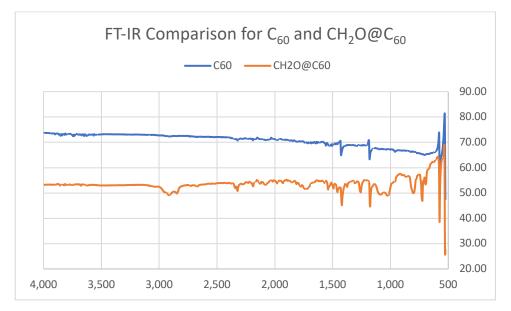
¹H NMR (400 MHz, toluene-*d*₈) δ 3.804 ppm (H₂CO@C₆₀).
¹³C NMR (100 MHz, toluene-*d*₈) δ 144.25 (CH₂O@C₆₀) (CH₂O carbon not visible)

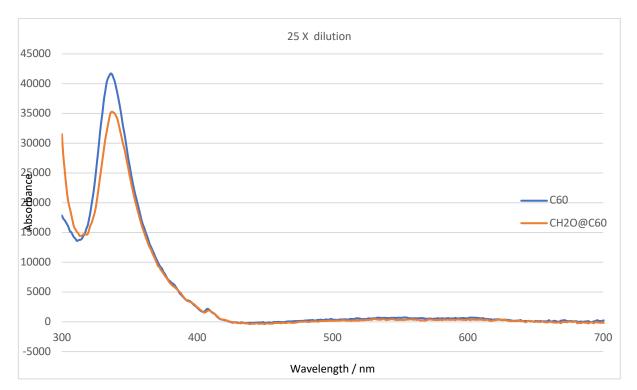

¹³C NMR (176 MHz, *o*-C₆D₄Cl₂.*d*₄) δ 197.23 (t, *J* = 173.4 Hz, endohedral CH₂O), 143.49 (CH₂O@C₆₀).

UV (toluene): λ_{max} 409 nm, ε 2344 M⁻¹ cm⁻¹. λ_{max} 550 nm, ε 609 M⁻¹ cm⁻¹. λ_{max} 602 nm, ε 544 M⁻¹ cm⁻¹. λ_{max} 631 nm, ε 276 M⁻¹ cm⁻¹.


HRMS (ESI) (*m/z*): Calculated for [C₆₁H₂O]^{-•}750.0111, found 750.0103.

IR. v_{max} 2916 (CH stretch of endohedral CH₂O), 1717 (CO stretch of endohedral CH₂O), 1420,


1177, 575 cm⁻¹. For comparison C₆₀ v_{max} 1420, 1177, 575 cm⁻¹ (See Supplementary Fig. 11)

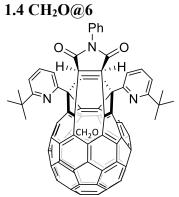

Supplementary Fig. 9. ¹H NMR of CH₂O@C_{60.}

Supplementary Fig. 10. ¹³C NMR of CH₂O@C_{60.}

Supplementary Fig. 11. FT-IR comparison for C₆₀ and CH₂O@C₆₀.

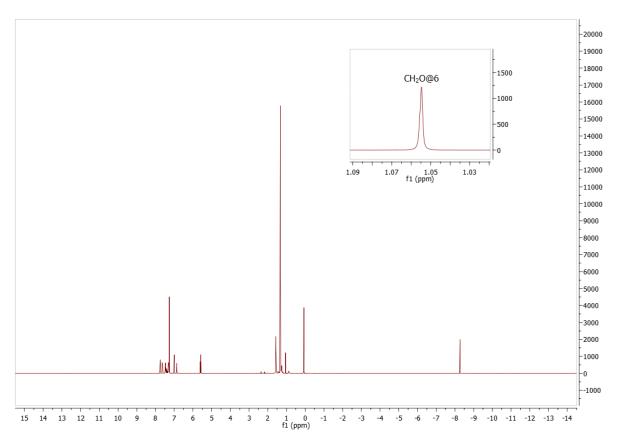
Supplementary Fig. 12. UV-vis spectra of $CH_2O@C_{60}$ and C_{60} . The spectra in the figure was obtained from a solution of the fullerene in toluene ($CH_2O@C_{60}$ approx. 5.33×10^{-5} M, C_{60} approx. 5.55×10^{-5} M) following serial dilution of a 0.2 mg mL⁻¹ solution in toluene. For expansion of long wavelength region see main paper Figure 3a.

13CH2O@C60


¹**H NMR** (700 MHz, toluene-*d*₈) δ 3.804 ppm (d, *J* = 173.4 Hz, 1H, **H**₂¹³CO@C₆₀) ¹³**C NMR** (600 MHz, toluene-*d*₈. Not proton decoupled) δ 197.93 (t, *J* = 173.4 Hz, endohedral CH₂O@C₆₀), δ 144.25 (CH₂O@C₆₀).

HRMS (ESI) (m/z): Calculated for $[{}^{13}CC_{60}H_2O]$ ^{-•} 751.0145, found 751.0133.

CD2O@C60


²H NMR (77 MHz, toluene) δ 3.763.

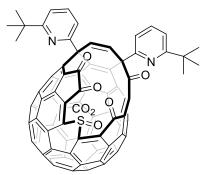
¹³C NMR (126 MHz, toluene) δ 143.94. Formaldehyde carbon not observed. HRMS (ESI) (*m/z*): Calculated for [C₆₁D₂O]^{-•} 752.0237, found 752.0245.

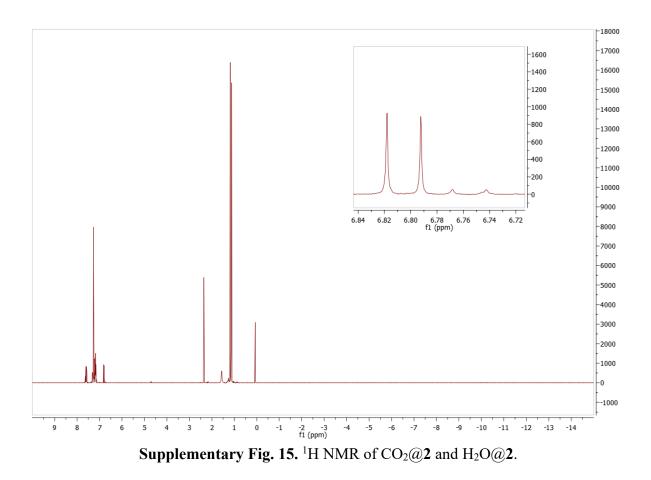
The mixture of CH₂O@**6** and H₂O@**6** + **6** with a ratio of 37:63 (still containing a 13 mol% impurity of N-Ph Maleimide), quoting ¹H and ¹³C signal from CH₂O@**6** and H₂O@**6**.

¹H NMR (500 MHz, CDCl₃) δ 7.755 (t, *J* = 7.8 Hz, 0.74H, pyridyl for CH₂O@**6**), 7.749 (t, *J* = 7.8 Hz, 1.26H, pyridyl for H₂O@**6**), 7.641 (dd, *J* = 7.7, 0.8 Hz, 0.74H, pyridyl for CH₂O@**6**), 7.631 (dd, *J* = 7.7, 0.8 Hz, 1.26H, pyridyl for H₂O@**6**), 7.495 – 7.395 (m, 3H, phenyl for CH₂O@**6** and H₂O@**6**), 7.313 (dd, J = 7.9, 0.7 Hz, 0.74H, pyridyl for CH₂O@**6**), 7.308 (dd, J = 7.9 Hz, 0.7 Hz, 1.26H, pyridyl for H₂O@**6**), 7.296 – 7.269 (m, 2H, phenyl for CH₂O@**6** and H₂O@**6**), 5.610 (s, 0.74H, alkenyl for CH₂O@**6**), 5.580 (s, 1.26H, alkenyl for H₂O@**6**), 1.333 (s, 7H, *t*-butyl for CH₂O@**6**), 1.331 (s, 11H, *t*-butyl for H₂O@**6**), 1.055 (s, 0.70H, CH₂O@**6**), -8.273 (s, 1.22H, H₂O@**6**).

Supplementary Fig. 13. ¹H NMR of CH₂O@6 and H₂O@6.

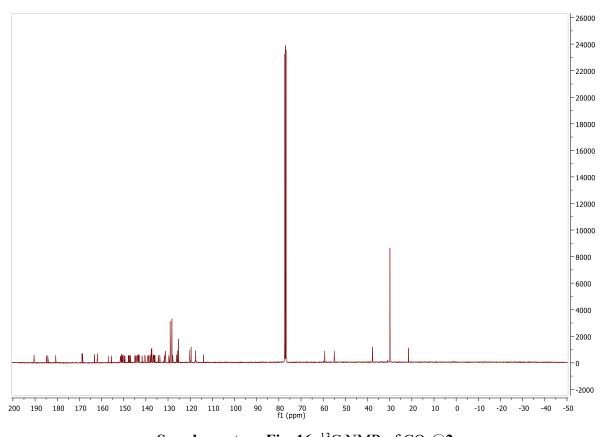
¹³C NMR (126 MHz, CDCl₃) δ 191.52 (CH₂, CH₂O@**6**), 175.82 (C, H₂O@**6**), 175.79 (C, CH₂O(a)6), 169.26 (C, CH₂O(a)6), 169.22 (C, H₂O(a)6), 164.53 (C, CH₂O(a)b), 164.50 (C, H₂O(a)**6**), 148.60 (C, CH₂O(a)**6**), 148.12 (C, CH₂O(a)**6**), 148.06 (C, CH₂O(a)**6**), 147.96 (C, H₂O(a)6), 147.76 (C, H₂O(a)6), 147.50 (C, H₂O(a)6), 147.25 (C, CH₂O(a)6), 147.22 (C, H2O@6), 147.21 (C, CH2O@6), 147.20 (C, H2O@6), 147.04 (C, CH2O@6), 146.57 (C, CH₂O@6), 146.48 (C, CH₂O@6), 146.41 (C, CH₂O@6), 146.35 (C, CH₂O@6), 146.21 (C, H₂O(a)6), 146.09 (C, H₂O(a)6), 145.98 (C, CH₂O(a)6), 145.94 (C, CH₂O(a)6), 145.88 (C, CH₂O@6), 145.70 (C, H₂O@6), 145.54 (C, H₂O@6), 145.53 (C, H₂O@6), 145.44 (C, $H_2O(@6)$, 145.18 (C, $H_2O(@6)$, 145.13 (C, $H_2O(@6)$, 145.08 (C, $CH_2O(@6)$, 143.12 (C, CH₂O@6), 142.75 (C, H₂O@b), 142.65 (C, CH₂O@6), 142.44 (C, H₂O@6), 141.54 (C, CH₂O@6), 141.41 (C, CH₂O@b), 141.19 (C, H₂O@6), 141.15 (C, H₂O@6), 140.61 (C, CH₂O@6), 140.26 (C, CH₂O@6), 140.13 (C, CH₂O@6), 140.09 (C, H₂O@6), 139.93 (C, H₂O(a)6), 139.71 (C, CH₂O(a)6), 139.32 (C, CH₂O(a)6), 138.78 (C, H₂O(a)6), 138.40 (C, H₂O(a)6), 138.23 (C, CH₂O(a)6), 138.19 (C, H₂O(a)6), 137.85 (C, H₂O(a)6), 137.75 (C, H₂O@6), 137.47 (C, CH₂O@6), 137.35 (CH, CH₂O@6), 137.32 (CH, H₂O@6), 137.01 (C, $CH_2O@6$), 135.65 (C, $CH_2O@6$), 135.44 (C, $H_2O@6$), 134.87 (C, $CH_2O@6$), 134.60 (C,


H₂O@**6**), 132.26 (C, CH₂O@**6**), 132.11 (C, H₂O@**6**), 131.92 (C, H₂O@**b**), 131.91 (C, CH₂O@**6**), 131.68 (C, CH₂O@**6**), 131.49 (C, H₂O@**6**), 131.13 (CH, CH₂O@**6**), 131.11 (CH, H₂O@**6**), 130.35 (C, CH₂O@**6**), 129.72 (C, H₂O@**6**), 129.48 (CH, CH₂O@**6**), 129.47 (CH, H₂O@**6**), 129.23 (CH, CH₂O@**6**), 129.21 (CH, H₂O@**6**), 126.67 (CH, H₂O@**6**+CH₂O@**6**), 120.31 (CH, CH₂O@**6**), 120.26 (CH, H₂O@**6**), 117.46 (CH, CH₂O@**6**), 117.43 (CH, H₂O@**6**), 58.28 (C, CH₂O@**6**), 58.06 (C, H₂O@**6**), 54.00 (CH, H₂O@**6**+CH₂O@**6**), 37.99 (C, CH₂O@**6**), 37.98 (C, H₂O@**6**), 30.16 (CH₃, H₂O@**6**+CH₂O@**6**). Spectra assigned to CH₂O@**6** or H₂O@**6** using the relative sizes of peaks, the reported spectra of H₂O@**6**,⁵ and HSQC C-H correlation spectra.


Supplementary Fig. 14. ¹³C NMR of CH₂O@6 and H₂O@6.

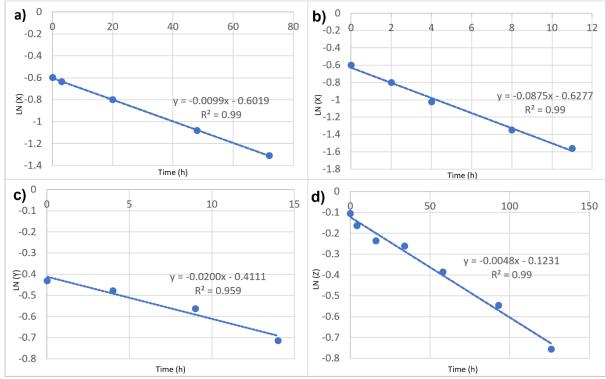
HRMS (ESI+) (m/z): Calculated for $[C_{93}H_{36}N_3O_3]^+$ 1242.2751, found 1242.2727(CH₂O@**6**). Calculated for $[C_{92}H_{34}N_3O_2]^+$ 1212.2646, found 1212.2610 (empty **6**). Calculated for $[C_{92}H_{34}N_3O_3]^+$ 1230.2751, found 1230.2726 (H₂O@**6**).

1.5 CO2@Sulfoxide



The mixture of CO₂@**2** and H₂O@**2** with a ratio of 90:10. Only peaks from CO₂@**2** are listed. ¹H NMR (400 MHz, CDCl₃) δ 7.609 (t, J = 7.9 Hz, 1H, pyridyl), 7.585 (t, J = 7.9 Hz, 1H, pyridyl), 7.312 (dd, J = 7.9, 0.8 Hz, 1H, pyridyl). 7.278-7.145 (m, 4H, pyridyl and alkenyl protons, region mainly obscured by the toluene), 6.805 (d, J = 10.3 Hz, 1H), 1.182 (*s*, 9H, *t*-butyl).

¹³C NMR (101 MHz, CDCl₃) δ 190.66(C), 185.08(C), 184.45(C), 180.88(C), 169.05(C), 168.72(C), 163.34(C), 162.08(C), 157.17(C), 155.77(C), 151.62(C), 151.42(C), 151.20(C),


151.18(C), 151.00(C), 150.84(C), 150.78(C), 150.68(C), 150.65(C), 150.44(C), 150.35(C), 149.81(C), 149.65(C), 148.12(C), 147.89(C), 147.56(C), 147.12(C), 145.18(C), 145.06(C), 144.80(C), 144.68(C), 144.62(C), 144.43(C), 143.94(C), 143.78(C), 143.65(C), 143.46(C), 143.26(C), 143.16(C), 141.89(C), 141.83(C), 140.85(C), 140.71(C), 140.57(C), 139.39(C), 139.13(C), 138.76(C), 138.08(), 137.94(C), 137.74(CH), 137.50(C), 137.43(CH), 137.15(C), 136.98(C), 136.87(C), 136.63(C), 136.37(C), 136.34(C), 136.12(C), 134.43(C), 133.91(C), 131.81(C), 131.37(C), 129.88(C), 128.10(C), 126.33(C), 126.01(C), 125.91(CH), 120.38(CH), 119.77(CH), 117.86(CH), 117.67(CH), 114.21 (CH), 59.49(C), 55.22(C), 37.94(C), 37.91(C), 31.15 (C), 30.09 (6xCH₃). Only signals from CO₂@**2** reported.

Supplementary Fig. 16. 13 C NMR of CO₂@2.

HRMS (ESI+) (m/z): Calculated for $[C_{83}H_{27}N_2O_7S]^+$ 1195.1553, found 1195.1550(CO₂@**2**). Calculated for $[C_{82}H_{27}N_2O_5S]^+$ 1151.1635, found 1151.1651 (empty).

2. Kinetics of loss of CH₂O from CH₂O@1 and CH₂O@2 and of CO₂ from CO₂@2,

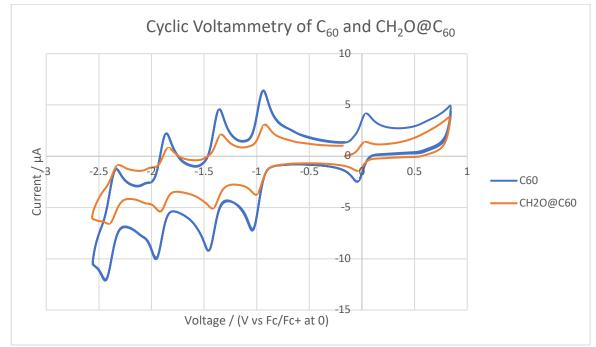
 $\mathsf{X} = ([\mathsf{CH}_2 O @ 1] \setminus [\mathsf{CH}_2 O @ 1 + \mathsf{H}_2 O @ 1 + \mathsf{Y} +]) [\mathsf{CH}_2 O @ 2] \setminus [\mathsf{CH}_2 O @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \setminus [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2] \times [\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{H}_2 O @ 2 + \mathsf{Z}]) \quad \mathsf{Z} = ([\mathsf{CO}_2 @ 2 + \mathsf{H}_2 O @$

Supplementary Fig. 17. 1st order plots for loss of: (a) CH₂O from CH₂O@1 at 25 °C and (b) 40 °C; (c) CH₂O from CH₂O@2 at 55 °C; (d) loss of CO₂ from CO₂@2 at 55 °C.

2	5 °C	40 °C			
Time	Time Filling Factor		Filling Factor		
0	0.55	0	0.55		
3	0.53	2	0.45		
20	0.45	4	0.36		
48	0.34	8	0.26		
72	0.27	11	0.21		
Half-	life = 70h	Half-li	fe = 8h		

Supplementary Table 1	. Loss of CH ₂ O	from CH ₂ O(<i>a</i>)1
------------------------------	-----------------------------	-------------------------------------

Supplementary Table 2. Loss of CH₂O from CH₂O@2 at 55 °C.


55 °C					
Time	Filling Factor				
0	0.65				
4	0.62				
9	0.57				
14 0.49					
Half-life = 34.6 h					

55 °C						
Time	Filling Factor					
0	0.90					
4	0.85					
16	0.79					
34	0.77					
58	0.69					
93	0.58					
126	0.47					
Half-life = 144 h						

Supplementary Table 3. Loss of CO2 from CO2@2 at 55 °C

3. Voltametry of CH₂O@C_{60.}

For DPV see Fig. 3b in main paper.

Supplementary Fig	. 18.	Cyclic Voltammetry	y of C_{60} and $CH_2O@C_{60}$.
-------------------	-------	--------------------	------------------------------------

Supplementary Table 4. Reduction potential of C60 and CH2O@C60 reported relative to the
Fc/Fc^{+} couple at 0V.

	CV	7	DPV						
Reduction	C ₆₀ CH ₂ O@C		C_{60}	$CH_2O@C_{60}$					
1st	-0.984	-0.953	-0.982	-0.952					
2nd	-1.398	-1.372	-1.405	-1.375					
3rd	-1.902	-1.874	-1.898	-1.868					
4th	-2.380	-2.351	-2.377	-2.346					

4. Density Functional Theory Calculations

Cartesian coordinates are in a separate file.

Model structures **1a** and **2a** were used to represent compounds **1** and **2**, in which the 6-tertbutylpyridyl groups were replaced by methyl substituents. Geometry optimisation and frequency calculations used the cc-pVDZ basis set. Electronic energies and counterpoise correction for Basis Set Superposition Error used the cc-pVTZ basis set.

	В	3LYP		M06-2X			
	E ^a	BSSE ^b	G ^c	E ^a	BSSE ^b	G ^c	
H ₂ O	-76.4603		0.0034	-76.4253		0.0040	
CH ₂ O	-114.5510		0.0053	-114.4966		0.0060	
CO ₂	-188.6622		-0.0091	-188.5916		-0.00867	
1a	-3219.9584		0.4590	-3218.6794		0.4659	
2a	-3295.1660		0.4607	-3293.8558		0.4677	
H ₂ O@ 1a	-3296.4438	0.0060	0.4783	-3295.1309	0.0048	0.4867	
TS $\mathbf{1a}$ +H ₂ O \rightleftharpoons H ₂ O@ $\mathbf{1a}$	-3296.4304	0.0066	0.4822	-3295.1197	0.0052	0.4894	
CH ₂ O@ 1a	-3334.5379	0.0032	0.4849	-3333.2060	0.0031	0.4925	
$TS \mathbf{1a} + CH_2O \rightleftharpoons CH_2O @ \mathbf{1a}$	-3334.5045	0.0034	0.4883	-3333.1731	0.0032	0.4957	
CH ₂ O@ 2a	-3409.7454	0.0033	0.4859	-3408.3825	0.0032	0.4947	
$TS \mathbf{2a} + CH_2O \rightleftharpoons CH_2O \textcircled{=} \mathbf{2a}$	-3409.7070	0.0034	0.4894	-3408.3449	0.0034	0.4982	
CO ₂ @ 2 a	-3483.8538	0.0032	0.4699	-3482.4743	0.0033	0.4766	
TS $2a+CO_2 \rightleftharpoons CH_2O@2a$	-3483.8089	0.0031	0.4722	-3482.4317	0.0030	0.4798	

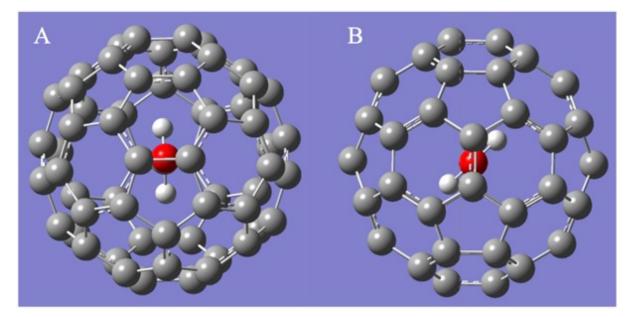
Supplementary Table 5. DFT Energies (Hartree) for calculated species

a. Electronic energy. b. correction for basis set superposition error. c. Thermal correction to give free energy at STP.

Supplementary Table 6. Calculated free energies of binding, entry and exit of the endohedral species in kJ mol⁻¹.

	B3LYP					
	G G ^{act} G ^{act}			G	G ^{act}	G ^{act}
	(bind)	(entry)	(exit)	(bind)	(entry)	(exit)
$\mathbf{1a}$ +H ₂ O \rightleftharpoons H ₂ O@ $\mathbf{1a}$	-8.5	38.2	46.8	-11.9	25.6	37.5
$1a+CH_2O \rightleftharpoons CH_2O@1a$	-12.4	84.5	96.9	-16.8	78.0	94.9
$2a+CH_2O \rightleftharpoons CH_2O@2a$	-13.8	96.5	110.3	-15.9	92.5	108.4
$2a+CO_2 \rightleftharpoons CO_2@2a$	-10.6	113.2	123.8	-16.0	103.7	119.7

The activation energy and binding energy (ΔG at 298K) for entry of CH₂O into a model for **1** in which the pyridyl tert-butyl groups are replaced by hydrogens using M06-2X / 6-31G* has been reported¹ as 16.6 kCal/mol (69.5 kJ/mol) and -9.9 kCal/mol (-41.4 kJ/mol) without


counterpoise correction for the basis set superposition error² which makes a significant difference (our M06-2X/cc-pVTZ//cc-pVDZ values are 69.6 and -25.0 kJ/mol without correction). Our calculations at the M06-2X/6-31G* level give ΔG for entry and binding of 65.8 and -35.0 kJ/mol (15.7 and -8.4 kCal/mol) respectively without counterpoise correction in good agreement with the published values above, but these become and 90.4 and -11.8 kJ/mol (21.6 and -2.8 kCal/mol) with correction illustrating its impact, particularly with small basis sets.

4.2. Calculated Properties of CH₂O@C₆₀.

Cartesian coordinates are in a separate file.

4.2.1 Minimised structures of $CH_2O@C_{60}$ and C_{60} .

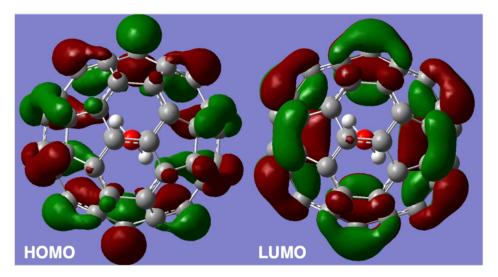
Two very close minimum energy structures for $CH_2O@C_{60}$ were identified at the ccpVTZ/tight level. One in which the CH_2O C-O axis was aligned with the centre of the bond between a 5 and 6 member ring (formally a single bond) denoted ' $CH_2O@C_{60}$ 56 iso' and one aligned with the centre of the bond between two six member rings (formally a double bond) denoted ' $CH_2O@C_{60}$ 66 iso' (Supplementary Fig. 19). The later was 0.1 kJ mol⁻¹ higher in energy – confirmed by single point energy calculations at the cc-pVQZ level and not changed in either case by inclusion of Basis Set Superposition Error correction (using counterpoise calculations).² As they are so close in energy results for both conformers are given below.

Supplementary Fig. 19. Minimum energy conformers of $CH_2O@C_{60}$. A – $CH_2O@C_{60}$ 56 iso. B- $CH_2O@C_{60}$ 66 iso.

CH ₂ O	@C ₆₀ 56 iso			CH ₂ O	@C ₆₀ 66 iso			C ₆₀		
C36	C44	7.0768	с	C1	C52	7.1212	а	C26	C50	7.0789
C32	C21	7.0792		C42	C7	7.1204	а	C27	C49	7.0787
C33	C20	7.0898		C10	C40	7.0963		C51	C8	7.0789
C57	C14	7.0778		С9	C41	7.0893		C2	C53	7.0791
C58	C45	7.0765	с	C8	C51	7.1041		C3	C56	7.0789
C54	C11	7.0614		C2	C53	7.1173		C46	C60	7.0791
C55	C15	7.0715		C50	C26	7.0676		C47	C59	7.0790
C24	C23	7.0811		C48	C35	7.0837		C1	C52	7.0791
C25	C22	7.0694	b	C49	C27	7.0669		C41	C9	7.0789
C34	C12	7.0591	b	C57	C14	7.0648		C35	C48	7.0789
C51	C8	7.0718		C33	C20	7.0642		C54	C11	7.0790
C35	C48	7.0598		C32	C21	7.0599	b	C55	C15	7.0788
C27	C49	7.0620		C36	C44	7.0604	b	C24	C23	7.0790
C26	C50	7.0738		C58	C45	7.0650		C25	C22	7.0789
C41	C9	7.0850		C43	C4	7.0908		C34	C12	7.0788
C39	C6	7.1156	а	C38	C5	7.1050		C16	C31	7.0786
C42	C7	7.1181	а	C31	C16	7.0841		C5	C38	7.0786
C40	C10	7.1102		C30	C17	7.0672		C4	C43	7.0788
C29	C18	7.1094		C37	C13	7.0685		C13	C37	7.0789
C28	C19	7.1063		C23	C24	7.0793		C17	C30	7.0788
C37	C13	7.0845		C15	C55	7.0715		C58	C45	7.0790
C43	C4	7.1084		C11	C54	7.0800		C36	C44	7.0788
C38	C5	7.1050		C12	C34	7.0796	С	C32	C21	7.0791
C31	C16	7.0785		C22	C25	7.0794	С	C33	C20	7.0791
C30	C17	7.0696		C60	C46	7.0823		C57	C14	7.0789
C1	C52	7.1077		C56	C3	7.0952		C40	C10	7.0788
C2	C53	7.0806		C59	C47	7.0980		C29	C18	7.0788
C3	C56	7.0703		C39	C6	7.1167		C28	C19	7.0788
C46	C60	7.0848		C28	C19	7.0938		C39	C6	7.0789
C47	C59	7.1092		C29	C18	7.0806		C42	C7	7.0789
Aver	age:	7.08511		Aver	age:	7.08510		Averag	e:	7.07889

Supplementary Table 7. Diameters of CH₂O@C₆₀ and C₆₀ in Å.

a Along CH₂O CO-axis. b Perpendicular to CH₂O plane. c In plane of CH₂O


	CH ₂ O@C ₆₀ 56	5 iso		CH ₂ O@C ₆₀ 66 iso			
		Difference	e / pm		Difference	e / pm	
		from			from		
Diameters	Diameter/Å	average	from C ₆₀	Diameter/Å	average	from C60	
Average	7.08511		0.621	7.08510		0.621	
Along CO-axis	7.1169	3.17	3.80	7.1208	3.57	4.19	
Perpendicular to CH ₂ O plane	7.0643	-2.09	-1.46	7.0602	-2.50	-1.87	
In plane of CH ₂ O	7.0767	-0.85	-0.22	7.0795	-0.56	0.06	

Supplementary Table 8. Calculated diameters of CH₂O@C₆₀ and C₆₀ cages.

4.2.2 Molecular orbital energies of $CH_2O@C_{60}$ and C_{60} .

Supplementary Table 9. Calculated Molecular Orbital Energies of CH₂O@C₆₀ and C₆₀.

	C ₆₀		CH ₂ O@C ₆₀	CH ₂ O@C ₆₀ 56 iso			CH ₂ O@C ₆₀ 66 iso		
				differen				difference	
	orbital ener	gies	orbital ener	rgies	from C ₆₀	orbital energies		from C ₆₀	
	На	eV	На	eV	meV	На	eV	meV	
	-0.08692	-2.3652	-0.0882	-2.4000	-34.8	-0.08808	-2.3968	-31.6	
	-0.13211	-3.5949	-0.13267	-3.6101	-15.2	-0.13275	-3.6123	-17.4	
	-0.13211	-3.5949	-0.1328	-3.6137	-18.8	-0.13278	-3.6131	-18.2	
LUMO	-0.13211	-3.5949	-0.13339	-3.6297	-34.8	-0.13332	-3.6278	-32.9	
номо	-0.23308	-6.3424	-0.23295	-6.3389	3.5	-0.23303	-6.3411	1.4	
	-0.23308	-6.3424	-0.23338	-6.3506	-8.2	-0.23332	-6.3489	-6.5	
	-0.23308	-6.3424	-0.23349	-6.3536	-11.2	-0.23344	-6.3522	-9.8	
	-0.23308	-6.3424	-0.23382	-6.3626	-20.1	-0.23367	-6.3585	-16.1	
	-0.23308	-6.3424	-0.23436	-6.3772	-34.8	-0.23457	-6.3830	-40.5	
	-0.28262	-7.6905	-0.28158	-7.6622	28.3	-0.2814	-7.6573	33.2	
HOMO-									
LUMO gap	0.10097	2.7475	0.09956	2.709	-38.4	0.09971	2.7132	-34.3	

Supplementary Fig. 20. HOMO and LUMO of CH₂O@C₆₀ 66 iso. (for CH₂O@C₆₀ 56 iso see main paper)

4.2.3 Translational modes of $CH_2O@C_{60}$.

Supplementary Table 10. Calculated translational modes of CH₂O in CH₂O@C₆₀ (B3LYP-D3/cc-pVTZ)

		$\begin{array}{c} CH_2O@C_{60} 56 \text{ iso} \\ E/cm^{-1} & IR \text{ intensity} \end{array}$		CH ₂ O@C ₆₀ 66 iso	
		E/cm ⁻¹	IR intensity	E/cm ⁻¹	IR intensity
Trans 1		175.3	0.03	174.5	0.03
Trans 2		202.52	0.05	202.1	0.03
Trans 3	←→>=0 H	233.04	0.12	233.6	0.12

4.2.4 Calculation of excited state energies.

Using single point TD-DFT calculations for singlet states at ground state geometries using B3LYP-D3/cc-pVTZ with superfine integration grid.

For CH₂O@C₆₀ 56 iso the 1st excited state energy E(TD-HF/TD-KS) = -2401.61773452 Ha. Ground state energy is -2401.69391 Ha so excitation energy is 0.075656 Ha = 2.0587 eV which corresponds to absorption at 602.24 nm.

For CH₂O@C₆₀ 66 iso the 1st excited state energy E(TD-HF/TD-KS) = -2401.61754357 Ha. Ground state energy is -2401.69336 Ha so excitation energy is 0.07582 Ha = 2.0631 eV which corresponds to absorption at 600.97 nm.

For C₆₀ 1st excited state energy E(TD-HF/TD-KS) = -2287.05073288 Ha. Ground state energy = -2287.127262 Ha so excitation energy is 0.07653 Ha = 2.0825 eV which corresponds to absorption at 595.37 nm. Thus CH₂O@C₆₀ 56 iso excitation energy decreases by 23.8 meV corresponding to a 6.9 nm change in absorption wavelength. For CH₂O@C₆₀ 66 iso excitation energy decreases by 19.4 meV corresponding to a 3.6 nm change in absorption wavelength. The significant difference is probably related to proximity of the carbonyl oxygen to a formal single bond in CH₂O@C₆₀ 56 iso, and formal double bond in CH₂O@C₆₀ 66 iso.

In practice fullerenes have many very close excited states – the 10 lowest from $CH_2O@C_{60}$ and C_{60} are given in the table below.

	CH ₂ O@C ₆₀ 56 iso		CH ₂ O@C ₆₀ 66 iso		C ₆₀	
	Excitation		Excitation		Excitation	
State	energy/ eV	1 / nm	energy / eV	1 / nm	energy / eV	1 / nm
1	2.0587	602.24	2.0631	600.97	2.0825	595.37
2	2.0615	601.43	2.0652	600.36	2.0825	595.36
3	2.0731	598.05	2.0692	599.19	2.0825	595.35
4	2.0763	597.13	2.0735	597.93	2.0826	595.34
5	2.0785	596.52	2.0774	596.83	2.0952	591.75
6	2.085	594.66	2.0824	595.39	2.0953	591.74
7	2.0871	594.04	2.0888	593.58	2.0953	591.72
8	2.0874	593.96	2.0931	592.35	2.096	591.53
9	2.1043	589.19	2.0937	592.18	2.096	591.52
10	2.1127	586.85	2.1202	584.78	2.0961	591.51

Supplementary Table 11. Singlet excited state energies for CH₂O@C₆₀ and C₆₀.

4.2.5 NMR calculations on $CH_2O@C_{60}$ and C_{60} .

Isotropic ¹³C NMR shifts of $CH_2O@C_{60}$ and C_{60} were calculated using the GAIO method using B3LYP with cc-pVTZ basis set and superfine integration grid.

000	CH ₂ O@C ₆₀	CH ₂ O@C ₆₀			
C60	56 iso	66 iso	C ₆₀ ^a	C ₆₀ ^b	$CH_2O@C_{60}^{c}$
33.318	29.535	27.993	31.890	31.465	34.102
33.354	31.875	28.828	33.087	32.165	34.246
33.329	32.742	31.486	33.794	33.613	33.690
33.316	30.114	31.375	32.373	32.637	33.498
33.350	29.822	30.853	32.027	32.555	34.070
33.365	28.585	28.923	31.997	32.168	33.297
33.316	28.330	28.069	31.865	31.473	33.153
33.366	32.834	30.885	33.143	32.566	33.082
33.361	32.364	31.450	33.095	32.684	33.249
33.354	29.438	30.330	32.546	32.505	33.303
33.316	34.969	33.725	34.267	33.900	33.550
33.301	34.515	33.336	33.954	33.372	33.921
33.363	32.148	33.057	33.671	33.683	33.474
33.323	32.927	33.473	32.652	33.434	33.817
33.316	33.199	33.158	32.925	33.166	33.341
33.370	32.103	32.146	33.192	33.359	34.114
33.361	32.782	33.001	33.835	33.880	33.898
33.305	30.496	31.895	33.372	33.488	33.144
33.353	29.738	31.613	32.679	33.618	33.292
33.276	31.913	33.316	31.731	33.491	34.162
33.292	32.808	33.966	32.547	33.898	34.244
33.355	33.706	32.518	33.465	32.486	34.095
33.355	32.425	32.289	32.417	32.450	33.971
33.355	32.707	33.816	33.265	33.893	32.317
33.355	33.036	33.414	33.224	33.394	32.559
33.333	33.080	34.341	32.779	33.712	33.253
33.326	34.949	34.986	34.266	34.223	33.412
33.353	33.112	33.283	32.501	32.555	33.437
33.305	32.803	34.392	31.983	33.564	33.255
33.361	34.911	34.997	34.115	34.216	32.561
33.370	33.745	33.231	33.292	32.529	32.415
33.292	32.989	34.163	33.200	33.770	31.458
33.276	32.922	34.559	33.608	34.147	31.115
33.301	33.696	32.521	33.972	32.474	32.814
33.301	34.554	33.174	33.968	32.510	33.773
33.331	32.488	33.962	32.712	33.859	30.765
33.363	33.482	34.289	32.760	33.673	31.844
33.350	32.284	31.538	32.319	31.392	31.976

Supplementary Table 12. Calculated ¹³C NMR shifts for C₆₀ and CH₂O@C₆₀.

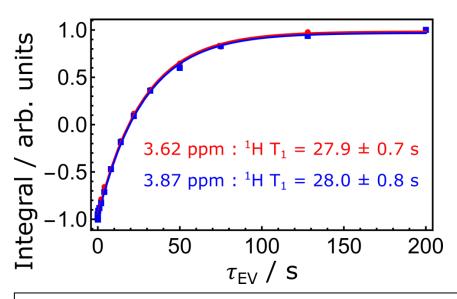
	1					
	33.365	32.211	31.886	32.281	31.449	33.351
	33.354	32.864	33.010	32.299	32.749	33.407
	33.361	32.237	33.069	32.209	32.850	33.406
	33.316	32.099	31.617	32.160	31.837	33.279
	33.316	31.604	33.028	31.284	32.807	31.438
	33.331	33.895	34.092	33.769	33.726	33.451
	33.332	33.962	34.492	33.820	34.092	33.137
	33.341	32.122	31.760	33.669	33.437	33.126
	33.317	29.950	30.191	32.342	32.456	33.696
	33.301	33.677	32.134	33.975	33.327	33.322
	33.326	33.225	33.011	33.786	33.874	33.559
	33.333	32.734	33.108	33.261	33.720	33.563
	33.366	33.723	31.529	33.386	31.408	33.790
	33.318	32.211	31.618	32.214	31.824	31.467
	33.354	33.738	31.918	33.224	31.472	31.906
	33.316	33.223	32.244	33.756	32.419	32.413
	33.316	32.896	33.171	33.326	33.146	31.932
	33.329	34.912	33.226	34.045	32.528	31.421
	33.323	33.049	33.487	33.217	33.421	29.885
	33.332	32.515	33.315	32.709	33.429	29.559
	33.317	31.673	32.942	31.292	32.707	30.151
	33.341	33.527	34.361	32.737	33.499	30.041
Average	33.3331	32.5362	32.5592	32.9875	33.0023	32.8827
δC^d	151.2605	152.0574	152.0344	151.6061	151.5913	151.7109

a C₆₀ at geometry of CH₂O@C₆₀ 56 iso. b C₆₀ at geometry of CH₂O@C₆₀ 56 iso. c CH₂O@C₆₀ where C₆₀ is fixed at the empty geometry. d Shift corrected to δ scale using a calculated average isotropic ¹³C chemical shift of Me₄Si carbons of 184.5936.

Supplementary Table 13. Summary of ¹³C calculated Chemical shift changes on CH₂O incorporation.

		change from
	δC / ppm	C ₆₀ / δ ppm
C ₆₀	151.2605	0
CH ₂ O@C ₆₀ iso 56	152.0574	0.797
CH ₂ O@C ₆₀ iso 66	152.0344	0.774
C_{60} at $CH_2O@C_{60}$ 56 iso geometry	151.6061	0.346
C_{60} at $CH_2O@C_{60}$ 66 iso geometry	151.5913	0.331
CH ₂ O@C ₆₀ at empty C ₆₀ geometry	151.7109	0.450

5. NMR studies on CH₂O@C₆₀


NMR experiments were performed at the following magnetic fields: (1) at 16.45 T, carried out using a Bruker Ascend 700 NB magnet fitted with a Bruker AVANCE NEO console and Bruker TCI prodigy 5 mm liquids cryoprobe; (2) at 9.4 T using an Oxford AS400 magnet fitted with a Bruker AVANCE NEO console and a Bruker BBO 5mm liquids probe; (3) at 14 T using a Bruker AS 600 WB magnet fitted with a Bruker AVANCE NEO console and a Bruker AVANCE NEO console and a Bruker TBI 5mm liquids probe.

¹H and ¹³C NMR spectra were referenced to the solvent chemical shifts (1,2-dichlorobenzened₄), ¹H = 6.93 ppm and ¹³C = 127.19 ppm. The confidence limits of the absolute chemical shift are dominated by the chemical shift of reference solvents, reported to 2 decimal places.

An approx. 23 mM solution of $CH_2O@C_{60}$ in 1,2-dichlorobenzene- d_4 (ODCB- d_4 , Sigma-Aldrich), was prepared by dissolving 14 mg of powdered $CH_2O@C_{60}$ (86.7 % filling) in 0.8 mL of the solvent. The solution was then filtered and degassed by bubbling nitrogen gas through the solution for 10 min.

5.1 ¹H spin-lattice relaxation of ¹³CH₂O@C₆₀

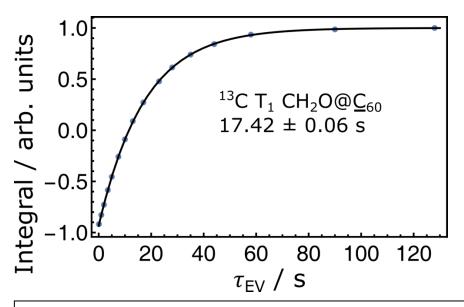
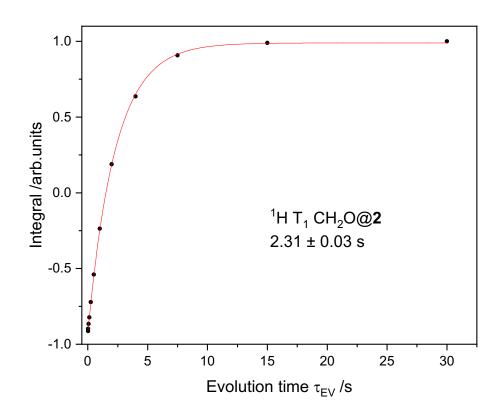
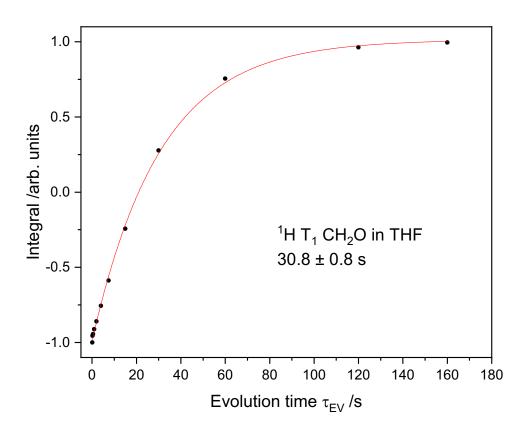

¹H T₁ relaxation measurements of the ¹³CH₂O@C₆₀ isotopologue, shown in Supplementary Fig. 21, were acquired on the natural abundance CH₂O@C₆₀ sample from the ¹³CH₂O@C₆₀ ¹H satellites. The ¹H T₁ of the ¹³CH₂O@C₆₀ satellites is only slightly shorter than the ¹H T₁ of the ¹²CH₂O@C₆₀, 27.9 \pm 0.7 & 28.0 \pm 0.8 s (Fig. 21) and 30.65 \pm 0.04 s (Fig. 4d in main manuscript) respectively. The slightly shorter ¹H T₁ value for the ¹³CH₂O@C₆₀ isotopologue is attributed to contributions from ¹H-¹³C dipolar relaxation, which are not present for the ¹²CH₂O@C₆₀ isotopologue.

Figure 21 : ¹H T₁ relaxation curves (Inversion Recovery) of ¹³CH₂O@C₆₀ ¹H satellites at 3.62 ppm (red) and 3.87 ppm (blue), approx. 23 mM solution in degassed 1,2-dichlorobenzene-*d*₄ (ODCB-*d*₄) at a field of 16.45 T and 298 K, acquired with 16 transients. ¹H T₁ of ¹³CH₂O@C₆₀ satellites: at 3.62 ppm = 27.9 ± 0.7 s and at 3.87 ppm = 28.0 ± 0.8 s.

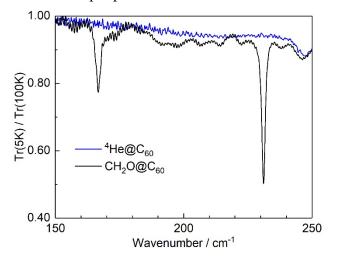
5.2 ¹³C spin-lattice relaxation of $CH_2O@\underline{C}_{60}$

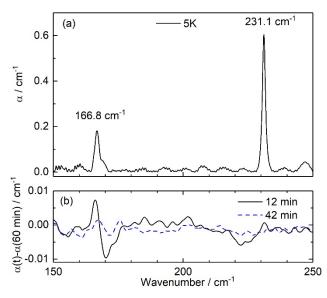

The ¹³C T₁ of CH₂O@<u>C₆₀</u> was measured using inversion recovery, shown in Fig 22, to give 17.42 ± 0.06 s. ¹³C T₁ value is consistent with other measurements of empty and filled C₆₀ molecules under equivalent conditions (same solvent and magnetic field).


Figure 22: ¹³C T₁ relaxation curve (Inversion Recovery) of CH₂O@<u>C</u>₆₀ (86.7 % filling), approx. 23 mM solution in degassed 1,2-dichlorobenzene- d_4 (ODCB- d_4) at a field of 16.45 T and 298 K. ¹³C T₁ of CH₂O@<u>C</u>₆₀ = 17.42 ± 0.06 s, acquired with 8 transients.

5.3 ¹H spin-lattice relaxation of CH₂O(a)2 and monomeric CH₂O

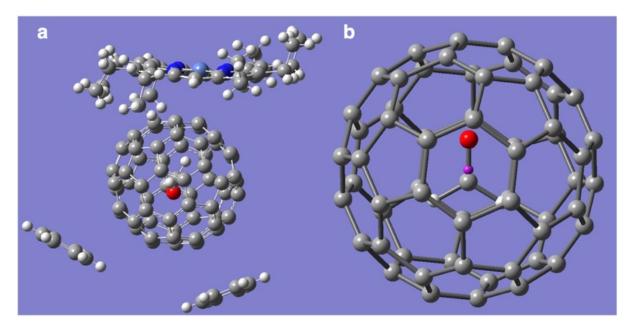
Solution state ¹H T₁ relaxation times were measured by inversion recovery in the open-cage intermediate CH₂O@**2** and for monomeric CH₂O in solution. A 33 mM solution of CH₂O@**2** was prepared in ODCB- d_4 (1,2-dichlorobenzene- d_4) and degassed by bubbling with nitrogen gas for 10 minutes. The ¹H T₁ was found to be 2.31 ± 0.03 s (Fig. 23). As free CH₂O rapidly polymerises when dissolved in ODCB, tetrahydrofuran (THF) was used as solvent instead. A 100 mM solution of CH₂O was prepared in 10% THF/90% THF- d_8 and degassed as above. The ¹H T₁ was found to be 30.8 ± 0.8 s (Fig. 24).


Figure 23: Inversion recovery with experimental data (black circles) and fitted curve (red line) for the spin-lattice relaxation time constant of CH₂O ¹H nuclei in CH₂O@2, 33mM solution in ODCB- d_4 . Acquired at 16.45 T and 298 K.

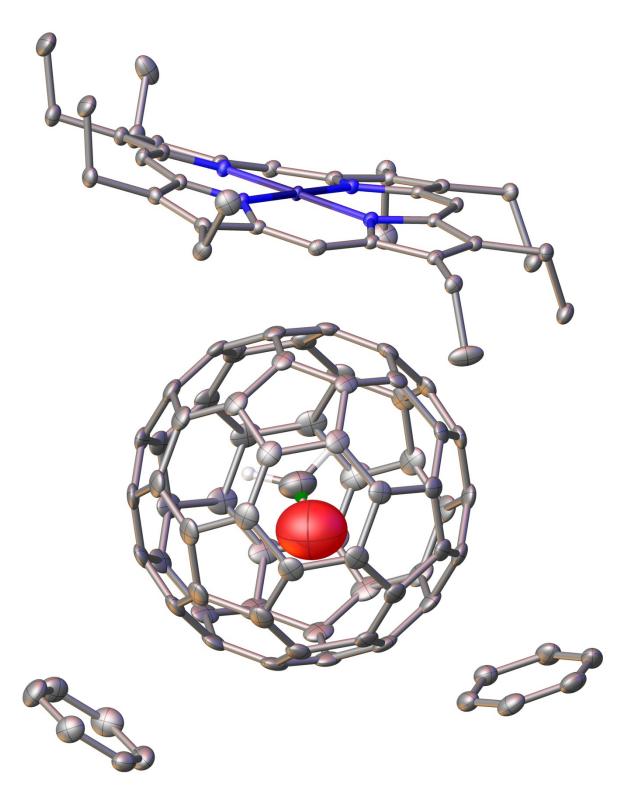

Figure 24: Inversion recovery with experimental data (black circles) and fitted curve (red line) for the ¹H spin-lattice relaxation time in free CH₂O, 100 mM solution in 10% THF/90% THF-*d*₈. Acquired at 16.45 T and 298 K.

6. THz and IR studies on $CH_2O@C_{60}$.

Absorption coefficient was calculated as $\alpha = -d^{-1} \ln (I_s/I_r)$ where I_s and I_r are the light intensities at the detector transmitted by the sample and by a 3 mm diameter reference hole. For the translational modes between 150 and 250cm⁻¹, shown in Fig. 25, the baseline was subtracted. The oscillations seen in the spectrum are due to the interference of IR radiation between the two sample pellet surfaces.

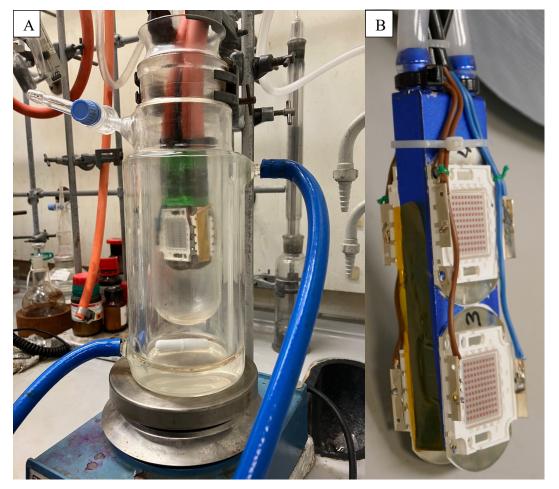


Supplementary Fig. 25. Comparison of transmission spectra of $CH_2O@C_{60}$ (black line) and ${}^{4}He@C_{60}$ (blue line). Shown is the ratio of transmission spectrum at 5K to the transmission spectrum at 100K. Absorption lines at 167 and 231cm⁻¹ are present in the CH₂O sample but missing in the 4 He sample.



Supplementary Fig. 26 (a) Absorption spectrum of $CH_2O@C_{60}$ at 5K and (b) ortho-para conversion of $CH_2O@C_{60}$ at 5K. Shown is the difference where the spectrum measured at 60 min after the completion of the temperature jump from 20 K to 5 K, subtracted from spectra measured at 12 min and 42 min after the completion of the temperature jump. The positive part in

the difference spectrum is the ortho- CH_2O signal while the negative part is para- CH_2O signal. Absence of ortho-para conversion signature for the 231 cm⁻¹ translational mode in the difference spectra could be caused by the overlap of ortho and para species spectral lines for this mode. 7. X-ray structure of CH₂O@C₆₀ nickel(II) octaethylporphyrin complex.



Supplementary Fig. 27. a. Crystal structure of the nickel(II) octaethylporphyrin/benzene solvate of $CH_2O@C_{60}$ with CH_2O position minimised using DFT (B3LYP-D3/6-31(d)) all other atoms being frozen. b. Expansion of cage showing its centroid as purple sphere. Centroid–<u>C</u>H₂ and centroid-O distances are 0.34 and 0.86Å respectively.

Supplementary Fig. 28. Single crystal x-ray structure of the nickel(II) octaethylporphyrin/benzene solvate of $CH_2O@C_{60}$ at 100 K with CCDC deposition number 2126579 (R1=0.050). Thermal ellipsoids drawn at 50% probability, hydrogens, except on the CH₂O, are omitted for clarity.

8. Photochemistry apparatus.

Supplementary Fig. 29. Custom built photochemistry apparatus used for SO extrusion reaction. A Apparatus showing outer jacket for temperature control using a circulating liquid. Middle stirred volume for reaction mixture and inner well containing LED lights (in this picture 2 x 20W). B. The 4 x 100W LED lamp used in the paper. The 100W LEDs were from Chanzon with emission range 590-995 nm (yellow) each driven by a 3A 20-24V constant current driver. The measured power consumption was typically 70W per LED chip. Three LED chips were used in the described reactions. The LEDs are mounted on a water cooled aluminium block.

9. References.

- 1. Futagoishi, T., Murata, M., Wakamiya, A. & Murata, Y. Encapsulation and Dynamic Behavior of Methanol and Formaldehyde inside Open-Cage C₆₀ Derivatives. *Angew. Chem. Int. Ed.* **56**, 2758-2762 (2017).
- Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. *Mol. Phys.* 19, 553-566 (1970).