
Targeted Therapy in Cardiovascular
Disease: A Precision Therapy Era
Mengda Xu1,2 and Jiangping Song1*

1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2Department of Cardiovascular Surgery, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic
molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing
molecules or cells without affecting normal tissue, thus enabling personalized and
precision treatment. Initially, therapeutic drugs included antibodies and small
molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology
and immunotherapy, the gene editing and cell editing techniques are utilized for the
disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases
(CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell
therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and
clinical trials, several limitations need to be recognized and overcome in clinical application,
(e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of
different targeted therapies, and mainly describes the targeted therapy applied in the
CVDs. Furthermore, we made comparative analysis to clarify the advantages and
disadvantages of different targeted therapies. This overview is expected to provide a
new concept to the treatment of the CVDs.
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INTRODUCTION

Cardiovascular diseases are the leading cause of death worldwide (Ghantous et al., 2020). CVDs are a
broad spectrum of diseases that can be classified into different categories based on different criteria.
For example, congenital heart disease and acquired heart disease are classified according to the time
of onset. The etiology of CVDs is complex, including metabolic abnormalities, genetic alterations,
abnormal protein function and other factors (Tanai and Frantz, 2015). All CVDs eventually progress
to heart failure (HF) if not effectively treated. HF affects 1–2% of the world’s population and places a
heavy burden on the society (Tanai and Frantz, 2015). Current treatments for CVDs mainly include
traditional pharmacotherapy and surgery (Stehlik et al., 2018; Felker et al., 2020; Zelniker and
Braunwald, 2020). Although the above methods alleviate the symptoms of the disease and reduce the
mortality rate, both methods have certain drawbacks. Traditional medication is less invasive, but it
can cause damage to the liver, kidneys and other organs, as well as other side effects (Lassiter et al.,
2020). In spite of the excellent effectiveness, the clinical application of cardiac surgery is always
restrained by the complex procedures and the possibility of postoperative complications (Roth et al.,
2020). Therefore, there is an urgent and unmet need to develop a novel, convenient, and efficient
approach for the treatment of CVDs.

The success of the human genome project and the rapid development of molecular biology
facilitate the precise detection of genome, transcriptome and proteome changes. By using these
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methods, researchers can explore the mechanisms underlying the
progression of diseases and design new drugs that target to the
pathogenic molecules, which is named targeted therapy (Bedard
et al., 2020). By specifically targeting and binding to abnormal
genes or proteins, the novel regimen enables personalized and
efficient therapy (Tsimberidou et al., 2014). Over the past years,
the striking breakthroughs of the gene editing and cell therapy
techniques have led the targeted therapy to a vigorous
development stage. To date, a variety of drugs have been
utilized to treat cancers, such as trastuzumab in breast tumor
and chimeric antigen receptor-modified T (CAR-T) in
hematological malignancies and have demonstrated
considerable effectiveness (Nicolazzi et al., 2018; Zhao et al.,
2018a).

In addition to the application in cancers, targeted therapy is
also playing an important role in the treatment of CVDs. Some
CVDs are caused by the gene mutation, (e.g. MYH6 in
hypertrophic cardiomyopathy (HCM)) (Mosqueira et al., 2018)
or an abnormal protein, (e.g. fibroblast activation protein (FAP)
in the cardiac fibrosis), which provides a rationale for the targeted
therapy in CVDs (Aghajanian et al., 2019). Actually, increasing
targeted therapies have been used to treat some CVDs and have
exhibited promising effect, such as evolocumab (a type of
monoclonal antibody (mAb)) in the treatment of homozygous
familial hypercholesterolemia (HoFH). Herein, this review
introduced the mechanisms of various targeted therapies, and
depicted the landscape of targeted therapy applied in CVDs.
Furthermore, a comparative analysis was performed to clarify

both the advantages and limitations of the applications of targeted
therapies in CVDs.

PROTEIN

Antibodies
Antibodies can specifically recognize and bind to the epitopes of
the antigen. Based on the number of binding epitopes, antibodies
used for targeted therapies can be classified as mAbs or bispecific
antibodies (bAbs). Here, we summarize the mechanisms and
applications of the two types of antibodies.

mAbs
At present, mAbs have been widely applied in malignancies and
rheumatic diseases. AndmAbs have been exploited to treat CVDs
(Smyth, 2017; Schmid and Neri, 2019). mAbs exert the
therapeutic efficacy via the following four ways (Figure 1): 1)
Activating immune response to the abnormal tissues: Once
binding to the target epitope, mAbs can mediate antibody-
dependent cellular cytotoxicity, complement-mediated
cytotoxicity or directly inhibit abnormal signals of target cells,
(e.g. alemtyzymab) (Kennedy and Hillmen, 2002). 2) Inhibiting
survival of the pathogenic tissues: mAbs can bind to the growth
factors and block the angiogenesis of the lesioned tissues, (e.g.
bevacizumab) (Chellappan et al., 2018). 3) Blocking inhibitory
signals of the effector cells: The interaction between the
programmed cell death protein 1 (PD-1) receptor and its

FIGURE 1 |Mechanisms of the mAb. (A) The Fab of the mAb binds to the target epitope and the Fc of the mAb binds to the effector cell (such as the natural killer
cell) or the complement to kill the target cells through antibody-dependent cell-mediated cytotoxicity, complement-mediated cytotoxicity or directly inhibit abnormal
signals of the target cells. (B) The mAb binds to the growth factor (such as VEGF) to inhibit the angiogenesis of the target cells. (C) The interaction between some ligands
and receptors (such as PD-1/PD-L1) can inactivate the effector cells. ThemAb binds to the inhibitory molecule to protect the effector cells from dysfunction. (D) The
mAbs are equipped with radiopharmaceuticals or chemotherapeutic drugs. When the mAbs binds to the target cells, the drugs come close to the target cell and kill the
target cells.
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ligand (PD-L1) results in T cells dysfunction, which could be
retrieved by certain mAbs via blocking the PD-1/PD-L1 signal,
(e.g. nivolumab) (Ding et al., 2019). 4) Coupling with the
therapeutic drugs: The mAbs equipped with
radiopharmaceuticals or chemotherapeutic drugs could help to
deliver and release drugs after binding to the target molecules,
(e.g. Ado-trastuzumab emtansine) (García-Alonso et al., 2020).

Possessing the above characteristics, mAbs have also shown
excellent efficacy in the cardiovascular field. Gain-of-function
mutations (p.S127R, p. F216L and p. D374Y) of proprotein
convertase subtilisin/kexin type 9 (PCSK9) can lead to
autosomal dominant hypercholesterolemia (by reducing low-
density lipoprotein receptor (LDLR) levels) and increase the
susceptibility to CVDs (Abifadel et al., 2007; Homer et al.,
2008). As the first PCSK9 inhibitor approved by the Food and
Drug Administration (FDA), the alirocumab was used in the
ODYSSEY OUTCOMES trial and its effect on cardiovascular
mortality after acute coronary syndromes (ACS) was examined
(Schwartz et al., 2018). The trial included 18,924 patients who
suffered from an ACS 1–12 months earlier. All patients had a high
level of LDL cholesterol (LDL-C) (>1.8 mmol/L), non-high-
density lipoprotein cholesterol (non-HDL-C) level (>2.6 mmol/
L) or apolipoprotein B (>80 mg/dl) after receiving a high-
intensity dose or the maximum tolerated dose of statin.
Patients were randomly assigned to receive alirocumab (n �
9,462, 75 mg every 2 weeks) or placebo (n � 9,462). During
the study, the dose of alirocumab was adjusted to maintain
the cholesterol level at 0.65–1.30 mmol/L. The primary
endpoint was a composite of death from fatal or nonfatal
ischemic stroke, nonfatal myocardial infarction (MI), coronary
heart disease (CHD), or unstable angina (UA) requiring
hospitalization. After 2.8 years of follow-up, the results showed
that the alirocumab could reduce the incidence of the primary
endpoint (hazard ratio [HR], 0.85; 95% confidence interval [CI],
0.78 to 0.93; p < 0.001). Patients with a higher baseline LDL-C
level(> 100 mg/dl) gained more benefits than patients with a
lower baseline LDL-C level. Besides, evolocumab is another mAb
that inhibits PCSK9. Binding of the evolocumab to PCSK9
resulted in a rise in hepatic surface LDLR and an increase in
plasma LDL-C clearance (Sabatine et al., 2017a). In the FOURIER
study, 27,564 patients with LDL-C higher than 70 mg/dl after
statin treatment were randomly assigned (1:1) to receive
evolocumab (140 mg/2 weeks or 420 mg/month) or placebo
(Sabatine et al., 2017b). The primary endpoint was a
composite of cardiovascular death, UA requiring
hospitalization, MI, stroke, or coronary revascularization. After
a median follow-up of 2.2 years, the results demonstrated that the
evolocumab significantly reduced the risk of cardiovascular
events in patients with (HR, 0.83; 95% CI, 0.75 to 0.93; p �
0.0008) and without (HR, 0.87; 95% CI, 0.79 to 0.96; p � 0.0052)
diabetes. However, the long-term efficacy of the evolocumab on
high LDL-C needs to be evaluated in further studies with longer
follow-up.

Angiopoietin-like protein 3 (ANGPTL3) can inhibit the
activity of lipoprotein lipase and increase the content of
triglyceride and other lipids in plasma (Ono et al., 2003).
Loss-of-function mutation of ANGPTL3 has been found to

relate to lower levels of both triglycerides and LDL-C, as well
as a 41% lower risk of CHD (Dewey et al., 2017). Accordingly,
evinacumab, the ANGPTL3 inhibitor, has been verified to reduce
the level of the triglyceride in both HoFH patients and the healthy
(García-Alonso et al., 2020). In a phase III study, 65 patients with
HoFH were randomly assigned to evinacumab (n � 43, 15 mg/kg,
every 4 weeks) or placebo (n � 22) (Raal et al., 2020). All patients
received stable lipid-lowering therapy. The primary outcome was
the change of LDL-C level from baseline to week 24. Ultimately,
LDL-C levels decreased by 47.1% in the evinacumab-treated
group, however, LDL-C increased by 1.9% in the placebo group.

Inflammatory cytokines actively participate in the
pathogenesis and progression of the CVDs and inflammatory
cytokines-targeted therapies could be considered for the
treatment of CVDs. Previously, interleukin-1 (IL-1) has been
indicated to contribute to CVDs via mediating the inflammatory
response, and act as an upstream regulator of a series of
inflammatory cytokines (Grebe et al., 2018; Schindler et al.,
1990). Based on the above findings, several studies have been
conducted to investigate the potential efficacy of IL-1 mAbs in
CVDs. IL-1 mAbs can be simply divided into two categories
according to the mechanisms: 1) Targeting to the IL-1 receptor
(IL-1R); 2) Neutralizing the IL-1 protein. As the first IL-1R
antagonist (IL-1Ra) approved by the FDA (Correction, 2017),
anakinra has been used in several clinical studies (Table 1) for the
treatment of cardiac remodeling after MI (Abbate et al., 2015),
CHD (Ikonomidis et al., 2014) and decompensated systolic HF,
and the safety has been confirmed (Van Tassell et al., 2017;
Trankle et al., 2019). However, the short half-life of anakinra
requires a daily injection, which remains a main drawback in its
clinical application (Kaiser et al., 2012). With regard to the
neutralizing mAb, canakinumab presented a good example,
which could inhibit IL-1 binding to IL-1R via targeting to the
IL-1β (Dhimolea, 2010; Ozdogan and Ugurlu, 2017).
Canakinumab has been approved by the FDA to treat
cryopyrin-associated periodic syndromes (CAPS) in 2009
(Nelson et al., 2010). A phase III clinical trial recruited
patients with prior MI and high-sensitivity C-reactive protein
(hsCRP) ≥ 2 mg/L to test the effect of canakinumab to prevent
hospitalization for HF (HHF) (Everett et al., 2019). A total of
10,061 patients were randomly assigned to canakinumab 50 (n �
2,263), 150 (n � 2,284), 300 mg (n � 2,170) or placebo (n � 3,344),
given subcutaneously once every 3 months. During a median
follow-up of 3.7 years, 385 patients had the HHF event.
Compared with the placebo group, the unadjusted HRs for
HHF in different dose group were 1.04 (95% CI, 0.79–1.36)
for 50 mg, 0.86 (95% CI, 0.65–1.13) for 150 mg, and 0.76 (95%
CI, 0.57–1.01) for 300 mg (p � 0.025). Canakinumab could reduce
the incidence of HHF in a dose-dependent manner (Everett et al.,
2019). Canakinumab was also used to treat Covid-19 infected
patients with myocardial injury due to inflammation (Sheng et al.,
2020). A total of 45 Covid-19 infected patients with B-type
natriuretic peptide (BNP) or NT-proBNP and CRP elevation
were randomly assigned to receive canakinumab 600 mg (n � 15),
canakinumab 300 mg (n � 15) or placebo (n � 15). The primary
endpoint was the time in days from randomization to either
discharge from the hospital or an improvement of two points on a
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seven category ordinal scale. The trial is still in progress.
Rilonacept is a soluble IL-1 decoy antibody. Two IL-1 receptor
chains extend to the out space of the membrane, fusing to form a
“trap” for neutralizing IL-1α or IL-1β (Peiro et al., 2017). In 2008,
rilonacept was approved by the FDA to treat CAPS (Hoffman, 2009).
At present, a phase III trial uses rilonacept to treat the pericarditis
(Klein et al., 2020). The trial enrolled 86 patients with recurrent
pericarditis and systemic inflammation (high CRP levels). The trial
comprised of four periods: the screening period; a single-blind run-in
period during which rilonacept was used in all patients and
background pericarditis medications were tapered; a double-blind
period during which patients were randomly assigned to rilonacept or
placebo; and long-term extension treatment during which suitable
patients would receive rilonacept for 24months. Preliminary results
suggested that after the first dose of rilonacept, both reported pain and
inflammation were obviously alleviated. Patients receiving rilonacept
could wean from all other pericarditis medications without a
recurrence (Fernandez-Ruiz, 2020).

Interleukin-6 (IL-6) has been reported to cause the
development and instability of arterial plaques (Yudkin et al.,
2000; Boekholdt and Stroes, 2012), participate in ischemia-
reperfusion injury (IRI) and increase the mortality of patients
with ACS (Sawa et al., 1998; Zamani and et al., 2013). Currently, a
phase II clinical trial in which the IL-6 antagonist tocilizumab is
used to treat non-ST-segment elevation MI (NSTEMI) has been
completed (Kleveland et al., 2016). A total of 117 patients with
NSTEMI were randomly designated to receive a single dose of
tocilizumab (n � 58) or placebo (n � 59) before coronary
angiography. The primary endpoint was defined as the
changes of hsCRP. The results showed that hsCRP in the
placebo group was 2.1 times higher than that of tocilizumab
(4.2 vs. 2.0 mg/L/h, p < 0.001). High sensitivity troponin T in the

placebo group was 1.5 times higher than that in the tocilizumab
group (234 vs. 159 g/L/h). After 6 months of follow-up, no safety
events were detected. The results indicated that tocilizumab was
sufficient to lessen the inflammatory response and myocardial
injury in NSTEMI patients.

Abciximab, a Fab fragment of chimeric human-mouse mAb
7E3 (Leung, 2004), could bind to the human platelet glycoprotein
(GP) IIb/IIIa receptor and inhibit platelet aggregation by blocking
the fibrinogen, von Willebrand factor (vWF) and other adhesion
molecules (Nakada et al., 2006). It also binds to vitronectin
(αVβ3) receptors found in platelets, vascular walls, endothelial
cells and smooth muscle cells (Nesic et al., 2020). Abciximab has
been reported to improve the survival rate of STEMI patients with
percutaneous coronary intervention (Stone et al., 2012).
However, it should not be neglected that the agent would
increase the risk of bleeding (De Luca et al., 2005).

MAbs can also effectively treat diseases caused by certain
abnormal proteins with high specificity. For instance, abciximab
targeting to (GP) IIb/IIIa to treat STEMI has shown a good
therapeutic effect in the clinic (Tummala and Rai, 2020). Given
that the appealing features of mAbs as well as the encouraging
findings mentioned above, it is clear that mAbs therapy has
provided a promising therapeutic option for the CVDs, and more
efforts should be made to further explore and expand its clinical
indications. For example, pro-inflammatory macrophages, the
critical mediators during the process of atherosclerosis, are
supposed to be inhibited by specific mAbs and therefore may
help delay the progression of the diseases (Falk et al., 2013).

bAbs
Generally, the occurrence and development of the diseases may
be driven by different molecules, in which the monotherapy of

TABLE 1 | Clinical trials of anakinra.

Disease Stage Intervention Primary outcome Result

STEMI (Abbate
et al. (2015))

II Anakinra: 100 mg/d for 14 days (n � 20) or
placebo (n � 20)

Death, cardiac death, recurrent AMI, stroke,
UA, and symptomatic HF

HR: 1.08 (95% CI: 0.31 to 3.74, p � 0.90) for
the combined end point of UA, recurrent
AMI, death, or stroke. HR: 0.16 (95% CI:
0.03 to 0.76, p � 0.008) for death or HF

CHD (Ikonomidis
et al. (2014))

Cross-
over trial

80 patients with RA (60 with CHD and 20
without CHD) were randomly assigned to a
single dose of anakinra (100 mg) or
placebo. After 48 h, patients were
assigned to the alternate treatment
(placebo or anakinra)

Changes of (1) flow-mediated dilation of
brachial artery; (2) systemic arterial compliance,
ejection fraction, coronary flow reserve, and
resistance by echocardiography; (3) peak
twisting, left ventricular global longitudinal and
circumferential strain, untwisting velocity by
speckle tracking; (4) malondialdehyde,
nitrotyrosine, interleukin-1β, fas/Fas ligand, and
protein carbonyl levels

Compared to the non-CHD patients, CHD
patients showed a greater improvement of
flow-mediated dilation (57 ± 4% vs 47 ±
5%), arterial compliance (20 ± 18% vs 2 ±
17%), ejection fraction (12 ± 5% vs 0.5 ±
5%), coronary flow reserve (37 ± 4% vs 29 ±
2%), resistance (-11 ± 19% vs 9 ± 21%),
peak twisting (30 ± 5% vs 12 ± 5%),
longitudinal strain (33 ± 5% vs 18 ± 2%),
circumferential strain (22 ± 5% vs 13 ± 5%),
untwisting velocity (23 ± 5% vs 13 ± 5%),
protein carbonyl, apoptotic and oxidative
markers (35 ± 20% vs 14 ± 9%) (p < 0.01)

HF (Van Tassell
et al. (2017))

III Anakinra short: 100 mg/d for 2 weeks,
followed by placebo for 10 weeks (n � 20);
anakinra long: 100 mg/d for 12 weeks
(n � 20) or placebo (n � 20)

Interval changes in peak oxygen consumption
(Vo2) and ventilatory efficiency (the VE/Vco2
slope)

At week 2, all groups showed no change in
peak Vo2. At week 12, anakinra long group
showed an improvement in Vo2 and the VE/
Vco2 slope

AMI: acute myocardial infarction; CHD: coronary heart disease; CI: confidence interval; HF: heart failure; HR: hazard ratio; PAH: pulmonary arterial hypertension; RA: rheumatoid arthritis;
STEMI: ST-segment elevation myocardial infarction; UA: unstable angina
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mAbs is insufficient for treatment and combined therapy is
required (Hicklin and Ellis, 2005). However, it remains
challenging to evaluate the safety and effectiveness of mAbs
alone when used in combination with other agents, (e.g.
another kind of mAbs) at the same time (Henricks et al.,
2015). While bAbs, which refer to antibodies binding to two
different epitopes at the same time, have showed advantages in
tackling these problems (Li et al., 2020).

The functional mechanisms of bAb to treat diseases mainly
includes the following four aspects (Labrijn et al., 2019)
(Figure 2). 1) Bridging cells: bAbs bind to the individual
binding domains of effector cells and target cells, reducing the
distance between the effector cells and the target cells, and
promote the targeted-killing efficacy of effector cells. The
representative drug is blinatumomab, which binds to CD19 on
B cells and CD3 on T cells to treat non-Hodgkin’s lymphoma
(Bargou et al., 2008). 2) Bridging receptor: The bAbs bind to two
different receptors at the same time to prevent the downstream
signal transduction. For example, the epidermal growth factor
receptor (EGFR) mAb is widely used to treat tumors, while some
tumors can upregulate other receptor tyrosine kinases, such as
MET proto-oncogene, and develop drug resistance (Engelman
et al., 2007). Herein, bAbs against both receptor tyrosine kinases
can address the issue. JNJ-61186372 is a bAb that targets to the
EGFR and MET, which can inhibit the ligand-induced activation
and promote the receptor degradation (Moores et al., 2016).

3) Cofactor simulation: bAbs combine with the target antigens
and act as the agonist to treat diseases. One of the representatives
is emicizumab, which can bind to FIXa and FX/FXa at the mmol
level and remarkably reduce the risk of bleeding in hemophilia A
patients (Shima et al., 2016; Kitazawa et al., 2017; Mahlangu et al.,
2018). 4) Piggyback mode: One of the antigen binding parts of the
bAbs combines with the target molecule, and the other antigen
binding part of the bAbs orient to a specific area. In this way, the
target molecule will be carried to a certain place. A typical
example is the transport of transferrin through the blood-
brain barrier (Yu et al., 2011).

bAbs have been used to treat ischemic cardiomyopathy in
several studies. One of the obstacles of venous regenerative cell
therapy is the low efficiency of cells homing to the target area
(Terrovitis et al., 2010; Lalit et al., 2014; Kanelidis et al., 2017). In
order to increase the cell homing rate of the myocardial injury
region, the researchers developed a bAb, Tand-scFvSca-1 GPIIb/
IIIa, which can simultaneously bind to activated platelet GP IIb/
IIIa receptor and peripheral blood mononuclear cells (PBMCs)
that express stem cell antigen-1 (Sca-1) receptor. Based on that,
an IRI mouse model was established and treated with Tand-
scFvSca-1 GPIIb/IIIa to increase cells homing to the damaged
area. After the treatment, the targeted-PBMCs were successfully
transported to the damaged area, and the infiltration of
inflammatory cells was significantly reduced (Ziegler et al.,
2017). The hematopoietic stem cells (HSCs) possess high

FIGURE 2 | Mechanisms of the bAb. (A) Bridging cell. The bAb binds to two different cells at the same time, thus dragging these two cells closer. (B) Bridging
receptor. The bAb binds to two different proteins on the cell surface and plays a synergistic role, thus inactivating the target cell more efficiently. (C) Cofactor simulation.
The bAb binds to target antigen and plays the role of agonist to treat diseases. (D) Piggyback mode. One of the antigen binding parts of the bAb combines with the target
molecule, while the other antigen binding part of the bAb binds to the specific area. In this way, the molecule is transported to the specific area.
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plasticity and could differentiate into the nonhematopoietic
tissues, which can repair the damaged myocardial tissue in a
dose-dependent manner (Zhao et al., 1985; Engelmann et al.,
2006; Henning et al., 2007; Vanderheyden et al., 2007; Choi et al.,
2011). Therefore, recruiting more HSCs to the ischemic
myocardium presents a potential approach to improve the
therapeutic effect. Lee et al. synthesized bAbs by chemically
coupling anti-CD45 (a common leukocyte antigen identified
on HSCs) mAb with myosin light chain (MLC) mAb (Lee
et al., 2007). MLC is expressed in myocardial tissue, but only
binds to anti-MLC antibodies when the myocardial cell
membrane is no longer intact (Lum et al., 2004). Ischemic
injury animal models induced by transient ligation of the left
anterior descending artery (LAD) were treated with anti-CD45 x
anti-MLC bAb (n � 9) or phosphate-buffered saline (PBS, n � 8).
Increased HSCs number in the damaged area and improved
cardiac function were observed in animals treated with the
bAbs (Lee et al., 2007). Similar to the above principle, bAbs
specifically binding to human CD90 and MLC were applied to
treat the damaged myocardium (Gundlach et al., 2011).
Researchers also exploited bAbs targeting to c-kit expressing
on mouse stem cells and VCAM-1, a molecule expressed by
injured myocardial cells, to treat the infarcted cardiomyocytes.
After ligation of the LAD, animals were injected with anti-c-kit x
VCAM-1 (experiment group) or anti-c-kit x isotope control bAbs
(control group). The experiment group had more c-kit stem cells
homing to the ischemic injury area (Lum et al., 2004). These
results indicated that the bAb can reorient stem cells and retain
stem cells in the injured myocardium.

In addition to ischemic cardiomyopathy, bAbs are also used to
treat vascular lesions. The integrity of the endothelial cells (ECs)
plays an essential role in the cardiovascular system. When the
integrity of ECs is destroyed, the subendothelial matrix proteins
will expose, causing the formation of the platelet-mediated
thrombus. GPVI is a soluble platelet collagen receptor
(Asahara et al., 1997). CD133 is expressed on the surface of
the endothelial progenitor cells (EPCs) (Massberg et al., 2004).
BAbs (GPVI-CD133) consisting of soluble platelet collagen
receptor GP VI and CD133 mAb were used to treat vascular
lesions (Langer et al., 2010). In vitro, pig vessels were damaged by
a balloon catheter and perfused with EPCs for 2 h. Pig vessels
were treated by GPVI-CD133 bAb, GPVI mAb, CD133 mAb,
CPVI mAb + CD133 mAb, or PBS. The recruitment of EPCs was
evaluated by in situ hybridization. Only the GPVI-CD133 bAb
group showed increased EPCs recruitment compared to the
injury experiments (approximately 10-fold). In vivo, GPVI-
CD133 bAb enhanced the reendothelialization in mice with
the carotid injury. But mice treated by GPVI mAb + CD133
mAb did not show any elevation of EPCs. Therefore, the GPVI-
CD133 bAb is a promising treatment for vascular lesions. These
results indicated that bAbs could simultaneously bind to two
epitopes and realize a “1 + 1 > 2” therapeutic effect.

Peptides
In the present, peptides are utilized to treat hypertension and
vascular diseases. ATRQβ-001, a peptide vaccine made of human
angiotensin II (AngII) receptor I and Qβ phage virus-like

particles, can inhibit the Ang II-mediated pathway, thus being
applied in the treatment of hypertension and aneurysms. In Liao’s
et al. studies, the ATRQβ-001 vaccine could effectively decrease
the blood pressure in the AngII induced hypertension mice and
spontaneous hypertensive rats (SHRs) (Chen et al., 2013). The
team also used ATRQβ-001 to treat AngII or calcium phosphate-
induced abdominal aortic aneurysm (Zhang et al., 2019). The
results showed that ATRQβ-001 could reduce blood pressure and
inhibit the expansion of aneurysm and the destruction of the
aortic wall in both models. Immunohistochemical analysis
confirmed that the vaccine could reduce the infiltration of
macrophages and the phenotypic transition of the vascular
smooth muscle cell.

ATR12181, the extracellular part of angiotensin receptor 1A
(AT1A), is also used to treat SHRs (Zhu et al., 2006). After
repeatedly given the vaccine, SHRs produced anti-ATR12181
antibodies, which could attenuate the development of
hypertension, diminish the injury of the heart and kidney, and
decrease the mRNA levels of c-fos and c-jun in both organs (Li
et al., 2014). Meanwhile, ATR12181 vaccine therapy did not cause
any autoimmune diseases in the heart and kidney (Zhu et al.,
2006). Taken together, the ATR12181 vaccine possesses the
potential to treat the hypertension.

Liao’s team also developed the first vaccine against endothelin-
1 receptor type A (ETAR) (ETRQβ-002 vaccine) to treat the
pulmonary arterial hypertension (PAH) (Dai et al., 2019). In
monocrotaline-induced PAH rats and Sugen/hypoxia-induced
PAH mice, the ETRQβ-002 vaccine was injected to generate
antibodies against ETR-002 (the second extracellular loop of
ETAR). The results showed that the ETRQβ-002 vaccine could
induce a strong production of anti-ETR-002 antibodies. In vitro,
the anti-ETR-002 antibodies could attenuate the Ca2+-dependent
signal transduction induced by endothelin-1. In vivo, the ETRQβ-
002 vaccine significantly decreased the right ventricular systolic
pressure by 10 mmHg in Sugen/hypoxia-induced PAH mice and
20 mmHg in monocrotaline-induced PAH rats. No significant
immune injury was observed in the vaccinated animals.

It is worth mentioning that although animal experiments have
shown positive effects, clinical trials are needed to test the safety
and efficacy of these vaccines.

Cytokines
Besides using mAbs to antagonize the pro-inflammatory
cytokines, researchers also used some cytokines with
immunomodulatory function to treat diseases. Regulatory
T cells (Tregs) can maintain immune homeostasis and play a
crucial role in myocardial repair and atherosclerosis (Ait-Oufella
et al., 2006). Interleukin-2 (IL-2) is usually secreted by T cells to
stimulate the growth and differentiation of T cells (Li et al., 2001).
Studies in preclinical mouse models indicated that IL-2/JES6-1
(IL-2 mAb) complex could increase the number of Tregs and
improve the left ventricular ejection fraction (LVEF) after
transverse aortic constriction (TAC) (Wang et al., 2016). A
randomized, double-blind, dose-escalation, placebo-controlled,
phase I/IIa clinical trial is ongoing to assess the tolerability and
safety of IL-2 in patients with ischemic heart disease (IHD) and
ACS (Zhao et al., 2018b). All patients with IHD and ACS were
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randomly assigned to receive either IL-2 (0.3–3 × 106 IU) or
placebo once daily for 5 days. The study is expected to provide
evidence to the immunomodulatory treatment via cytokines in
the CVDs.

GENE EDITING TECHNOLOGY

Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)/CRISPR
Associated Protein 9 (Cas9)
CRISPR/Cas9 is associated with immunity against the virus and
foreign DNA (Barrangou et al., 2007). It recognizes the
protospacer adjacent motif (PAM) region and cleaves the
target DNA. Therefore, the expression of exogenous DNA was
inhibited (Jinek et al., 2012). CRISPR/Cas9 gene-editing
technology uses the artificial small guide RNA to guide
the Cas9 protease to break the DNA. After the double-strand
break (DSB), gene repair will cause gene knock-out or knock-in

and achieve the purpose of modifying DNA. CRISPR/Cas9 is a
powerful tool for gene editing, which can accurately edit the gene
at a specific point (Figure 3) (Zhang et al., 2014; Xiao-Jie et al.,
2015; Savic and Schwank, 2016).

HCM is mainly caused by autosomal dominant inheritance,
and there are 1,500 mutations in 15 genes known to cause the
disease (Maron et al., 2012). For families with HCM mutations,
the gene defects of all fertilized eggs could be corrected by using
the CRISPR/Cas9 technology. Currently, CRISPR/Cas9 is used
for gene repair at the target sequence. Somatic cells repair the DSB
through the non-homologous end joining (NHEJ) mechanism,
which leaving a major shortcoming of the off-target effect
(Humbert et al., 2012). While the homologous-directed repair
mechanism that embryonic cells used in the replication stage is
almost error-free (Strong andMusunuru, 2017). Recently, a study
used CRISPR/Cas9 to repair HCM gene mutations (Ma et al.,
2017). Early injection of a sperm carrying theMYBPC3mutation
and a CRISPR/Cas9 system resulted in a 100% correction of the
mutation.

In addition to HCM, CRISPR/Cas9 has been applied to treat
non-ischemic cardiomyopathy. Phospholamban (PLN)
participates in the process of the Ca2+ homeostasis. The
enhanced function of the PLN will impair the heart function
(Szymanska et al., 2000). Kaneko et al. knocked out the PLN gene
of mice with severe HF via CRISPR/Cas9 (Kaneko, 2016).
Compared with the control group, mice treated by the
CRISPR/Cas9 showed a better cardiac function, a smaller heart
size and a higher survival rate. CRISPR/Cas9 also presented
advantages in the treatment of other inherited heart diseases.
Musunuru et al. injected the CRISPR/Cas9 targeting to the PCSK9
gene into mice, resulting in loss-of-function mutation of the
PCSK9 gene with a mutation rate of 50%, thus decreasing the
plasma PCSK9 concentration, increasing the LDLR expression on
the liver surface, and diminishing 35–40% of the plasma
cholesterol (Ding et al., 2014). Moreover, no off-target events
were detected in the selected 10 loci. Mice carrying H530 R
mutation in PRKAG2 could develop cardiac hypertrophy
(Lopez-Sainz et al., 2020). After being corrected by CRISPR/
cas9, the heart morphology and the cardiac function of the
mutant mice were restored (Xie et al., 2016).

Thyroxine (TTR) amyloidosis is caused by the TTR gene
mutation and characterized by excessive deposition of
thyroxine in the myocardium (Vieira and Saraiva, 2014). Finn
et al. employed the CRISPR/cas9 to repair the TTR mutation of
the mice, resulting in a 97% decrease of plasma abnormal protein
levels. Consistent findings were observed in the rat model (Finn
et al., 2018). However, whether the method can effectively treat
human disease needs further investigation. Duchenne muscular
dystrophy (DMD) is a muscular dystrophy caused by a mutation
of the dystrophin gene (Falzarano et al., 2015). DMD can lead to
dystrophic cardiomyopathy, resulting in highmortality, and there
is no effective treatment to slow its progression. Refaey et al. used
mdx mice (a DMD mouse model) to explore the feasibility of
CRISPR/Cas9 for the treatment of DMD (El Refaey et al., 2017).
Results showed that the dystrophin protein expression and the
cardiac function were restored in the CRISPR/Cas9 treated mice.
Long et al. also used CRISPR/Cas9 to treat induced pluripotent

FIGURE 3 | Mechanism of the Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (Cas9): When
viruses and foreign DNA invade the host, the cas1 and cas2 protein can
recognize the protospacer adjacent motif (PAM) region. The cas1/2
protein will cut the PAM and insert it into the downstream of the leader
sequence of CRISPR. When the same sequence invades the host, the
transcription of precursor CRISPR RNA (pre-crRNA) and trans-activating
crRNA (tracrRNA) will be activated. The pre-crRNA, tracrRNA and the cas9 will
form a complex that can recognize the sequence that is complementary to the
crRNA. After the recognition, the double-strand DNA unwinds to form an
R-loop. The crRNA combines with the target sequence via base pairing. Then
the double-strand-break (DSB) is induced by the cas9 protease. In the
CRISPR/Cas9 gene editing technology, the sgRNA consisting of the tracrRNA
and the crRNA is designed in vitro. The sgRNA will guide the cas9 to a specific
DNA sequence to cause the DSB. After the DSB, endogenous DNA repairs
systems (nonhomologous end joining in both dividing and nondividing cells,
homology directed repair in the G2/S phase of dividing cells) result in the gene
knock-in or knock-out.
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stem cells (iPSCs) with duplications, point mutations, or large
deletions within the DMD gene (Long et al., 2018). CRISPR/Cas9
successfully restored the dystrophin protein expression in
derivative cardiomyocytes.

The CRISPR/Cas9 could also be used to identify whether a
gene mutation is pathogenic. The variant of uncertain
significance (VUS) is gene mutation for which the
pathogenicity is not clear. Ma et al. used CRISPR/Cas9 to
analyze an asymptomatic individual carrying mutations in the
MYL3 gene (a cardiomyopathy-associated genetic variant) (Ma
et al., 2018). The mutation (NM_000258.2:c.170C > A,
NP_000249.1:p.Ala57Asp) was shown to be likely pathogenic
in the Clinvar database. Patient-derived iPSCs were edited by
CRISPR/Cas9 to generate four iPSC lines: 1) “healthy” control
without any mutations; 2) homozygous MYL3 VUS (170C > A);
3) known heterozygous MYL3 pathogenic mutation
(NM_000258.2:c.170C > G); and 4) heterozygous MYL3
frameshift mutation (170C > A/fs). Only cell lines carrying the
known heterozygous MYL3 pathogenic mutation showed an
HCM phenotype at the morphology, gene expression, or
functional levels. The above results illustrated the ability of
CRISPR/Cas9 to discriminate between benign and pathogenic
mutations, thus providing guidance for clinical risk assessment
and therapeutic intervention. Other studies showed that CRISPR/
Cas9 could be used to identify the VUS that contributed to the
CVDs (Garg et al., 2018; Sano et al., 2018).

Base Editor (BE)
BE is a single base editing technology, which can cause the change
from cytosine to thymine using the Cas protein at a specific site
(Komor et al., 2016). Initially reported in 2016, the cytidine base
editors (CBES) enabled the conversion of cytosine to thymine
without causing the DSB (Komor et al., 2016). Researchers have
made efforts to test the efficacy of BE in mice (Chadwick et al.,
2018). It is well established that loss-of-function mutation of
ANGPTL3 is associated with lower risk of CHD. Musunuru et al.
screened the potential gene editing sites using Neuro-2a cells and
selected the codon Gln-135 site with the protospacer sequence
AGCCCTTCAACACAAGGTCA on the ANGPTL3 gene
(Chadwick et al., 2018). Mice were randomly divided into
three groups and treated as the following schemes: without
sgRNA (BE-control), with sgRNA targeting to Pcsk9 Trp-159
(BE-Pcsk9), with sgRNA targeting to Angptl3 Gln-135 (BE-
Angptl3). Primarily, BE-control and BE-Angptl3 were injected
into the C57BL/6J mice. On the day 7, deep sequencing of the
liver samples revealed a median editing rate of 35% in the BE-
Angptl3 group, while no gene editing was observed in the BE-
control group. Notably, deep sequencing of the top 10 predicted
off-target sites demonstrated no evidence of gene editing. Baseline
levels of triglycerides, cholesterol, and plasma ANGPTL3 were
comparable between the groups, whereas on day 7, significantly
lower levels of triglycerides, cholesterol and plasma ANGPTL3
were observed in the BE-Angptl3 group. Next, the mice were
treated with BE-control, BE-Pcsk9, BE-Angptl3, or a 1:1 mix of
BE-Pcsk9 and BE-Angptl3. On day 7, the triglycerides of the BE-
Angptl3 group showed a greater reduction than the BE-Pcsk9
group. Neither synergism nor additivity was observed in the

BE-Pcsk9 + BE-Angptl3 group. Finally, the researcher used the
Ldlr-knockout mice to test the effect of the BE-Angptl3. On day
14, compared with the BE-control, BE-Angptl3markedly reduced
the level of cholesterol (51%) and triglycerides (56%) in
treated mice.

Heterozygous T7498C mutation of the FBN1 gene can lead to
the Marfan syndrome (Arbustini et al., 2005). Huang et al.
assessed the correction efficacy of BE (Zeng et al., 2018). Cells
carrying the FBN1T7498C mutation were transfected with BE and
the correctional sgRNA (targeting to the FBN1T7498C mutation).
Results showed that 10 of the 20 clones (50%) were edited, and
eight clones presented a perfect C to T correction. Subsequently,
the experiment was carried out in human embryos. In the testing
group, seven embryos were treated by BE and correctional
sgRNA. The control group consisted of seven embryos treated
by BE and the scrambled sgRNA. Sanger sequencing
demonstrated a 100% correction in the testing group.

CRISPR Interference (CRISPRi) and
CRISPR Activation (CRISPRa)
Besides editing genes, CRISPR can activate (CRISPRa) or inhibit
(CRISPRi) the transcription of the target genes (Zheng et al.,
2018). The cas protein used in CRISPRi/a is the “dead” cas9
(dcas9), which is catalytically inactivated. The dcas9 carries an
effector molecule (a transcription activator or a transcription
repressor) and binds to the target DNA under the guidance of
sgRNA (Figure 4). Nowadays, the CRISPRi has been utilized to
treat hereditary arrhythmia (Limpitikul et al., 2017). Mutations in
calmodulin (CAM) can cause long QT syndrome (LQTs) (Crotti
et al., 2013; Boczek et al., 2016). The CAM gene family consists of
three members, CALM1, CALM2, and CALM3. Yue et al.
generated iPSCs from a patient harboring a CALM2 mutation
(Limpitikul et al., 2017). The iPSCs were induced to differentiate
into cardiomyocytes. The cardiomyocytes exhibited prolonged
action potential duration (APD) and mimicked the
manifestations of LQTs. In further investigation, after
inhibiting the expression of the CALM2 gene via CRISPRi, the
APD of the cardiomyocytes restored to normal. Notably, the
CRISPRi only inhibited the expression of the mutant CALM2
gene while sparing the wild-type counterparts.

Although the CRISPR/Cas9 appears a rather effective gene
editing technology, there are still several issues that need to be
addressed, such as off-target events (Lanphier et al., 2015). The
relatively high incidence of off-target events caused by BE have been
proved in previous studies (Zuo et al., 2019). However, in vivo and
in vitro experiments concluded that a careful design of the sgRNA
could avoid the off-target events (Akcakaya et al., 2018). Moreover,
patients administrated with CRISPR/cas9 may activate the immune
response due to the nature of the cas9 as a bacterial protein
(Charlesworth et al., 2019). Therefore, it is necessary to consider
these factors when applying this technology in clinics.

Other Gene Editing Technologies
Zinc finger nuclease technology (ZFN) and transcription
activator-like effector nucleases technology (TALENs), which
consist of the DNA recognition domain and DNA splicing
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domain, can also be considered as a way for gene editing. ZFN
and TALENs have been successfully applied to correct
mitochondrial DNA mutations (Bacman et al., 2013;
Gammage et al., 2016). According to Gammage’s study, the
ZFN could reduce the mutation rate from 73 to 37% in the
mice harboring the m.5024C > T tRNAAla mutation, and greatly
improved the cardiac metabolic function of mice (Gammage
et al., 2018).

NUCLEIC ACID DRUGS

The nucleic acid drugs mainly include DNA, microRNA
(miRNA), small interfering RNA (siRNA), antisense
oligonucleotides (ASO), and mRNA (Wang et al., 2020).

Vectors for Nucleic Acid Drugs
On the one hand, part of viruses, such as retrovirus, lentivirus,
adenovirus and adeno-associated virus (AAV) are commonly
used as vectors for nucleic acid drugs (Table 2). Among them, the
most widely used virus vector is AAV, which has diverse
serotypes with different affinity to tissues (Bacman et al., 2018;
Salganik et al., 2015). For instance, AAV9 possesses myocardial
tropism (Giles et al., 2018; Wu et al., 2006). On the other hand,
the main non-viral vectors (Table 2) include plasmid DNA, lipid
nanoparticles (LNP) and N-acetylgalactosamine (GALNAc)
(Alabi et al., 2012; Hulot et al., 2016; Springer and Dowdy, 2018).

DNA
AAV can transfect the cells via the glycosylated cell surface
receptors. Following the transfection, AAV will be either

FIGURE 4 |Mechanisms of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa): The cas protein in the CRISPRi/a is catalytically inactivated (called
dcas9). In the CRISPRi, the dcas9 connects with transcriptional suppressors, such as Kruppel associated box (KRAB). Under the guidance of gRNA, the dcas9-KRAB
fusion protein binds to the transcription start site (TSS) of the target gene and inhibits transcription. On the contrary, the dcas9 of the CRISPRa is equipped with the
transcriptional activator to a given TSS.

TABLE 2 | Gene vectors.

Category Advantages Disadvantages

Retrovirus Retrovirus can effectively integrate into the host genome, and stably
express the target genes. The integration mode is transposition, which will
not cause genome rearrangement. The transfection efficiency is high

It can only transfer mitotic cells. The host range is narrow. The target gene is
small. The virus titer is low. Random integration may lead to activation of
oncogene and gene mutation

Adenovirus A wide range of hosts, high safety and no pathogenicity to human Low transfection efficiency (10–15%)
Adeno associated
virus

A wide range of hosts and no pathogenicity to human. The possibility of
insertion mutation is reduced by directional integration. It can stably
express the foreign gene

It needs an auxiliary virus to finish the amplification. The preparation
process is complex

Lentivirus Stable expression of target genes, efficient transfection, a wide host range The virus evolved from HIV-1 and needs to be transformed before use
Plasmid DNA Easy to produce. No limitation to the DNA size. Low immunogenicity to

human
Low transfection efficiency

LNP Low toxicity, low immunogenicity, biodegradability Low transfection efficiency; poor stability
GALNAc High specificity of transportation to liver Limited application (only binds to cells expressing the asialoglycoprotein

receptor)
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transported into the nucleus or degraded by the proteasome.
There are two kinds of recombinant AAV: single-stranded AAV
(ssAAV) and self-complementary AAV (scAAV) (Wang et al.,
2019). The ssAAV should be converted to double-strand DNA
before gaining the transcriptional activity, while the scAAV can
immediately undergo transcription. Recombinant AAV (rAAV)
genomes can be integrated into the host genome at very low
frequencies. In addition to virus vectors, plasmid possesses the
ability of self-replication and self-expression (Schmeer et al.,
2017). Re-expression of the target gene via vectors could
provide a strategy for the treatment of the diseases driven by
loss-of-function mutation.

The Danon disease caused by loss-of-function of the gene
encoding lysosomal associated membrane protein 2 (LAMP2) is a
rare X-linked autophagic vacuolar myopathy, which is
characterized by multiple system abnormalities, such as heart,
skeletal muscle, and liver (Balmer et al., 2005). The penetrance
rate of the mutation was almost 100%, and the heart symptoms
were extremely serious (D’souza et al., 2014). After the injection
of an AAV vector carrying human LAMP2b gene, the
concentration of LAMP2b protein in heart, liver and skeletal
muscle tissue of the LAMP2 knockout mice notably retrieved, and
the symptoms were improved in a dose-dependent manner
(Manso et al., 2020). The above findings suggested that the
AAV vector could correct the defects via expressing the
target gene.

The sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a
crucial role in the process of Ca2+ homeostasis. Besides, decreased
activity and expression of SERCA2a were reported in HF patients
(Zhihao et al., 2020). In CUPID, a random, double-blind, phase
IIb trial, a total of 250 patients with LVEF ≤35% and NYHA class
II-IV were enrolled and randomly assigned to receive either
placebo (n � 127) or AAV1/SERCA2a (n � 123) (Greenberg
et al., 2016). The primary endpoint was the time from
randomization to ambulatory intervention for worsening HF
or hospital admission caused by HF. During a median follow-
up of 17.5 months, neither improved outcome (HR 0.93, 95% CI
0.53–1.65) nor the safety issues were determined in the AAV1/
SERCA2a group. Although the study did not achieve the desired
results, it demonstrated the safety of AAV gene therapy.

Proinflammatory cytokines constitute a key part in the
pathogenesis of HF (Mann, 2015). Regnase-1 can degrade the
mRNA of proinflammatory cytokines. The regnase-1-deficient
mice were subjected to TAC to induce HF (Matsushita et al.,
2009). Compared to the control littermates, regnase-1-deficient
mice showed dilated cardiomyopathy (DCM) and severe
inflammation with high level of IL-6 mRNA. Administration
of anti-IL6 receptor antibody or AAV carrying the regnase-1
could attenuate the development of cardiomyopathy.
Pathological examination proved significant remission of the
fibrosis and the infiltration of immune cells (CD45) in the
AAV treated mice (Omiya et al., 2020). These results
suggested that Regnase-1 carried by AAV could protect the
heart by reducing the inflammatory response of cardiomyocytes.

Hypertension can lead to diastolic dysfunction, cardiac
remodeling and fibrosis (Tamura et al., 2000; Zile and Brutsaert,
2002). BNP can suppress the renin-angiotensin-aldosterone system

(RAAS), thus decreasing the blood pressure (Tamura et al., 2000;
Kishimoto et al., 2001). Cataliotti et al. used the AAV9 to
continuously enhance the expression of proBNP in the SHR
(Cataliotti et al., 2011). A single systemic administration of
AAV9 elicited long-term expression of proBNP in the heart,
resulting in reductions in diastolic and systolic pressure for
9 months. The posterior wall thickness at end diastole, LV end-
systolic dimension, LV mass index and septal wall thickness at end
diastole markedly declined, whereas the ejection fraction
significantly increased in SHR treated with AAV9-proBNP.

miRNA
The miRNA is a small endogenous RNA. Most miRNA can
inhibit the gene expression via RNA interference (RNAi)
(Figure 5) (Wilson and Doudna, 2013). Inversely, some
miRNAs activate the transcription, such as miR-589
(Rupaimoole and Slack, 2017). There are two kinds of
miRNA drugs: antimiRs and miRNA mimics. The antimiRs
primarily target to miRNAs that cause diseases, and the miRNA
mimics are designed to inhibit the target mRNA (Janssen et al.,
2013). Giacca et al. delivered miR-199 to infarcted myocardium
via AAV vector to promote pig myocardial regeneration and
realized an obvious diminished infarcted area on day 28
(Gabisonia et al., 2019). Nevertheless, due to the constant
expression of the miR-199, the majority of pigs developed
arrhythmias, which indicates that the dose of miRNA needs
to be strictly controlled. Toll-like receptors (TLRs)-mediated
immune responses play an important role in IRI (Linde et al.,
2007). It was shown that miR-146a could inhibit TLR-mediated
NF-κB signaling pathway (Taganov et al., 2006). Wang et al.
constructed lentivirus expressing miR-146a and transfected it
into IRI mouse models (Wang et al., 2013). The results showed
that miR-146a overexpressing mice had a 55% reduction in
myocardial infarct size and maintained a normal ejection
fraction. In addition, overexpression of miR-146a inhibited
NF-κB signaling pathway and reduced pro-inflammatory
cytokine levels. It has been shown that miR-25 can inhibit
SERCA2a protein expression, which in turn leads to
decreased cardiac function (Jeong et al., 2018). Further in
vivo experiments showed that overexpression of miR-25
reduced cardiac function in TAC mouse models (Wahlquist
et al., 2014). The TAC mouse models treated with anti-miR-25
restored the SERCA2a protein level and cardiac function.
However, in SERCA2a-knockout mice, the anti-miR-25 had
no effect on the level of SERCA2a and cardiac function
(Wahlquist et al., 2014). These results demonstrated that
miR-25 affected cardiac function by inhibiting SERCA2a and
suggested that miR-25 is a therapeutic target for HF. In addition,
in vivo and in vitro experiments showed that miR-92a could
inhibit vessel formation and angiogenesis (Bonauer et al., 2009).
In MI mouse models, systemic administration of the anti-miR-
92a resulted in enhanced blood vessel formation and restoration
of the cardiac function (Bonauer et al., 2009). To further validate
the therapeutic effect of miR-92a in IHD, Hinkel et al. treated a
large animal model of ischemia-reperfusion (pigs) with anti-
miR-92a and showed a reduction in miR-92a levels and infarct
size (Hinkel et al., 2013).
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Currently, a line of preclinical studies focusing on the miRNA
therapy are ongoing (Table 3). It should be recognized that RNAi
is suitable for the treatment of diseases caused by gain-of-
function mutations, but the off-target events largely hampered
its application, resulting in no miRNA drugs on the market.

siRNA
The siRNA refers to an exogenous double-strand RNA (Kanasty
et al., 2013; Nikam and Gore, 2018). After delivered into the cells,
the siRNA binds to the complementary sequence to degrade the
mRNA (Figure 5) (Wilson and Doudna, 2013). Onpattro, the
first FDA approved siRNA drug, targets to TTR and reduces the
deposition of amyloid in organs (González-Duarte et al., 2020;
Saw and Song, 2020). The Medicines company also developed a
type of siRNA drug, inclisiran, to reduce the level of cholesterol
via down-regulating the mRNA of PCSK9, thus enhancing the
liver’s ability to remove LDL-C from the blood (Ray et al., 2017).
In addition, there are animal experiments using siRNA to treat
myocarditis. Myocarditis can lead to acute HF or chronic DCM
(Hua et al., 2020). The level of monocyte chemotactic protein 1
(MCP-1) and its receptor CCR2 were 5-fold higher in patients
with myocarditis than in normal controls (Leuschner et al., 2015).
Leuschner et al. administered siRNA for CCR2 to treat
autoimmune myocarditis mouse models (Leuschner et al.,

2015). Mice treated with siRNA not only had an improved
ejection fraction, but also showed a reduction in myocardial
fibrosis.

ASO
The ASO can combine with mRNA and inhibit gene expression
via the following two manners: 1) RNaseH independent way:
After combining with the complementary mRNA, the ASO
inhibits translation via the steric blocking effect. 2) RNaseH
dependent way: After combining with the complementary
mRNA, the ASO recruits the RNaseH to degrade the mRNA
(Bennett, 2019).

Some ASO drugs are currently being used in the clinic. For
instance, Mipomersen, a synthetic phosphorothioate ASO
generated by Genzyme, is proved to down-regulate the mRNA
level of apo B-100 (apolipoprotein of LDL and VLDL) via the
RNaseH dependent way, thus decreasing the levels of LDL-C, TC
and non-HDL-C in patients with familial hypercholesterolemia
(Stein and Castanotto, 2017). Familial chylomicronemia
syndrome (FCS) is determined as one of risk factors for the
atherosclerosis (Benlian et al., 1996). Waylivra (volanesorsen) is a
second generation ASO for the treatment of FCS (Witztum et al.,
2019). Volanesorsen binds to the 3′ untranslated region of
apolipoprotein C-III (apoCIII) mRNA and degrades the

FIGURE 5 | Mechanism of RNA interference (RNAi): RNAi is a post-transcriptional gene silencing method. The microRNA (miRNA) and small interfering RNA
(siRNA) can mediate the RNAi. The miRNA is a kind of endogenous non-coding RNA. The miRNA-mediated RNAi starts from the generation of the pri-miRNA. When
generated endogenously, the pri-miRNA is cut by the drosha and DGCR8, resulting in the formation of the pre-miRNA. After that, the pre-miRNA is transported into the
cytoplasm. Dicer recognizes the pre-miRNA and cuts it into a single strand. Finally, the transactivation response element RNA-binding protein (TRBP), Dicer,
Argonaute protein, and themiRNA form the RNA induced silencing complex (RISC). The RISCwill bind the complementary mRNA to inhibit the translation. The siRNA is a
kind of exogenous non-coding RNA. After delivered into the cells, the siRNA will be cleaved into a single strand RNA. After that, the TRBP, Dicer, Argonaute protein and
the siRNA form the RISC. The RISC will degrade the complementary mRNA.
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apoCIII mRNA via the RNaseH dependent way. A phase III
clinical trial enrolled 66 patients and randomly assigned them
into volanesorsen group (n � 33) or placebo group (n � 33)

(Witztum et al., 2019). The primary endpoint was the change in
fasting triglyceride levels from baseline to the third month. At the
third months, an 84% (25.7 mg per deciliter) decrease of plasma

TABLE 3 | Targeted therapy in cardiovascular disease.

Drug Disease Phase

mAb
evolocumab High LDL-C hyperlipidemia On the market Sabatine et al. (2017a)
evinacumab FoFH On the market Ahmad et al. (2019)
Anakinra Heart remodeling, HF I/II/III Abbate et al. (2008); Abbate et al. (2015); Ikonomidis et al. (2014); Van Tassell et al.

(2017); Trankle et al. (2019)
canakinumab CHD On the market Ridker et al. (2017)
Rilonacept Acute pericarditis and atherosclerosis III/II Dinarello et al. (2012); Klein et al. (2020)
inclacumab STEMI II Stahli et al. (2016)
tocilizumab NSTEMI II Kleveland et al. (2016)
abciximab STEMI On the market De Luca et al. (2005)

bAb
Sca-1 × GPIIb/IIIa ICM Animal model Ziegler et al. (2017)
CD45 × MLC ICM Animal model Yu et al. (2015)
c-kit × VCAM-1 ICM Animal model Lum et al. (2004)
GPVI × CD133 CVD Animal model Langer et al. (2010)

Peptide
ATR12181 Hypertension NDA Zhu et al. (2006)
ATRQβ-001 Hypertension, AAA NDA Zhang et al. (2019)

siRNA
Inclisiran Hypercholesterolemia NDA Raal et al. (2020)

ASO
mipomersen FoFH III Raal et al. (2010)
volanesorsen Familial chylomicronemia syndrome III Witztum et al. (2019)

miRNA
MRG-110 ICM, HF, PVD I Gallant-Behm et al. (2018)
miR-33 Atherosclerosis Animal model Rupaimoole and Slack. (2017)
miR-208 MI Animal model Montgomery et al. (2011)
miR-21 Cardiac fibrosis Animal model Thum et al. (2008)
miR-15 MI Animal model Hullinger et al. (2012)
miR-199 Myocardial regeneration Animal model Gabisonia et al. (2019)
miR-21 Hypertension Animal model Alagia and Eritja. (2016)
miR-378 HCM Animal model Ganesan et al. (2013)
Crispr/cas9 Familial hypercholesterolemia Animal model Zhao et al. (2020)

Non ICM Animal model Kaneko. (2016)
Myocardial amyloidosis Animal model Finn et al. (2018)

base editor3 Marfan syndrome Human embryo Zeng et al. (2018)
CRISPR interference LQTS iPSC model Limpitikul et al. (2017)
ZFN Mitochondrial mutations Animal model Gammage et al. (2016)
Talen Mitochondrial mutations Animal model Bacman et al. (2018)

DNA
FGF21, AAV: sTGFβR2, AAV:

αKlotho
HF Animal model Davidsohn et al. (2019)

ChR2 Arrhythmia Animal model Nussinovitch and Gepstein. (2015)
ReaChR Ventricular tachycardia Animal model Nyns et al. (2017)
Regnase-1 Heart inflammation, HF Animal model Omiya et al. (2020)
S16EPLN Cardiomyopathy, HF Animal model Hoshijima et al. (2002)
CASQ2 Arrhythmia Animal model Denegri et al. (2014)
proBNP Hypertension Animal model Cataliotti et al. (2011)
betaARKct HF Animal model Rengo et al. (2009)
S100A1 Chronic HF Animal model Pleger et al. (2007)
HO-1 IRI Animal model Melo et al. (2002)

mRNA
VEGF-A modRNA MI Animal model Zangi et al. (2013)
VEGF-A modRNA Ischemic complications in type 2 diabetes

mellitus
I a/b Gan et al. (2019)

CAR-T Cardiac fibrosis Animal model Aghajanian et al. (2019)

AAA, abdominal aortic aneurysm; CHD, coronary heart disease; CVD, cardiovascular disease; FoFH, familial hypercholesterolemia; HCM, hypertrophic cardiomyopathy; HF, heart failure;
ICM, ischemia cardiomyopathy; iPSC, induced pluripotent stem cell; IRI, ischemia reperfusion injury; LDL-C, low-density lipoprotein cholesterol; LQTS, long QT syndrome; NDA, new drug
application; NSTEMI, non-ST-segment elevation myocardial infarction; PVD, peripheral vascular disease; STEMI, ST-segment elevation myocardial infarction
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apoC-III levels were observed in patients receiving the
volanesorsen, whereas a 6.1% (1.9 mg per deciliter) increase of
plasma apoC-III levels were detected in patients receiving the
placebo. A variety of ASOs are currently available for the
treatment of DMD, such as casimersen, golodirsen and
eteplirsen (Rodrigues and Yokota, 2018). These drugs use exon
skipping technology, which is capable of skipping (deleting)
mutated exons, thus avoiding abnormal mRNA splicing and
resulting in the synthesis of truncated but partially functional
proteins. Casimersen, golodirsen and eteplirsen skip exon 45, 53
and 51, respectively.

mRNA
The mRNA can be directly translated into proteins. At present,
the application of mRNA therapy includes two aspects: 1)
Introducing exogenous mRNA into the body and correcting
the deficiency of gene expression. 2) Loading the mRNA into
the vaccine.

To date, some mRNAs have been developed to treat CVDs.
Chien et al. successfully treated the MI mice by using chemically
modified mRNA (modRNA) encoding VEGF-A (Zangi et al.,
2013). Based on that, Gan’s team evaluated the effects of
modRNA encoding VEGF-A in type 2 diabetes mellitus
(T2DM) patients (Gan et al., 2019). The trial recruited 42
T2DM patients with the body weight >50 kg and a BMI of

20–35 kg/m2. The primary endpoint was to evaluate the
tolerability and safety of the modRNA. Compared with the control
group (saline), the VEGF-A protein level in the modRNA group was
significantly higher. Laser Doppler measurement and acetylcholine
iontophoresis suggested that the skin blood flow of the modRNA
group increased 2 times. These results indicated that modRNA
encoding the VEGF-A could promote vasodilation and
neovascularization in T2DM patients. This study supported
evidence for the potential that mRNA can effectively treat ischemic
symptoms in patients with ischemic CVD and T2DM.

These results show that the mRNA plays an important role in
the diseases caused by loss-of-function mutation.

CAR-T THERAPY

The CAR-T therapy belongs to immune therapy. The CAR is
composed of three parts: 1) An antigen binding region, which
consists of a single-chain fragment variable (scFv) and can
specifically bind to the target antigens; 2) The transmembrane
area, which fixs the scFv on the surface of T cells; 3) Signal
transduction region, which consists of CD3-ζ chain of the T cell.
When the scFv binds to the target antigen, the CAR-T cells will be
activated via the major histocompatibility complex-independent
way. (Figure 6) (Depil et al., 2020).

FIGURE 6 | Mechanisms of Chimeric antigen receptor T-cell (CAR-T) therapy. The CAR is made up of three components: 1) an antigen binding region, which
consists of a single-chain fragment variable (scFv). The scFv can specifically target to the antigens. 2) the transmembrane area, which fixes the scFv on the surface of
T cells. 3) signal transduction region, which consists of CD3-ζ chain of the T cell. The gene of the CAR is designed based on the target antigen. After that, the T cells were
extracted from the patients and transfected by vectors carrying the CAR gene. The transfection results in the expression of the CAR on the surface of T cells (CAR-
T cells). The CAR-T cells are amplified in vitro and injected into the patients to cure the disease.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 62367413

Xu and Song Precision Therapy in Cardiovascular Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The CAR-T therapy has successfully treated myocardial
fibrosis in mice (Aghajanian et al., 2019). The ovalbumin
peptide (OVA) is a marker of the activated fibroblast. Herein,
a CAR-T cell targeting to the OVA (CAR-T-OVA) was generated
and utilized to treat the myocardial fibrosis in mice. Compared
with the control group (saline), the fibrosis level of the CAR-T-
OVA treated group was extensively alleviated. Besides, the RNA-
seq in the cardiomyopathy patients revealed that fibroblast
activation protein (FAP) was expressed on the activated
fibroblast. Another CAR-T cell targeting to the FAP (CAR-T-
FAP) was designed and used to treat the cardiac fibrosis. Compared
with the control group (saline), the fibrosis level of the CAR-T-FAP
treated group was significantly reduced. The encouraging findings in
preclinical experiments paved the way for the CAR-T therapy to be
applied to humans. However, it should be noted that some studies
have shown that fibroblasts play a protective role in the process of
heart injury by secreting matrix and crosslinking with surrounding
cells (Hampton, 2019). Therefore, complete elimination of activated
fibroblasts is of high-risk. In addition, one of the unexpected side
effects of CAR-T is the cytokine release syndrome (CRS) (Ganatra
et al., 2019). When the CRS occurs, macrophages release a large
number of cytokines. The CRS can lead to cardiac tachycardia,
hypotension, pulmonary edema and cardiogenic shock. Currently,
there are clinical studies using CAR-T to treat post-transplant
lymphoproliferative disorders (PTLD) (Dang et al., 2020). A female
patient developed PTLD after receiving the heart transplant, but the
disease progressed despite chemotherapy. Ultimately, the patient was
treated with CAR-T. The patient was eligible for the indication for
CAR T-cell therapy to treat diffuse large B-cell lymphoma. The PTLD
achieved disease clearance as indicated by PET/CT. And the cardiac
function did not decrease during the treatment. This is the first time
that CAR-T therapy was used in heart transplant patients, and the
success of the treatment, with strict indications and close monitoring
of adverse reactions, provides valuable advice for CAR-T in the
treatment of CVDs.

CONCLUSION

Targeted therapy is a promising method to achieve the precision
medicine. Nowadays, various technologies accelerate the
development of the targeted therapy. The main technologies of

the targeted therapy include protein drugs, gene editing
technology, nucleic acid drugs and cell therapy (Table 4).

The protein drugs consist of mAbs, bAbs and peptides. At first,
the mAb is generated from the mouse hybridoma, which carries
the heteroantigens and induces the human anti-mouse antibody
response (Puligedda et al., 2019). The side effect affects the
function of the mAb. The researchers used the transgenic
mice, hybridoma, phage display, and single B-cell isolation
approaches to design the fully human mAbs, which could
avoid the heterogeneous immune response (Jin et al., 2017).
The mAbs are of high purity and specificity and can be
produced in considerable number quickly. The mAbs have
been widely used in the field of tumor and rheumatic diseases.
And the mAbs are increasingly applied in the field of CVDs. For
example, a series of clinical trials (such as the ODYSSEY
OUTCOMES (Schwartz et al., 2018) and the FOURIER trials
(Sabatine et al., 2017b)) have confirmed that the PCSK9 mAbs
could reduce the cholesterol levels and the mortality of
cardiovascular patients. At present, several PCSK9 mAbs have
been approved for use in clinics (such as the alirocumab and the
evolocumab) (Sabatine et al., 2017b; Schwartz et al., 2018).
Although significant achievements have been made in the
treatment of CVDs, the preparation process of mAb is
complex, which leads to its high price (Carbonetti et al.,
2017). Compared with the mAbs, the bAbs show superior
advantages of binding to two different epitopes at the same
time and exert synergistic effect (Chen et al., 2020). To date,
the potential of bAbs to guide stem cells homing to the injured
area of myocardium and blood vessels has been investigated (Lum
et al., 2004; Gundlach et al., 2011). The results demonstrated that
the homing rate of the stem cells increased after the bAbs therapy. But
all the conclusions came from animal experiments. Therefore, it is
necessary to validate the effect of the bAbs in clinical trials. At present,
the peptides aremade into vaccines to treat the CVDs. The proteins of
the RAAS were designed as vaccine to induce antibody production
and inhibit the occurrence of hypertension (Chen et al., 2013; Zhang
et al., 2019). In both mouse and rat models, the vaccine has greatly
inhibited the elevation of the blood pressure and alleviated organ
damage. Similar to the bAbs, the safety and efficacy of the peptides
have not been tested in human.

Gene editing technology includes CRISPR/Cas9 technology,
ZFN and TALENs, among which the CRISPR/Cas9 is the most

TABLE 4 | The advantages and disadvantages of the targeted therapy.

Category Advantages Disadvantages

mAb High specificity; mature clinical application; no off-target events High price; immune response (except whole human antibody); complex
preparation procedures

bAb High specificity; synergistic effect of different antigen binding domains; no
off-target events

Complex preparation procedures; no clinical products; high price

CRISPR/cas9 Specific gene editing Off-target events; gene rearrangement; oncogenes activation; immune
response of the host

BE Specific gene editing; no gene rearrangement Low efficiency of gene editing (40%); immune response of the host; off-target
events

Nucleic acid
drugs

Easy to prepare Off-target events (miRNA and siRNA); gene insertion (DNA); oncogenes
activation

CAR-T High specificity; no off-target events Ineffective for intracellular lesions; cytokine release syndrome; complex
preparation procedures
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widely used. CRISPR/Cas9 can specifically knock out or knock in
the target genes (Jinek et al., 2012). Nowadays, researchers use
CRISPR/Cas9 to treat HCM, amyloidosis, DCM and cardiac
metabolic diseases at the gene level (Maron et al., 2012;
Chadwick et al., 2018; Chen et al., 2018). Injection of the
sperms carrying the MYBPC3 mutation and a CRISPR/Cas9
system resulted in a 100% correction of the mutation,
indicating the excellent efficiency of CRISPR/Cas9 (Carbonetti
et al., 2017). However, the NHEJ mechanism used by the somatic
cells to repair the DSB may cause the gene rearrangement, which
may lead to the gene dysfunction (Humbert et al., 2012). BE is a
variation of the CRISPR/Cas9, which can induce the conversion
of the base at the specific site without causing the DSB (Komor
et al., 2016). A total of 40% of the mutations in embryos carrying
the FBN1T7498C mutation could be corrected via BE (Arbustini
et al., 2005). Although the result was not as expected, the research
provided innovative concepts for the treatment of inherited
CVDs. However, several limitations such as the off-target
events and a low success rate confine the clinical application
of gene editing technology (Zhan et al., 2019).

Nucleic acid drugs consist of the oligonucleotides, including
the DNA, siRNA, miRNA, ASO, and mRNA. Based on the
different effects, the nucleic acid drugs can be divided into
drugs that promote gene expression (DNA and mRNA) and
drugs that inhibit gene expression (siRNA, miRNA, and ASO).
The delivery of the nucleic acid drugs into the host necessitates a
vector, and the AAV is the most commonly used carrier (Wu
et al., 2006; Alabi et al., 2012; Salganik et al., 2015; Hulot et al.,
2016; Bacman et al., 2018; Giles et al., 2018; Springer and Dowdy,
2018). For diseases caused by the loss-of-function mutation, a
vector carrying the DNA or mRNA can treat the disease by
overexpressing the target gene. For diseases caused by the gain-of-
function mutation, a vector carrying the siRNA, miRNA or ASO
can treat the disease by inhibiting the translation of the target
gene. The nucleic acid drugs are easy to produce and relatively
cheap. But the foreign DNA may integrate into the host DNA,
which may cause the insertion mutation and activation of

oncogenes (Wang et al., 2019). Moreover, the RNAi mediated
by the siRNA and miRNA may cause the off-target events that
inhibit the expression of the non-target gene (Alagia and Eritja,
2016).

After edited in vitro, the CAR-T cells can specifically kill the
target cells without the MHC restriction (Newick et al., 2017;
Zhang et al., 2018). Epstein’s work has proved the excellent
efficacy of the CAR-T therapy for the cardiac fibrosis
(Aghajanian et al., 2019). Given that the CAR-T cells kill all
cells expressing the target antigen, the rigorous design and careful
surveillance are indispensable during the application of the CAR-
T therapy. However, one of the major shortcomings is that the
CAR-T therapy can induce the CRS, which may cause severe
heart injury (Ganatra et al., 2019).

In conclusion, targeted therapy has emerged as a novel and
promising approach for the treatment of CVDs (Table 3). By
utilizing genomics, transcriptomics and proteomics, researchers
are capable of dissecting the pathogenesis of the diseases and
exploring the target therapy, thus bringing the treatment of
CVDs into a precision therapy era. However, the issues of
unexpectable off-target events and side effects during the
application of the targeted therapies should be addressed in
further investigations.
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