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Carbohydrates are the major component of most ruminant feeds. The digestion of

carbohydrates in the rumen provides energy to the ruminants but also contributes to

enteric methane (CH4) emissions. Fresh forage is the main feed for grazing ruminants in

temperate regions. Therefore, this review explored how dietary carbohydrate type and

digestion affect ruminant CH4 emissions, with a focus on fresh forage grown in temperate

regions. Carbohydrates include monosaccharides, disaccharides, oligosaccharides,

and polysaccharides. Rhamnose is the only monosaccharide that results in low

CH4 emissions. However, rhamnose is a minor component in most plants. Among

polysaccharides, pectic polysaccharides lead to greater CH4 production due to the

conversion of methyl groups to methanol and finally to CH4. Thus, the degree of methyl

esterification of pectic polysaccharides is an important structural characteristic to better

understand CH4 emissions. Apart from pectic polysaccharides, the chemical structure

of other polysaccharides per se does not seem to affect CH4 formation. However,

rumen physiological parameters and fermentation types resulting from digestion in the

rumen of polysaccharides differing in the rate and extent of degradation do affect CH4

emissions. For example, low rumen pH resulting from the rapid degradation of readily

fermentable carbohydrates decreases and inhibits the activities of methanogens and

further reduces CH4 emissions. When a large quantity of starch is supplemented or

the rate of starch degradation is low, some starch may escape from the rumen and

the escaped starch will not yield CH4. Similar bypass from rumen digestion applies to

other polysaccharides and needs to be quantified to facilitate the interpretation of animal

experiments in which CH4 emissions are measured. Rumen bypass carbohydrates may

occur in ruminants fed fresh forage, especially when the passage rate is high, which

could be a result of high feed intake or high water intake. The type of carbohydrates

affects the concentration of dissolved hydrogen, which consequently alters fermentation

pathways and finally results in differences in CH4 emissions. We recommend that the

degree of methyl esterification of pectic polysaccharides is needed for pectin-rich forage.

The fermentation type of carbohydrates and rumen bypass carbohydrates should be

determined in the assessment of mitigation potential.
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INTRODUCTION

Global warming resulting from the emissions of greenhouse gases
(GHG) is a worldwide issue. Greenhouse gases emitted from
anthropomorphic activities, including industrial and agricultural
production, are the main driving force of global warming (1).
A target for net zero emissions was set to achieve a balance
between emission and removal of anthropogenic GHG by 2050
(2, 3). Methane (CH4) is an important gas causing greenhouse
effects on the earth, and its atmospheric warming potential
is 28 times that of carbon dioxide (CO2) (4). The global
annual emissions of CH4 into the atmosphere are 500–600
million tonnes, and the half-life of CH4 in the atmosphere is
8.6 years (5). In November 2021, over 110 countries pledged
to reduce global CH4 emissions by at least 30% in 2030
compared with 2020 (https://www.globalmethanepledge.org/).
Agriculture accounts for 62% of global CH4 emissions from
human activities, of which ruminants account for 58% of
agricultural emissions (6). Enteric fermentation represents about
30–32% of total anthropogenic CH4 emissions in the world (7).
Thus, ruminant production industries are an important source
of CH4 emissions. Methane emissions from ruminants not only
aggravate the global greenhouse effect but also cause an energy
loss in livestock, accounting for 3.9–10.7% of ingested metabolic
energy (8).

Although ruminants can produce CH4 in the hindgut, most

CH4 is formed in the rumen (9). The feed ingested by ruminants

is degraded and fermented by microorganisms in the rumen to

produce products such as short-chain fatty acids (SCFA), CO2

and metabolic hydrogen (H2) (10). Short-chain fatty acids are
absorbed through the rumen wall to provide energy. Metabolic
H2 and CO2 are used by methanogens to produce CH4. In this
process, CO2 is the carbon source, and H2 is the main electron
donor. Four moles of hydrogen (H2) can produce 1 mole of
CH4 (11). Methanogenesis is the main biochemical pathway to
remove metabolic H2 for maintaining a very low concentration
of H2 in the rumen (about 1µM dissolved H2). If the H2

concentration increases, the feed degradation rate decreases. The
CH4 emissions can be reduced by inhibiting the formation of
H2 from fermentation or promoting alternative pathways of H2.
A few species of methanogens use alcohols as electron donors
to participate in the formation of CH4, but most methanogens
use H2 and formate as electron donors (11). Although there are
other methanogenic microorganisms in the rumen, methanogens
are absolutely dominant. Methanogens belong to Archaea (12).
There are 107-109 cells of methanogenic archaea per mL of
rumen fluid (13). There are three main types of Archaea in
the rumen. Cluster A is the most important, mainly including
Methanobrevibacters; Cluster B mainly Methanosphaera and
Cluster C the remainder. Clusters A and B account for 84% of the
total number of Archaea in the rumen (12). The pH range suitable
for the growth of methanogens is 6.0–7.5, with the bottom limit
of 5.5–6.5. Othermicroorganisms in the rumen, such as protozoa,
have an indirect impact on CH4 emissions. Protozoa use starch,
cellulose, hemicellulose, pectin and soluble sugar to produce
SCFA and metabolic H2. The metabolic H2 is converted to CH4

by methanogens attached to the surface of protozoa (14).

In temperate countries with animal agriculture based on
pastoral systems, pastures are dominated by perennial ryegrass,
but mixtures of ryegrass with clover or herbs and grazing
forage crop monocultures have become more common to
improve animal performance, fill pasture feed gaps, and reduce
environmental impact (15, 16). These alternative pasture species
contain a wide range of non-structural carbohydrates (NFC)
and generally have a greater ratio of NFC to structural
carbohydrates than ryegrass pasture. We postulate that the
reported differences in CH4 emissions between ryegrass and
alternative forages (15, 17, 18) might be due to their difference
in carbohydrate composition and rate of digestion, as it is known
that carbohydrates affect CH4 emissions (19).

The hydrolysis of di-, oligo- and poly-saccharides in the
rumen into monosaccharides is a complex process with a large
number of enzymes involved. However, it is interesting to
note that no H2 is produced, and thus, no CH4 is formed
during this process (11). On the other hand, the fermentation
of monosaccharides to pyruvate and then into SCFA such as
acetate and butyrate results in H2 formation, which is mainly
converted into CH4 by ruminal methanogens. The type of
SCFA produced from the fermentation of pyruvate depends
on the ruminal microbial community structure and ruminal
environment (11, 20, 21), which can affect CH4 emissions (21,
22). The dissolved H2 concentration in the rumen is a key factor
determining the SCFA formation pathways and end-products
(20). Feeding different dietary carbohydrate fractions often
results in different ruminal fermentation and passage rates (23),
ruminal pH, rumen buffering capacity, and different (acetate +
butyrate)/propionate ratios (21, 24). Therefore, changing forage
carbohydrate composition might be an effective way to mitigate
CH4 emissions. However, to the best of our knowledge, few
systematic reviews are performed in this area although some
reviews have more or less touched upon carbohydrates [e.g.,
(10, 25–28)], despite many study results being published over
the last few decades. Therefore, the aim of this review was
to summarise published data on carbohydrate types and their
molecular structure present in ruminant feeds, with an emphasis
on fresh forages and their role in enteric CH4 emissions.
The literature for this review was searched using SCOPS with
methane, ruminant (or rumen, methanogen) and carbohydrate
(including terms in this category such as monosaccharide,
disaccharide, polysaccharide, pectin, starch, fructan, etc.) and
with methane and temperate forage (including the common or
scientific names of temperate forages) as keywords and the date
range set between 2000 and 2022.

FRESH FORAGE CARBOHYDRATE
COMPOSITION AND CH4 EMISSIONS
FROM RUMINANTS

Improved pastures in pastoral animal production systems are
generally dominated by perennial ryegrass (Lolium perenne L.)
(29). Perennial ryegrass pasture composition was previously
found to have only minor effects on CH4 emissions from
sheep and cattle (29–31). However, mixing pastures with clover
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or herbs or grazing forage crop monocultures is increasing.
These alternative forage species have a much wider range of
carbohydrate types and compositions than perennial ryegrass.
A series of trials with sheep fed fresh alternative forages vs.
perennial ryegrass have been performed (15, 32), and the
detailed carbohydrate composition of the forage eaten was
analysed by conventional gravimetric and spectrophotometric
methods (Table 1). Carbohydrate fractions analysed included
water soluble carbohydrates (WSC) after hot-water extraction
(consists of mono-, di-, and oligo- saccharides), pectin using
meta-hydroxydiphenyl (44), and fibre residue after neutral
detergent (NDF, consists of hemicellulose, cellulose and lignin)
and acid detergent (ADF, consists of cellulose and lignin)
extraction (45). Hemicellulose concentration was estimated as
NDF – ADF, cellulose concentration as ADF – the residue left
after sulphuric acid extraction of ADF, and total NFC as 1 –
ash – crude protein – lipids – NDF. Starch concentration was
assumed to be negligible in these fresh forages. The studies
showed that only sheep fed forage brassicas had consistently
lower CH4 emissions than sheep fed perennial ryegrass pasture
(15, 35, 37, 46), while sheep fed forage chicory (33, 34) or white
clover (17) had similar CH4 emission to sheep fed perennial
ryegrass pasture (Table 1). Although there was a moderate
negative relationship (R2 = 0.38) between CH4 yield [g/kg dry
matter intake (DMI)] andWSC: NDF ratio (Figure 1), the forage
carbohydrate composition did not fully explain differences in
CH4 emissions (32, 47). Therefore, other potential mechanisms
behind lower CH4 emissions in sheep fed forage brassicas
were investigated, including chemical and digestive parameters
like hydrogen sinks (nitrate and sulphur), plant secondary
compounds (S-methyl cysteine sulfoxide and glucosinolates),
rumen fermentation profiles (i.e., SCFA profile), solid and
liquid rumen turnover rates, total tract digestibility and free
triiodothyronine in blood (related to digesta fractional passage
rate) (35, 37, 46), but none of these individual variables had
a strong relationship with CH4 emissions (47). Therefore, the
full mechanisms for the CH4 mitigation properties of forage
brassicas remain unclear to date. Sun (48) proposed a new
hypothesis based on a literature review to explain the low
enteric CH4 emission observed from ruminants fed forage
brassica. According to the hypothesis, glucosinolates, a secondary
metabolite widely present in forage brassica or their breakdown
products, can stimulate the secretion of free triiodothyronine in
ruminants. This may change rumen physiology by reducing the
mean retention time of digesta in the rumen, ultimately reducing
enteric CH4 emissions.

The forage effects of NFC on ruminant performance and
CH4 emissions have been studied extensively over the last two
decades. For example, high levels of NFC in the diet can be
delivered by feeding high sugar grasses (HSG). In a study by
Kim et al. (49), lambs fed fresh HSG emitted 17% less CH4

than lambs fed conventional perennial ryegrass (19.3 vs. 23.3
g/kg DMI) and when these ryegrasses were mixed with white
clover, such CH4 emission differences remained (18.6 vs. 21.2
g/kg DMI). In New Zealand, sheep fed an HSG cultivar or a
tetraploid ryegrass cultivar were found to have a lower CH4 yield
than sheep fed a conventional diploid ryegrass cultivar (Table 1)

(29, 39). However, Staerfl et al. (50) found similar CH4 yield
(19.4 and 20.3 g CH4/kg DMI, respectively) in lactating Holstein-
Friesian dairy cows fed HSG or conventional ryegrass hay [492
vs. 491 g NDF, 224 vs. 101 g NDF, 193 vs. 103 g WSC, and 129 vs.
82 g ethanol soluble carbohydrates per kg of dry matter (DM),
respectively]. Therefore, the effect of increasing dietary NFC
concentration in ryegrass or by feeding alternative forages, on
CH4 emissions has been variable.

CARBOHYDRATE COMPOSITIONS

The chemical characterisation of carbohydrates in feeds/forages
in the previous sections was performed using conventional
gravimetric and spectrophotometric methods, which do not
provide a detailed characterisation of the types (Figure 2) and
molecular structure of plant carbohydrates. In vitro studies have
provided evidence that different types of carbohydrates change
CH4 emissions (52–55). Carbohydrates in plants are present as
mono-, di-, oligo- and- poly-saccharides (56) and can be linked
with other compounds in the plant such as protein and lignin to
form the plant cell wall structures.

Free Monosaccharides
Glucose and fructose are present as free monosaccharides in
plants (57, 58) at concentrations generally below 10 g/kg DM,
although they can be up to 61 g/kg DM in spring grass
(57). Glucose can account for 20–90% of total non-structural
carbohydrates in the leaves of tropical grasses (59) and 11–36 g/kg
DM (60) and 10–20 g/kg DM (58) in some cool-season grasses.
Fructose is not detectable or is only present in very small amounts
in the leaves of tropical grasses (59) and between 8 and 22 g/kg
DM (60) and 5–12 g/kg DM (58) in the leaves of cool-season
grasses. Free sugars are estimated to degrade in the rumen at a
rate of 40–60%/h (61).

Monosaccharides in Di-, Oligo-, and
Poly-Saccharides
Monosaccharides are the basic units of disaccharides,
oligosaccharides and polysaccharides, and in plants include
pentoses (5-carbon sugars) such as xylose and arabinose, and
hexoses such as glucose, galactose, rhamnose, mannose, fructose,
glucuronic acid, and galacturonic acid. Many of these can
occur in a variety of different polysaccharides. For example,
in lignified secondary cell walls of dicotyledons, xylose occurs
mostly in xylans, but in primary walls of dicotyledons, it
occurs mostly in xyloglucans, with small amounts in pectic
polysaccharides. Similarly, in primary cell walls of dicotyledons
arabinose, galactose, rhamnose, and galacturonic acid occur
mostly in pectic polysaccharides. These associations result in
different rates and extent of digestion of monosaccharides from
the polysaccharides. The ratio of xylose to arabinose has been
suggested as an indicator of the potential digestion of forage
cell walls (62). This would apply particularly to dicotyledonous
forages, but even in grasses where heteroxylans containing
arabinose occur in both primary and lignified secondary cell
walls, the proportion of arabinose in these polysaccharides
is greater in primary cell walls, which also contain pectic
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TABLE 1 | Summary of methane measurements (measured using respiration chambers) in sheep fed different fresh temperate forages of varying chemical composition and crude carbohydrate fractions.

DM Ash CP Lipid WSC Pectin NFC NDF ADF ADL Hemi-

cellulose

Cellulose WSC:NDF NFC:NDFRFC:SC DMI CH4 References

g/kg DM Ratio g/d g/kg DMI

White clover

Exp1

166 95 255 24 98 65 350 276 183 86 93 97 0.36 1.27 0.86 930 19.8 (17)

Ryegrass Exp1 172 136 192 31 114 7 197 444 230 37 214 193 0.26 0.44 0.30 1,100 22.5

White clover

Exp2

162 89 214 22 125 65 406 269 183 86 86 97 0.46 1.51 1.04 1,160 23.4

Ryegrass Exp2 163 97 125 28 164 7 335 415 220 18 195 202 0.40 0.81 0.43 1,190 21.7

Chicory 89 144 117 107 65 281 213 80 68 133 0.38 1.63 0.86 772 22.8 (33)

Ryegrass 154 84 85 115 6 499 275 22 224 253 0.23 0.67 0.25 752 23.8

Kale 141 139 167 34 173 80 459 201 129 57 72 72 0.86 2.28 1.76 866 19.8 (34)

Rape 126 140 193 34 196 89 399 234 163 63 71 100 0.84 1.71 1.67 899 16.4

Swedes 94 92 162 11 301 69 559 176 121 51 55 70 1.71 3.18 2.96 792 16.9

Turnips 101 149 130 17 238 94 464 240 180 63 60 117 0.99 1.93 1.88 874 20.6

Ryegrass 176 154 150 36 106 10 124 536 277 30 259 247 0.20 0.23 0.23 946 22.0

Chicory 119 196 114 153 75.2 239 188 51 0.64 1.89 4.47 890 22.0 (35)

Ryegrass 165 127 197 114 10.4 423 218 205 0.27 0.60 0.61 869 23.6

White clover P1 163 99 262 26 102 68 327 286 190 89 96 101 0.36 1.14 0.86 940 19.8 (17)

Ryegrass P1 173 140 196 32 117 8 177 455 235 38 220 197 0.26 0.39 0.30 1,120 22.5

White clover P2 162 92 222 23 129 68 383 280 190 90 90 100 0.46 1.37 1.03 815 25.2

Ryegrass P2 163 99 128 29 168 7 319 425 226 19 199 207 0.40 0.75 0.43 835 23.6

White clover P3 160 97 220 23 106 63 364 296 203 69 93 134 0.36 1.23 0.74 910 22.5

Ryegrass P3 184 102 117 27 126 7 288 466 237 18 229 219 0.27 0.62 0.30 930 22.0

White clover 160 97 220 23 169* 364 296 203 93 1.23 1,140 22.5 (17)

Ryegrass 184 102 117 27 133* 288 466 237 229 0.62 1,120 22.0

Ryegrass 189 85 110 252 512 250 262 0.49 1,080 19.7 (36)

Rape P1 131 148 215 34 142 76 394 209 161 38 48 123 0.68 1.89 1.27 862 13.6 (37)

Ryegrass P1 148 158 181 41 83 9 156 464 242 27 222 215 0.18 0.34 0.21 792 19.5

Rape P2 142 83 158 34 240 75 555 170 123 37 47 86 1.41 3.26 2.37 896 17.8

Ryegrass P2 198 99 160 35 123 11 261 445 231 17 214 214 0.28 0.59 0.31 929 22.9

Ryegrass 145 107 202 112 507 257 250 0.22 1,130 21.6 (38)

Ryegrass HSG 167 96 134 39 249 288 443 261 16 182 245 0.56 0.65 0.58 850 18.9 (39)

Ryegrass CRG 166 91 142 41 311 318 408 251 16 157 235 0.76 0.78 0.79 825 20.7

Ryegrass TRG 130 114 156 44 202 259 427 261 18 166 243 0.47 0.61 0.49 825 20.6

(Continued)
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TABLE 1 | Continued

DM Ash CP Lipid WSC Pectin NFC NDF ADF ADL Hemi-

cellulose

Cellulose WSC:NDF NFC:NDFRFC:SC DMI CH4 References

g/kg DM Ratio g/d g/kg DMI

Ryegrass 203 67 114 526 254 272 950 19.1 (40)

CRG P1 167 96 134 39 249 288 443 261 16 182 245 0.56 0.65 0.58 820 20.6 (29)

HSG P1 166 91 142 41 311 318 408 251 16 157 235 0.76 0.78 0.79 870 18.8

TRG P1 130 114 156 44 202 259 427 261 18 166 243 0.47 0.61 0.49 740 20.4

CRG P3 209 90 141 42 308 316 411 217 13 194 204 0.75 0.77 0.77 920 19.6

HSG P3 207 87 141 42 302 330 400 204 14 196 190 0.76 0.83 0.78 900 17.9

TRG 3 193 95 126 39 330 358 382 206 10 176 196 0.86 0.94 0.89 900 16.4

Ryegrass 203 109 124 505 248 21 257 227 1,390 18.5 (41)

Chicory 103 175 142 353 208 63 145 145 1,740 14.3

Vegetative

ryegrass Exp1

205 79 102 265 531 285 31 246 254 0.50 874 23.1
(42)

Mature ryegrass

Exp1

284 57 64 265 610 320 37 290 283 0.41 891 21.4

Vegetative

ryegrass Exp2

254 96 118 195 565 280 47 285 233 0.35 922 20.4

Mature ryegrass

Exp2

375 55 54 209 674 373 50 301 323 0.31 873 17.2

Vegetative

ryegrass Exp3

143 125 195 213 431 241 18 190 223 0.49 747 18.1

Lowland

ryegrass

162 73 123 219 528 268 260 910 19.1 (43)

Hill ryegrass 211 42 96 135 657 316 341 630 19.3

ADF, acid detergent fibre; ADL, acid detergent lignin; CP, crude protein; CRG, conventional diploid ryegrass; DM, dry matter; DMI, dry matter intake; Exp1, Exp2 and Exp3, experiments 1, 2 and 3; HSG, high sugar diploid ryegrass;

NDF, neutral detergent fibre; NFC, non-fibre carbohydrates (calculated as 1000 – ash – CP – lipid - NDF); P1, P2 and P3, experimental periods 1, 2 and 3; RFC, readily fermentable carbohydrates [water soluble carbohydrates (WSC) +

pectin]; SC, structural carbohydrates [hemicellulose (NDF–ADF) + cellulose (ADF–ADL)]; TRG, tetraploid ryegrass; WSC, water soluble carbohydrates.
*The sum of WSC and pectin.
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FIGURE 1 | Relationship between CH4 yield (g/kg dry matter intake; DMI) and

forage water soluble carbohydrate (WSC): neutral detergent fibre (NDF) ratio in

sheep fed different fresh forages.

polysaccharides containing arabinose (44). Therefore, it is
important to know the monosaccharide composition of
carbohydrates in forages.

Di- and- oligo-saccharides, non-fibre polysaccharides and
soluble fibre are part of NFC, which are rapidly degraded in
the rumen (20–60%/h) and to a large extent (61) but vary in
concentrations, monosaccharide composition and structure (see
next section), which might affect CH4 emissions differently.

Di- and- Oligo-Saccharides
The main disaccharide present in forages and feeds is sucrose,
and the main oligosaccharides are raffinose, stachyose and
verbascose, but the contents of sucrose (<40 g/kg DM) and
oligosaccharides (<40 g/kg DM) are generally low across a
range of feeds including whole plant cereals (57). However, the
concentration of sucrose in grasses reached up to 62 g/kg DM in
the leaves of Festuca arundinacea, between 24 and 42 g/kg DM in
Agropyron (red), L. perenne,Dactvlis glomerata, Phleum pratense,
and Bromus inermis, but was <9 g/kg DM in Bromus tectorum
(60), 8–18 g/kg DM in F. arundinacea, Lolium multiflorum × F.
arundinaceae, Thinopyrum ponticum, Thinopyrum intermedium,
and B. inermis (58) and 24–42 g/kg DM in P. pratense (63). The
simple sugars in fresh fodder beet underground storage organs
and leaves consist of 15–20% sucrose (64).

Fructans
Fructans are present in the vegetative parts of temperate grasses
ranging from 19 to 383 g/kg DM, typically 25–50 g/kg DM (58).
Fructans have a linear chain of β-2,6-fructosyl-fructose residues
and can have a branched structure by both β2-1 and β2-6 linkages
in some plant species. The side and branch chains of fructans
have a α-1,2-linked residue as a terminal unit inmost cases, which
is a non-reducing end (65, 66). Fructans with a low degree of
polymerisation can be extracted with boiling 80% ethanol, and
fructans with a high degree of polymerisation can be extracted
with boiling water (67). Fructans are rapidly and completely

fermented in the rumen (68). In the 1970s, a high fructan content
was found in perennial ryegrass plants of specific populations,
leading to the breeding of cultivars called generically “high sugar
grass” (69), which have received considerable attention for their
putative benefits to animal production (29, 69, 70). Inulin is also
a fructan, sometimes called inulin-type fructan, but it is a linear
β 2-1 fructan with a basic unit of α-D-glucose linked to 1-2 β-
D-fructose β (1, 5) bond (66). Inulin is widely present in other
forage crops like the tubers of Jerusalem artichoke (Helianthus
tuberosus) (71) and the roots of chicory (66).

Starch
Starch is a carbohydrate composed of glycosidically linked
glucose units and composed of two types of polysaccharides:
linear amylose and branched amylopectin. Amylose has a linear
chain only, and the length of the chain is several hundred
glucose residues (72). Amylose occasionally contains α-1,6 linked
glucose. Amylopectin has a chain of α1,4-linked glucose residues
with side chains linked by α1,4,6-linked glucose residues (72).
The side chain sometimes has terminal glucose which is a
reducing sugar (72, 73). A large number of the macromolecular
chains in starch granules are organised in crystalline structures,
with three patterns of crystalline structures occurring: A-type
pattern common in cereal starches, B-type pattern present in
some tuber starches and cereal starches, and C-type pattern is
common in legume starches. B-type crystalline starches with
larger granules are more resistant to enzymatic breakdown than
A-type crystalline starch with small granules (74). Starch is
rapidly degraded in the rumen (20–40%/h; 51), with the physical
structure surrounding starch granules being the main barrier
to degradation (73). Starch concentration in vegetative parts of
forages is very low, typically ranging from 10 to 33 g/kg DM (58),
with 40 g/kg DM in the leaves of Lolium temulentum (75), 34
g/kg DM in lucerne leaves, 3 g/kg DM in lucerne stems, 4 g/kg
DM in timothy hay (76), 2–3 g/kg DM in timothy leaves (63)
and 5–17 g/kg DM in forage brassicas (Sun et al., unpublished
data). Starch is the main storage polysaccharide in grains and
some tubers such as potatoes and sweet potatoes, but not in the
underground storage organs of swedes, turnips, and fodder beet.

Pectic Polysaccharides
Pectic polysaccharides are present in the primary cell walls
of all forage plants and are located particularly in the middle
lamella (77). The pectic polysaccharides in the primary walls
of grasses (family Poaceae) have a similar structure to those
in dicotyledonous primary walls (78), but they occur in
much lower proportions in Poaceae (Table 1). The principal
monosaccharide components of pectins are galacturonic acid,
rhamnose, arabinose and galactose (79). There are three main
types of pectic polysaccharide domains: homogalacturonan
(HG), rhamnogalacturonan I (RG I), and rhamnogalacturonan
II (RG II) (80) and a small amount of a fourth domain,
xylogalacturonan (XGA), occurs in some walls (44, 78). The
XGA is composed of a backbone of 4-linked α-D-galactosyluronic
acid residues to which xylose residues are attached at the C(O)3
position of about half of the galacturonic acid residues (78).
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FIGURE 2 | Plant carbohydrates. ADF, acid detergent fibre; NDF, neutral detergent fibre; NFC, non-fibre carbohydrates; WSC, water soluble carbohydrates. Adapted

from Hall et al. (51).

The HG is a linear homopolymer of 4-linked α-D-
galactosyluronic acid residues. Methyl-esterification of
galactosyluronic acid residues often occurs at the C-6 carboxyl
group; acetyl groups are also present at C-2 and/or C-3
in some plants (79). Two HG chains with blocks of more
than 10 unesterified galacturonic acid (GalA) residues can
form a dimer via Ca2+-cross-linking (80). RG I consists of a
backbone of alternating (1, 7)-linked α-D-galacturonic acid
and (1, 5)-linked α-L-rhamnose residues and has several
different side-chains attached to the C4 of rhamnose. These
side-chains are mainly composed of arabinose and galactose
chains (arabinans and galactans, respectively) linked by (1, 8)-
linkages and by (1, 7)-linkages, respectively (81). Type I
arabinogalactan side-chains have (1, 7)-β-galactan chains with
limited substitution by short arabinose-containing oligomers
(82). RG II is quantitatively a minor constituent of primary cell
walls in dicotyledons (83), and it has been isolated from the
primary cell walls of the Poaceae. It is released as low-molecular-
weight polysaccharides, containing about 30 different glycosidic
linkages with at least 12 different glycosyl residues, after treating
with endo-polygalacturonase (78).

Cellulose
Cellulose, a simple linear polymer of (1, 7)-linked β-D-glucosyl
residues, is the most abundant plant polysaccharide and forms
the basic structure of all plant cell walls (84). Cellulose occurs
as crystalline microfibrils about 3 nm in diameter containing 18
cellulose molecules aligned side to side (85, 86). In secondary
lignified cell walls, some of the cellulose microfibrils may
aggregate into structures known as macrofibrils (87). Primary cell
walls contain ∼20–30% cellulose, and lignified secondary walls
contain ∼40–60% cellulose (88). Cellulose typically accounts for
about 35∼50% of plant dry matter (89).

Other Non-Cellulosic Polysaccharides
(“Hemicelluloses”)
Other non-cellulosic polysaccharides have traditionally been
called hemicelluloses and comprise a group of polysaccharides
that are extracted from cell walls with alkaline solution after
initial treatments with water and chelating reagents (90).

They include xyloglucans, heteroxylans, heteromannans, and β-
glucans and are bound to cellulose by hydrogen bonds. Their
structures vary greatly in the walls of different cell types and
different plant species. Xyloglucans (XGs) are the principal other
non-cellulosic polysaccharides of dicotyledonous primary cell
walls (91), accounting for up to 20–25% of the primary cell walls
(92). The main backbone is composed of 4-linked β-D-glucosyl
residues, most of which are linked to α-D-xylosyl residues of
side chains with α-(1, 9)-glycosidic linkage and these xylosyl
residues can be linked to fucose, galactose, and less commonly
arabinose (92).

Fucogalactoxyloglucans have been found in the primary walls
of most dicotyledonous plants except for those of solanaceous
plants (e.g., potato), which contain arabinoxyloglucans (93). In
the walls of the monocotyledon family Poaceae (grasses), the
xyloglucans do not contain arabinose and fucose (94). The
content of xyloglucans in members of the Poaceae family is small,
accounting for only 2–5% of the walls (95).

Heteroxylans include arabinoxylans, glucuronoxylans, and
glucurono-arabinoxylans. They have a backbone of 4-linked
xylose residues with short side chains of arabinose, glucuronic
acid and 4-O-methyl-glucuronic acid residues (96). The xylose
residues in the backbone may be O-acetylated, and in the
Poaceae the arabinose residues may be esterified with ferulic
or p-coumaric acid (96, 97). Heteroxylans are present in small
proportions in the primary walls of dicotyledons, but they are
abundant in the Poaceae. Cellulose microfibrils in the walls of
Poaceae may be interlocked mainly by glucuronoarabinoxylans
(GAXs). Unbranched GAXs are cross-linked with each other
or to cellulose via hydrogen bonds. Branched GAXs are unable
to form crosslinking between two GAXs or GAX to cellulose
since arabinose and glucuronic acid side groups prevent the
formation of hydrogen bonds (95). Galactoarabinoxylans have 4-
linked xylan backbone with α-L-arabinofuranose residues and/or
short chains containing arabinose and galactose attached at C3-
or C2- positions. They are found in perennial ryegrass (98, 99)
and cocksfoot grass (Dactylis glomerata) leaves (98).

Heteromannans galactoglucomannans (GGM) are found
widely in a small amount, and they have a backbone of (1, 7)-
linked β-D-mannose and β-D-glucose residues.
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(1,3:1,4)-β-Glucans or written as(1→ 3), (1→ 4)-β-glucans
are also known as mixed-linked glucans or β-glucans and consist
of unbranched and unsubstituted chains of (1,3)- and (1,4)-β-
glucosyl residues with varying ratio of (1,4)-β-D-glucosyl residues
to 1,3)-β-D-glucosyl residues (100). They have been found in
the primary cell walls of Poaceae, and contain about 30% 3-
linked residues and 70% 4-linked residues (101). In cereal grains,
they occur particularly in the walls of the aleurone, and starchy
endosperm and their contents vary markedly, largely depending
on species (102), and these polysaccharides are particularly
abundant in barley (103). (1,3:1,4)-β-Glucans are thought to form
a gel-like matrix in cell walls between the reinforcing cellulose
microfibrils (102).

EFFECTS OF CARBOHYDRATE TYPES ON
METHANE EMISSIONS FROM RUMINANTS

Monosaccharides
Czerkawski and Breckenridge (52) conducted in vitro
rumen simulation technique (RUSITEC) incubations with
26 carbohydrates. These carbohydrates resulted in similar
CH4 production per unit of carbohydrate fermented, except
for rhamnose. Rhamnose resulted in distinguishable CH4

production, but this monosaccharide is only a minor component
in plants (44). However, carbohydrates differed in their extent
and rate of fermentation: glucose, fructose and sucrose were
fermented rapidly; L-arabinose, xylose galactose, and mannose
were fermented at an intermediate rate; and glucuronic acid,
galacturonic acid, and fucose fermented at a slow rate (52).
Carbohydrates with a slow fermentation rate have a higher
probability of escaping the rumen without being fermented
(104), which could result in lower CH4 emissions. Pacheco et al.
(105) speculated that the escape of soluble cell contents could
explain why CH4 produced per unit of digestible organic matter
was less in forages with a greater content of water.

Disaccharides
Sucrose concentration is generally low in forages, but it can be
high in some feeds, for example, as themain storage carbohydrate
in some roots like those of fodder beet. Its fractional fermentation
rate in the rumen was about 1,200–1,404%/h (106), which is
much higher than for starch [e.g., 30%/h for barley starch (107)].
In a sheep trial conducted by Huhtanen and Robertson (108),
with 400 g/kg DM of sugar-beet pulp replaced by sucrose,
maize starch or xylose, CH4 emissions were similar for sheep
supplemented with sucrose, maize starch or xylose [6.6% of gross
energy (GE)], but lower than those fed sugar-beet pulp (7.1%
of GE intake). Sucrose was more rapidly fermented than steam-
flaked maize starch in vitro at two pre-determined pH levels
(pH 6 and 7) (109). Methane emissions per unit of degraded
organic matter (OM) were similar for sucrose and starch at pH
6, but more CH4 was produced from sucrose than from starch
at a pH of 7. At pH 6, sucrose led to a higher molar proportion
of propionate and less butyrate than starch, while at pH 7, the
fermentation profile was similar for both sucrose and starch.
At both levels of pH, sucrose produced more CH4 and more
SCFA (109). These findings suggest that pH in the rumen will

interact with carbohydrate type leading to varying levels of CH4

production in response to carbohydrate supplementation.
Golder et al. (110) found that supplementation of the diet with

crushed triticale grain decreased rumen pH and increased total
SCFA, acetate, butyrate and propionate concentrations compared
with the control and these changes were even more extreme
when triticale grain plus fructose were supplemented. Although
CH4 emissions were not measured, the large drop in rumen pH
suggests a reduction in CH4 emissions could be expected.

Pectic Polysaccharides
Pectic polysaccharides present in forage are methyl esterified
to varying degrees. The hydrolysis of methyl esters from
pectic polysaccharides produces methanol (CH3OH), which is
stoichiometrically converted to CH4 as 4CH3OH → 3CH4 +

CO2 + 2H2O. The theoretical molar ratio of CH4 produced
frommethanol (CH4/CH3OH) is 0.75. When pectin or methanol
was infused into the rumen of sheep, the measured conversion
ratio was 0.77, suggesting all methanol infused was converted
to CH4 (111). Thus, forages containing large amounts of highly
methyl-esterified pectic polysaccharides might result in higher
CH4 emissions.

Poulsen et al. (54) reported no differences in CH4 production
among sugar beet pectin, maize starch, wheat starch and
chicory inulin incubated in vitro (batch culture), but the
extent of fermentation may change the final CH4 production.
Nevertheless, pectin resulted in a higher molar proportion of
acetate, and a lower proportion of butyrate and inulin lowered
acetate and increased butyrate, compared with starch from
either maize or wheat. These differences in SCFA suggested that
different amounts of hydrogen were produced and consequently
would have led to different amounts of CH4 released per unit of
fermented substrates. In the RUSITEC-based study by Zhao et al.
(112), CH4 emissions were lower with inulin than with starch,
and inulin resulted in a reduced molar proportion of acetate
and acetate: propionate ratio and increased butyrate proportion,
which suggests a potential for reduced CH4 emissions by
feeding inulin. Consisted with this result, rumen fermentation of
fructose, which is a product of inulin degradation in the rumen,
resulted in less acetate and more butyrate compared with starch
in steers (113).

In pectic polysaccharides, HG is a major component and has
a backbone of galacturonic acid residues esterified with methyl
groups to different degrees. The cleavage of methyl groups from
HG may release methanol which is used for CH4 formation by
some microbes (111). Geerkens et al. (114) compared mango
peels rich in pectin, de-pectinised mango peels, apple pectin and
citrus pectin in vitro (batch culture) mixed with hay (Table 2).
Mango peels produced more CH4 than hay when expressed
as either CH4/gas production (GP) or CH4/SCFA, while de-
pectinisation of mango peels resulted in reduced CH4, suggesting
that pectin may cause an increase in CH4 production. However,
CH4/GP dropped, and CH4/SCFA was similar or dropped when
citrus or apple pectin was incubated compared with hay. This
suggests that the structure of pectic polysaccharides affects
CH4 formation. This result is different from the finding of
Czerkawski and Breckenridge (52) in which the degree of methyl
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TABLE 2 | Total gas, methane (CH4) and short-chain fatty acid (SCFA) productions of pectic substrates after 24 h in vitro incubation [adapted from Geerkens et al. (114)].

Substrate

Hay MP dep MP AP HE AP LE CP HE CP LE

Gas production (GP; mL/100mg DM) 23.6 36.5 29.2 41.0 40.1 43.7 40.1

CH4 production (mL/100mg DM) 5.48 9.01 6.31 7.72 6.61 8.78 7.53

CH4/GP (mL/mL) 0.232 0.247 0.216 0.188 0.165 0.201 0.188

Total SCFA production (µmol/100mg DM) 475 684 533 700 702 768 745

Acetate/total SCFA (mmol/mmol) 68.1 68.6 70.6 81.9 83.6 84.1 83.8

Propionate/SCFA (mmol/mmol) 24.0 22.9 23.4 14.8 13.4 12.8 13.0

Butyrate/SCFA (mmol/mmol) 7.0 8.0 5.4 2.9 2.6 2.5 2.6

CH4/SCFA (mL/mmol) 11.5 13.2 11.8 11.0 9.4 11.4 10.1

DM, dry matter; MP, mango peels; dep MP, depectinised MP; AP, apple pectin; CP, citrus pectin; HE, high-esterified; LE, low-esterified.

esterification was not considered. When high and low degrees
of methyl esterification were compared, low esterified pectin
produced less CH4 than high esterified pectin for both apple and
citrus pectins (114). This supports the hypothesis that methyl
group cleavage from pectin leads to increased CH4 formation,
with methanol as an intermediary.

Starch
Between 22 and 94% of dietary starch eaten is digested in the
rumen depending on total starch intake and starch source (115).
The size and structure of starch granules and the pattern of
enzyme-resistant crystalline starches may affect their degradation
rate in the rumen (73). For example, starch from potatoes is
degraded faster than that from barley and oats (115).

Dairy cows fed diets containing lucerne hay and concentrate
(45:55 w/w) based on wheat grain had lower CH4 yield (11.1 g
CH4/kg DMI) compared with cows fed concentrates based on
maize grain (19.5 g/kg DMI) (116). Average daily ruminal pHwas
similar between cows fed either type of grain, but the duration
when ruminal pH was below 6 was twice as long for wheat grain
supplemented cows compared with maize grain supplemented
cows. Wheat and maize have different starch structures, leading
to faster degradation for wheat starch than for maize starch with
values of 103.8%/h for wheat grain and 8.1%/h for maize grain
reported by Moharrery et al. (115). The faster degradation rate
of wheat starch might result in a longer duration of pH below
6, which in itself may inhibit methanogen activity and therefore
contribute to lower CH4 emissions in cows fed wheat grain as
found by Moate et al. (116). Lactating dairy cows fed diets based
on grass-clover/maize silage (60% diet DM) and either maize
cob silage, highly rumen digestible rolled barley grain or sodium
hydroxide wheat grain, with a high rumen escape starch (at
25% of diet DM), had similar CH4 yield and total tract starch
digestibility (117).

Besides starch type, grain processing also affects the
degradation rate of starch in the rumen (73), which might
alter the rumen fermentation profile and rumen pH and could
therefore change CH4 emissions. Lactating dairy cows fed
diets with 60% grass silage and 40% concentrate containing
either slowly degradable native maize grain (5%/h) or rapidly
degradable gelatinised maize grain (16%/h) at either 270 or 530
g/kg concentrate had similar CH4 yield and rumen pH but an

increased rate of starch fermentation and increased level of starch
reduced CH4 produced per unit of estimated rumen-fermentable
organic matter (118).

Thus, the amount of starch digested in the rumen and the
rate of digestion will affect the rumen fermentation pattern and
rumen pH, whilst starch escaped from the rumen has little chance
to be converted to CH4 (Figure 3). The proportion of starch
degraded in the rumen, the rate of degradation in the rumen, and
rumen escaped starch need to be considered when determining
the CH4 mitigation potential. The complex interactions between
the rate of rumen fermentation, pH and the passage rate of
starch from the rumen could have resulted in inconsistent results
reported in the literature attempting to link the supplementation
level of concentrates with the amount of CH4 emissions. Rumen
passage rate is affected by many factors including supplement
concentrates in the diet, whereas it could result in a shift
of dissolved hydrogen and consequently rumen fermentation
pattern and CH4 emissions (20). Another aspect to consider is the
effect of feeding concentrates on fibre digestion. Supplementation
of large amounts of grain suppresses the degradation of fibre,
which will result in less hydrogen produced and, therefore, less
CH4. For instance, a recent study conducted by Bougouin et al.
(119) showed that cows fed with starch-rich diets based on grass
silage has comparatively lower enteric CH4 emission than fibre-
rich diets based on grass silage. The main reasons for reduced
methanogenesis may be a reduction of the rumen protozoa
population (by 36%) and a shift in rumen fermentation toward
propionate at the expense of butyrate. However, increasing the
level of starch should be carefully applied as a high amount of
starch feeding can lead to ruminal acidosis. According to Nozière
et al. (120), the chemical treatment of grains can be used to
prevent rumen acidosis by reducing the digestibility of the starch
inside the rumen. Furthermore, introducing buffers (e.g., sodium
bicarbonate or plant buffering capacity) to starch-based diets
reduces the prevalence of rumen acidosis by stabilising rumen
pH and improving feed digestion (121, 122).

Supplementing Feeds Differing in Main
Carbohydrates
Hindrichsen et al. (53) compared feeds with different major
carbohydrates represented by different substrates including oat
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FIGURE 3 | A diagram of starch digestion in the rumen and its effects on methane emissions.

TABLE 3 | Enteric methane emissions from cows and RUSITEC fed different diets (53, 123).

Methane Oat hulls Soybean hulls Sugar beet pulp Apple pulp Jerusalem artichoke Guar gum Molasses Wheat P

Cow

g/cow/d 330 429 - 351 377 - 382 409 0.109

g/kg DMI 20.7b 25.0a - 24.8a 23.6ab - 24.8a 25.3a 0.006

g/kg digested OM 54 56 - 54 49 - 52 55 0.195

RUSITEC

mmol/g degraded OM 0.92b 1.13ab 1.24ab 1.15ab 1.21ab 0.99b 1.37a 1.04b 0.004

DMI, dry matter intake; OM, organic matter.

Values in a row with different superscripts differ significantly.

hulls (lignified fibre), soybean hulls (non-lignified fibre), apple
pulp (pectin), sugar beet pulp (hemicelluloses and pectin), guar
gum (galactomannan), Jerusalem artichoke tubers (fructan),
molasses (sucrose) and wheat (starch). They were incubated in
RUSITEC fermenters mixed with forage (a mixture of maize
silage, grass silage and hay) at a ratio of 1:1, on a DM basis,
and CH4 emissions (mmol CH4/g degraded OM) were lower
for oat hulls, guar gum and wheat than for molasses, with other
supplements intermediate (Table 3). Multiple-regression analysis
of CH4 emission data with chemical composition revealed a
negative correlation with lignin and a positive correlation with
total sugars (53). The same diets, except sugar beet pulp and
guar gum, were fed to 12 Brown Swiss dairy cows with forage:
concentrate ratios of 1: 1 (123). Methane emissions per unit of
DMI were only lower for cows fed oat hulls (Table 3), which
might have resulted from a lower digestibility due to the high
degree of lignification of fibre in oaten hulls. Additionally, CH4

emissions per unit of DM were numerically 10% lower for
cows fed the Jerusalem artichoke tubers than cows fed wheat.
When emissions were expressed as per unit of digested OM, the
difference among diets disappeared (123).

Methane emissions were 16% higher for sheep fed 1.0 kg
molassed sugar-beet pulp (containing 166 g sugars and 166 g
cellulose) than for sheep fed 1.0 kg chopped hay (125 g
sugars and 302 g cellulose) (124). Methane emissions were
8% higher for lactating dairy cows fed grass-clover silage
based diet supplemented with molasses (g/kg diet DM, 250 g
starch, 32 g sugar, 300 g NDF) vs. wheat grain (g/kg diet
DM, 5 g starch, 240 g sugar, 278 g NDF) (125). Giger-Reverdin
and Sauvant (126) analysed a CH4 emission dataset from
male sheep fed 22 different feed classes, which resulted
in the separation of feeds into four CH4 yield groups
being: high—peas and faba beans; medium—grains, sugar beet
pulp and soybean meal; low—silages, hays and straw; very
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low—distillers grains. However, there was substantial variation
in CH4 yield within feed class, and the proportion of the
test feed in the diet and type of basal forage diet were
not mentioned.

A recent study conducted by Jonker et al. (127)
found that dry cows grazing fodder beet (Beta vulgaris)
supplemented with perennial ryegrass based pasture silage
(6 kg DM/cow/day) produced 28% lower CH4 yield (g/kg
DM intake) than cows that grazed forage kale (Brassica
oleracea) supplemented with barley straw (Hordeum
vulgare) (3 kg DM/cow/day). Fodder beet has a very high
concentration of readily fermentable carbohydrates, which
may affect rumen fermentation and thereby reduce the
CH4 emission. Børsting et al. (122) found that feeding
sugar beet molasses instead of wheat increased enteric CH4

production and yield. This might have been because a high
sugar concentration in sugar beet molasses increased the
proportion of butyrate in rumen liquid leading to greater H2

formation, which will increase the enteric CH4 production
(20) when the rumen pH is maintained at the normal
level (109).

CONCLUSIONS AND
RECOMMENDATIONS

The different carbohydrates present in different plants may
impact the quantity of CH4 emissions from ruminants
consuming these plants. The detailed compositions and
structures of carbohydrates in plants fed to ruminants have
not been extensively studied. So far, most carbohydrate
information on forage and feeds is based on analysis
using the detergent system, which only provides a crude
classification of structural and non-structural carbohydrates.
Forage brassicas, chicory, and white clover have more
readily fermentable carbohydrates (all low starch) and less
structural carbohydrates than ryegrass, but the type of
carbohydrates in these forages are largely unknown. It is
recommended that a comprehensive carbohydrate study
is carried out on these forages as these data may help
explain variation in CH4 emissions observed in animals fed
different forages.

Based on evidence from the in vitro studies, all carbohydrates,
except rhamnose and pectins, may have the same efficiency
of being converted to CH4. However, rhamnose is generally
a minor component in plants. Methyl groups in pectic
polysaccharides can be converted to methanol and further
converted to CH4 in the rumen. Although some in vitro
studies have suggested that CH4 emissions may be lower
for some types of carbohydrates, in vivo studies have not
clearly supported that conclusion. The inconsistent in vivo
results with soluble sugars make it difficult to speculate if
the soluble sugars in forage brassicas contribute to low CH4

emissions from sheep fed these forages. Nevertheless, brassicas,
chicory, and white clover all contain a large amount of pectic
polysaccharides. Compared to ryegrass pastures, brassicas have

reduced CH4 emissions, while chicory and white clover do not.
Since methyl groups in pectic polysaccharides increase CH4

emissions, the degree of methyl esterification might make the
difference and needs to be elucidated for these forages. How
high pectin containing diets and the concentration of methyl
group in the diets affect CH4 emissions should be studied in
the future.

Supplementation of concentrate is considered to reduce CH4

emissions due to the associated shift of rumen fermentation.
However, this is mainly observed for diets with a high proportion
of concentrates (>80%). There are several possible mechanisms
for carbohydrates to affect CH4 emissions. The fermentation of
starch in the rumen produces short-chain fatty acids, which may
reduce rumen pH if the rate of absorption and escapement from
the rumen is less than the rate of production and subsequently
alter the structure of rumen microbial communities. The
degradation of starch and structural carbohydrates in the rumen
results in different ratios of acetate, butyrate,and propionate.
In general, starch promotes the formation of propionate,
although sometimes butyrate, which is associated with less CH4

production. Structural carbohydrates promote the formation of
acetate, which provides hydrogen for CH4 production. Diets
containing high amounts of fermentable carbohydrates fed at
a high feeding level can increase rumen passage rate, which
may increase the escape of substrates for microbes to produce
hydrogen and lead to lower CH4 emissions. The degradation rate
of starch and the level of starch intake affect the amount of starch
escaping from the rumen. Similar bypass from rumen digestion
applies to other polysaccharides and rumen bypass nutrients may
occur in ruminants fed fresh forage, especially when the passage
rate is high, which could be a result of high levels of feed or
water intake. It is recommended that studies are conducted on
the sites of digestion of carbohydrates in forages such as brassicas
to determine if changes in the sites of digestion are responsible for
the mitigation effects measured from this group of forage crops.
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