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Abstract
Long QT syndrome (LQTS) is an arrhythmogenic disorder that can lead to sudden death.

To date, mutations in 15 LQTS-susceptibility genes have been implicated. However, the

genetic cause for approximately 20% of LQTS patients remains elusive. Here, we per-

formed whole-exome sequencing analyses on 59 LQTS and 61 unaffected individuals in

35 families and 138 unrelated LQTS cases, after genetic screening of known LQTS genes.

Our systematic analysis of familial cases and subsequent verification by Sanger sequenc-

ing identified 92 candidate mutations in 88 genes for 23 of the 35 families (65.7%): these

included eleven de novo, five recessive (two homozygous and three compound heterozy-

gous) and seventy-three dominant mutations. Although no novel commonly mutated gene

was identified other than known LQTS genes, protein-protein interaction (PPI) network

analyses revealed ten new pathogenic candidates that directly or indirectly interact with

proteins encoded by known LQTS genes. Furthermore, candidate gene based association

studies using an independent set of 138 unrelated LQTS cases and 587 controls identified

an additional novel candidate. Together, mutations in these new candidates and known

genes explained 37.1% of the LQTS families (13 in 35). Moreover, half of the newly identi-

fied candidates directly interact with calmodulin (5 in 11; comparison with all genes;

p=0.042). Subsequent variant analysis in the independent set of 138 cases identified 16

variants in the 11 genes, of which 14 were in calmodulin-interacting genes (87.5%). These
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results suggest an important role of calmodulin and its interacting proteins in the pathogen-

esis of LQTS.

Introduction
Long QT syndrome (LQTS) is characterized by a prolonged QT interval in the electrocardio-
gram (ECG) and ventricular tachyarrhythmia. Arrhythmia is often triggered by exercise, par-
ticularly swimming, or emotional stress, resulting in recurrent syncope, seizures, and
sometimes, sudden, unexpected cardiac death [1].

LQTS has an estimated prevalence as high as one in 2,000 people [2]. To date, mutations in
15 susceptibility genes have been identified. The majority of those affected have mutations in
KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3), encoding potassium and sodium ion
channel alpha-subunits. These three genes account for 75% of LQTS cases (LQT1: 30%-35%,
LQT2: 25%-30%, LQT3: 5%-10%), while the remaining known LQTS genes, which encode beta
subunits of plasma membrane channels, channel-interacting proteins, structural membrane
scaffolding proteins or membrane anchoring proteins, account for only 5% of cases [3]. Muta-
tions have not been detected in the remaining 20% of patients.

Whole-exome sequencing (WES) is widely used to identify genetic variations in coding
regions [4]. WES is more powerful and cost-effective for exonic regions than whole-genome
sequencing because it obtains a deeper coverage of the target regions. WES has been recently
used to successfully identify causal mutations of Mendelian diseases [5, 6] and driver mutations
in tumors [7–9].

Here, we report the identification of candidate pathogenic mutations, throughWES and val-
idated by Sanger sequencing, in two-thirds of the examined LQTS families. Although no com-
monly mutated gene was identified other than known genes, protein-protein interaction (PPI)
network analysis revealed that ten candidates interact with proteins encoded by known LQTS
genes. Interestingly, half of these directly interact with calmodulin, which is statistically signifi-
cant when compared to the number of molecules that directly interact with calmodulin. In
addition, candidate gene based association studies using an independent set of unrelated LQTS
individuals and unaffected individuals identified an additional novel LQTS candidate. Exami-
nation of the presence of mutations in these candidate genes in the unrelated LQTS cases
revealed that most mutations were in calmodulin-interacting genes. We believe these findings
contribute to a greater understanding of LQTS and provide clues for future research into its
pathogenic mechanism.

Materials and Methods

Ethics Statement
This study was approved by the ethics committee of the Institutes of National Cerebral and
Cardiovascular Center and RIKEN. The design and performance of the current study involving
human subjects were clearly described in a research protocol. All participants provided written
informed consent before taking part in this research.

Study subjects
LQTS is diagnosed using the following criteria: patients with a Schwartz risk score> 3.5 in the
absence of a secondary cause for QT prolongation [10], and/or an unequivocally pathogenic

Exome Analyses of Long QT Syndrome

PLOSONE | DOI:10.1371/journal.pone.0130329 July 1, 2015 2 / 15

Cardiovascular Diseases (H24-033, H26-040) from
the Ministry of Health, Labour and Welfare, Japan.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



mutation in one of the LQTS genes, or QTc> 500 ms in repeated 12-lead ECG in the absence
of a secondary cause for QT prolongation. Among the LQTS patients registered at National
Cerebral and Cardiovascular Center who provided written informed consent, we recruited 186
genetically unrelated LQTS cases whose mutations were not detected by genetic screening of
known LQTS genes. Among them, 35 had family data (21 family trio data of LQTS patients
with unaffected parents and 14 pedigrees with at least one additional LQTS family member, S1
Fig) with DNA samples, and therefore were selected for pedigree analysis. Therefore, among
the 35 families, excluding the proband, an additional 85 family members (24 LQTS and 61
unaffected control subjects) were recruited for this analysis. We also included the remaining
151 samples with no family data as genetically independent LQTS cases. In total, 271 samples
were subjected to WES analysis. In the course of the analysis, we detected mutations in known
LQTS genes for 13 out of 151 non-pedigree cases (Table 1) [11–14] and these individuals were
excluded from further analysis. Consequently, we examined 59 LQTS and 61 unaffected indi-
viduals in 35 families and 138 unrelated LQTS cases (n = 258). The participant summary,
including gender, average age, and the other clinical information, is shown in Table 2.

Whole-exome sequencing
Exome capture was performed by the Agilient SureSelect Human All Exon V4 according to the
manufacturer’s instructions. This kit captures genomic DNA by in-solution hybridization with
RNA oligonucleotides, enabling specific targeting of approximately 51Mb of the human
genome. The captured DNA was sequenced using the Illumina HiSeq2000 platform with
paired-end reads of 101bp for insert libraries of 150–200bp according to the manufacturer’s
instructions.

Exome sequence data analysis
Read sequences were mapped by the Burrows-Wheeler Aligner (BWA: version 0.6.1) [15] to
the human reference genome (GRCh37). Duplicate PCR reads were identified and removed
using SAMtools (version 0.1.8) [16] and in-house software. After filtering by pair mapping dis-
tance, mapping uniqueness and pair orientation, the mapping result files were converted into
pileup format using SAMtools. Variant calling was conducted based on methods we have pub-
lished elsewhere, VCMM [17]. We used the following quality control filters: (i) alignments
near putative indels were refined using GATK [18]; (ii) a stand bias filter excluded variants
whose alternative allele was preferentially found in one of the two available read orientations at
the site.

Variants that were found in dbSNP (version 137) [19], 1000 Genomes Project (n = 1,094)
[20], NHLBI Exome Sequencing Project Exome Variant Server (n = 6,503; http://evs.gs.
washington.edu/EVS/) [accessed June 2012] (ESP6500) [21] and our in-house whole genome
and exome data composed of 1,257 non-cardiac Japanese individuals were excluded from fur-
ther analyses. Nongenic, intronic and synonymous variants other than those occurring at
canonical splice sites and non-synonymous variants predicted as benign/tolerant by both SIFT
(http://sift.jcvi.org/www/) [22] and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) [23]
were also excluded. Furthermore, we assumed that affected individuals had de novo or recessive
(both homozygous and compound heterozygous) mutations for parent/affected offspring trio
families and dominant for the other families. All candidate mutations were validated using
Sanger sequencing of both the affected and unaffected individuals.

All mutations in known LQTS genes and in candidate genes, identified in this study,
have been deposited into NCBI ClinVar with the accession numbers SCV000221974—
SCV000222093.
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Network analysis
Network analysis was performed using the Ingenuity Pathway Analysis software (IPA; Ingenu-
ity Systems) based on the 15 known LQTS genes and the 88 candidate pathogenic genes identi-
fied. We considered molecules and/or relationships available in the IPA Knowledge Base for
human, mouse and rat and set the confidence filter to experimentally observed or high (pre-
dicted). Networks were generated with a maximum size of 35 genes and allowing up to 10 net-
works. Molecules in the query set with recorded interactions were eligible for network

Table 1. Identification of known-gene and disease-causing variant in the LQTS.

Phenotype Gene
symbol

Transcript ID cDNA level
change

Protein level
change

QTc
(ms)

Symptoms HGMD†, others

LQT1* KCNQ1 NM_000218.2 c.760G>A p.V254M 570 syncope CM960898 [11]

LQT1* KCNQ1 NM_000218.2 c.965C>T p.T322M 474 asympt CM057152 [12]

LQT1 KCNQ1 NM_000218.2 c.683+2T>G - 470 Asymp Pedigree analysis

LQT1 KCNQ1 NM_000218.2 c.1032+1G>A - 572 TdP VF
Sym40yo

Pedigree analysis

LQT2* KCNH2 NM_000238.3 c.1849T>C p.F617L 475 asympt

LQT2* KCNH2 NM_000238.3 c.1831T>G p.Y611D 490 VF CM107399 [13]

LQT2* KCNH2 NM_000238.3 c.307+2T>A - 548 asympt

LQT3* SCN5A NM_001160160.1 c.4900G>A p.V1634I 448 TdP

LQT4* ANK2 NM_001148.4 c.2474C>T p.T825I 436 syncope

LQT4* ANK2 NM_001148.4 c.4876A>G p.K1626E 650 syncope

LQT4* ANK2 NM_001148.4 c.6149T>C p.I2050T 464 VF

LQT4* ANK2 NM_001148.4 c.8123T>C p.V2708A 420 asympt

LQT5 KCNE1 NM_000219.3 c.253G>A p.D85N 492 asympt CM040436 [14], Pedigree analysis,
rare variant

LQT9 CAV3 NM_033337.2 c.37A>T p.I13F 466 asympt Pedigree analysis, SNV

LQT11* AKAP9 NM_147185.2 c.2295T>A p.D765E 453 asympt

LQT11* AKAP9 NM_147185.2 c.5341T>A p.S1781T 457 asympt

LQT12* SNTA1 NM_003098.2 c.1498C>T p.R500C 444 asympt

NOS1AP NM_014697.2 c.1276G>A p.V426M 413 asympt disease causing variant

NOS1AP NM_014697.2 c.824C>T p.S275F 453 syncope disease causing variant

asympt; asymptomatic, SNV: single nucleotide variant
†accession number obtained from HGMD professional (ver. 2014.4, accessed on Mar. 19, 2015)

*mutations detected in known LQTS genes for non-pedigree cases.

doi:10.1371/journal.pone.0130329.t001

Table 2. Clinical background of LQTS patients and their family members.

35 LQTS families unrelated LQTS (n = 138)

LQTS (n = 59) Control (n = 61)

age 23±18 25±18 19±16

male/ female 20/39 36/25 54/84

QTc (ms) 480±40 402±21 466±49

syncope, n (%) 24 (41) 1 (1) 59 (43)

VF or CA, n (%) 9 (15) 0 (0) 18 (13)

VF: ventricular fibrillation, CA: cardiac arrest

doi:10.1371/journal.pone.0130329.t002
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construction using the IPA algorithm. Networks were ranked by IPA network score according
to their degree of relevance to the eligible molecules in the query data set. The network score is
calculated using Fisher’s exact test on a basis of the number of eligible molecules in the network
and its size, as well as the total number of eligible molecules analyzed and the total number of
molecules in the Ingenuity Knowledge Base that could potentially be included in the networks.

Quality control and gene-based association study
We used 748 Japanese individuals, which included 161 LQTS cases (23 probands in LQTS fam-
ilies and 138 independent LQTS patients) and 587 controls. Closely related subjects, where the
identity-by-descent (IBD) proportion of alleles shared was over 0.125, and outliers by princi-
pal-component analysis (PCA) [24] (S2 Fig) were previously excluded. We estimated the IBD
sharing score using PLINK’s ‘-genome’ option [25] and performed PCA using gdsfmt and
SNPRelate packages in the statistical software R [26]. We also excluded all SNVs with a geno-
type call rate< 0.80, a Hardy-Weinberg equilibrium p-value< 1×10-6 or nongenic and
intronic variants other than those occurring at canonical splice sites. When also considering a
MAF< 0.005, 51,393 SNVs passed these stringent quality control criteria. The quantile-
quantile (QQ) plots of the p-values from the Cochran-Armitage test for trend showed the
genomic inflation factor λGC to be 1.027 (S3 Fig).

For the gene-based association studies, we used the SKAT-O test [27], which encompasses
both burden tests (e.g. CMC method [28]) and variance-component tests (e.g. SKAT [29]). We
performed the analysis using default weights and MAF< 0.01 for the combination of non-syn-
onymous variants predicted to be damaging by SIFT [22] or PolyPhen-2 [23] analysis and
splice-site variants. We performed the test for candidate genes with at least two variants and
declared a gene-based test association significant when q-value< 0.05.

Results

Identification of candidate mutations in probands
On average, 6.7 Gbp of short read sequence data were obtained fromWES (S1 Table). In total,
68.6% of the sequenced bases were mapped to the targeted regions and 92.8% of mapped exon
sequences had at least ten times coverage (S4 Fig). The average coverage was 68X across indi-
viduals. An average of 19,505 coding SNVs and 516 coding insertion/deletion (indels) were
identified per proband with high confidence (S2 Table). We developed an automated pipeline
to systematically identify all candidate non-synonymous mutations in each affected individual
(Fig 1). We first excluded all synonymous variants other than those occurring at canonical
splice sites. This first step reduced the number of candidates to an average of 9,256 non-synon-
ymous and canonical splice site variants per proband. We further reduced this number to 76
variants and 15 coding indels by excluding variants found in public databases; dbSNP137 [19],
1000 Genomes Project [20], NHLBI Exome Variant Server (ESP6500) [21], the Human Genetic
Variation Database (HGVD: http://www.genome.med.kyoto-u.ac.jp/SnpDB). We also used

Fig 1. Experimental work flow for detecting sequence variants byWES. In-house database with asterisk is our in-house whole exome or whole genome
data composed of 1,257 non-cardiac Japanese individuals.

doi:10.1371/journal.pone.0130329.g001
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our in-house whole exome or whole genome database composed of 1,257 Japanese individuals.
We then excluded the variants predicted as benign/tolerant by both SIFT (http://sift.jcvi.org/
www/) [22] and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) [23], and finally selected
candidate mutations that co-segregated among affected individuals within each of the pedi-
grees (S2 Table). We identified 92 candidate pathogenic mutations in 88 genes in 23 out of the
35 families (65.7%), all of which were validated by Sanger sequencing. These are eleven de
novo, five recessive (two homozygous and three compound heterozygous) and seventy-three
dominant mutations (S3 Table). No gene was found to be commonly mutated among
pedigrees.

Protein-protein interaction (PPI) network analysis
We applied PPI network analysis to a gene set of the 15 known genes and the 88 candidate
pathogenic genes identified in this analysis, in order to elucidate any enrichment of functional
units or categories. Using Ingenuity Pathways analysis software (IPA; Ingenuity Systems), we
identified an interesting network, ranked top in IPA network score, composed of proteins
encoded by all 15 known genes and 10 candidate pathogenic genes. Seven of the 10 pathogenic
candidates were found to directly interact with at least one protein encoded by known LQTS
genes (Fig 2) and contain candidate mutations that occur at evolutionarily conserved amino
acids (S5 Fig) which were predicted to be damaging by SIFT [22] or PolyPhen-2 [23] analysis
and to have a strong functional impact on the gene (Table 3). In addition, half of the 10 patho-
genic candidates were calmodulin-interacting genes (RYR2, UBR4, UBR5, PI4KA and KIF21B)
(Fig 2), which was statistically significant when compared to the number of molecules that
directly interact with calmodulin (p = 0.042, Fisher’s exact test). We previously reported that
calmodulin mutations are associated with LQTS [30]. These results suggest an important role
of calmodulin and its interacting proteins in the pathogenesis of LQTS. Through PPI analysis,
we could detect candidate mutations in 12 families.

Candidate gene-based association study using an independent set of
case/control samples
We could not identify candidate pathogenic genes supported by PPI analysis for the remaining
11 families, although 44 genes were still candidates. Therefore, we performed candidate gene-
based association studies using the sequence kernel association optimal test: SKAT-O (Fig 3,
see Materials and Methods) [27], in order to identify likely pathogenic genes with cumulative
effects in LQTS patients from the 44 candidate genes. We used 11 probands from each of these
families, 12 probands from each of the families in which no candidates were identified by pedi-
gree analysis, and a set of 138 genetically unrelated LQTS cases and 587 controls (Fig 3). In
total, 161 cases and 587 controls were examined and a significant association in the SLC2A5
gene (also known as GLUT5, FDR-adjusted p-value (q-value) = 0.014, Tables 3 and 4) was
found.

Candidate pathogenic mutations in an independent set of unrelated
LQTS cases
Investigation into the presence of possible mutations in these 11 genes in 138 genetically inde-
pendent cases identified 16 candidate pathogenic mutations in 15 individuals (Table 5, candi-
date mutations in bothWDR26 and RYR2 were identified in the same individual), which were
non-synonymous variants and absent from in-house/public variant databases. Out of the 16
candidate mutations, 14 were calmodulin-interacting genes (87.5%, Fig 2), and 9 of these
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Fig 2. The top-scoring IPA network constructed on the basis of known genes/proteins and candidate pathogenic genes/proteins identified. The
green and pink objects represent known LQTS genes and candidate pathogenic genes identified in this PPI analysis, respectively.

doi:10.1371/journal.pone.0130329.g002
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occurred at evolutionarily conserved amino acids (64.3%): four were missense variants in
RYR2, three in UBR4, one in PI4KA and one in KIF21B (Table 5). Functional analysis of these
mutations though evolutionarily conserved amino acid residue examination showed these
mutations to be strong candidates.

Interestingly, nine (including 6 novel) mutations were identified in the RYR2 gene, which
were found in younger patients with no affected family members (Table 6). Many of the
patients with the RYR2mutation had similar exercise-induced cardiac events (4 syncope, 2 VF,
1 cardiac arrest). This frequency was also higher and more severe compared with that in geno-
type-unknown LQTS, while the QTc interval was shorter in patients with the RYR2mutation
than that with genotype-negative LQTS (439 ± 30 vs. 471 ± 50 ms; p-value = 0.01), strengthen-
ing the importance of RYR2 in LQTS pathogenesis.

Discussion
We sequenced the exomes of 59 LQTS individuals and 61 unaffected individuals from 35 fami-
lies and systematically identified candidate mutations in the affected individuals. Subsequent
PPI network analysis revealed that a statistically significant proportion of pathogenic candidate
molecules interacted directly with calmodulin (RYR2 [31], UBR4 [32], UBR5 [33], PI4KA [34]
and KIF21B [34]). Calmodulin is a primary sensor of intracellular calcium levels in eukaryotic
cells, playing a key role in the proper mediation of Ca2+ signaling, and interacts with several
known LQTS genes (SCN5A [35], SNTA1 [36] and CACNA1C [37]), giving strength to the
possibility that these candidate genes also play a pathogenic role in LQTS. In particular, RYR2
has previously been reported as gene associated with several arrhythmic diseases, including
LQTS [38], catecholaminergic polymorphic ventricular tachycardia (CPVT) [39–41],
arrhythmogenic right ventricular dysplasia type 2 [42–44] and sudden infant death syndrome
[45]. Along with one candidate non-synonymous mutation (c.12892G>A [p.V4298M]) in
RYR2 that has been previously reported in LQTS [38], we identified nine additional candidate

Table 3. Potential pathogenic mutations detected in PPI analysis and Gene based Association Study (GAS) using independent samples.

ID Gene Model† Transcript ID cDNA level change Protein level change SIFT/PolyPhen-2* Analysis

T02 WDR26 De novo NM_025160.6 c.612G>T p.L204F T/- PPI

T08 RYR2 De novo NM_001035.2 c.12272C>T p.A4091V D/D PPI

T12 UBR5 AR (CHTZ) NM_015902.5 c.5837A>G p.H1946R D/P PPI

c.3752G>A p.R1251H D/B PPI

T17 UBR4 De novo NM_020765.2 c.6397G>A p.A2133T T/D PPI

T21 KIF21B De novo NM_017596.2 c.3601C>T p.R1201W D/D PPI

D02 SLC2A5 AD NM_003039.2 c.808C>T p.R270W D/D GAS

D03 CIT AD NM_001206999.1 c.5786C>A p.S1929Y D/D PPI

D04 KCNQ1 AD NM_000218.2 c.683+2T>G - -/- PPI

D07 CAV3 AD NM_033337.2 c.37A>T p.I13F T/B PPI

D08 KCNQ1 AD NM_000218.2 c.1032+1G>A - -/- PPI

D09 KCNE1 AD NM_000219.3 c.253G>A p.D85N D/P PPI

D10 SIRT6 AD NM_016539.2 c.742C>T p.R248C D/D PPI

PIK3CG AD NM_002649.2 c.574G>A p.D192N T/D PPI

D14 PI4KA AD NM_058004.2 c.247G>A p.D83N D/D PPI

RIMS1 AD NM_014989.4 c.1477G>C p.E493Q D/D PPI

*D = damaging; P = probably damaging; T = tolerated; B = benign.
†AR: autosomal recessive (CHTZ = compound heterozygous), AD: autosomal dominant. Bold: known LQTS genes.

doi:10.1371/journal.pone.0130329.t003
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Fig 3. Experimental work flow for detecting candidate pathogenic mutations.

doi:10.1371/journal.pone.0130329.g003

Exome Analyses of Long QT Syndrome

PLOSONE | DOI:10.1371/journal.pone.0130329 July 1, 2015 9 / 15



mutations (Table 6), strengthening the importance of RYR2 in LQTS pathogenesis. PPI
network analysis also revealed candidate pathogenic genes that interact directly or indirectly
with known LQTS genes (RIMS1 [46], CIT [47], PIK3CG [48], SIRT6 [49] andWDR26 [33]),
implying that these candidate genes might also cause LQTS. In particular, RIMS1 has been
reported to regulate insulin secretory machinery [50]. Since insulin infusion has been shown to
cause QTc prolongation in animal models [51, 52], this gene may be more likely to play a
pathogenic role in LQTS.

A candidate gene based association study also identified an additional candidate pathogenic
gene, SLC2A5, encoding a facilitated glucose/fructose transporter that plays a fundamental role
in the pathogenesis of fructose-induced hypertension [53]. Since the mechanistic link between
hypertension and fatal arrhythmia is not well-characterized, the role of this gene in the patho-
genesis of long QT syndrome requires further investigation.

We examined the presence of mutations in the 11 candidate pathogenic genes in the geneti-
cally independent individuals. Most of the mutations were observed in calmodulin-interacting
genes or known LQTS interacting genes (15 out of 16, Table 5), and many of these occurred at
evolutionarily conserved amino acid across multiple species (10 out of 15). Since amino acid

Table 4. Significant association of SLC2A5 detected by gene-based association study.

Case Control

Transcript ID cDNA level change Protein level change 11 12 22 11 12 22 q-value

NM_003039.2 c.888C>G p.I296M 0 4 157 0 1 585 0.014

c.808C>T p.R270W 0 1 160 0 0 587

c.457C>G p.L153V 0 1 159 0 1 586

doi:10.1371/journal.pone.0130329.t004

Table 5. Candidate mutations in independent unrelated cases.

Gene Transcript ID cDNA level change Protein level change SIFT /PolyPhen-2* Evolutionally conserved amino acid†

RYR2 NM_001035.2 c.497C>G p.S166C D/D Conserved

RYR2 NM_001035.2 c.1259G>A p.R420Q D/D

RYR2 NM_001035.2 c.1298T>C p.L433P D/B Conserved

RYR2 NM_001035.2 c.5278C>T p.R1760W D/D

RYR2 NM_001035.2 c.8470C>T p.R2824W D/D

RYR2 NM_001035.2 c.11017C>T p.R3673W D/D

RYR2 NM_001035.2 c.12438G>C p.E4146D D/D Conserved

RYR2 NM_001035.2 c.13780A>C p.K4594Q D/D Conserved

UBR4 NM_020765.2 c.1097A>G p.K366R T/P Conserved

UBR4 NM_020765.2 c.1349G>T p.R450L D/D Conserved

UBR4 NM_020765.2 c.1557G>C p.Q519H D/D Conserved

UBR5 NM_015902.5 c.2965C>T p.R989W -/-

PI4KA NM_058004.2 c.738C>G p.I246M T/P Conserved

KIF21B NM_017596.2 c.2224G>A p.E742K D/P Conserved

CIT NM_001206999.1 c.5783C>T p.A1928V -/- Conserved

WDR26 NM_001115113.2 c.59G>A p.G20E T/-

*D = damaging; P = probably damaging; T = tolerated; B = benign.
†Conserved: evolutionally conserved amino acid in seven organisms: Homo sapiens, Macaca mulatta, Mus musculus, Canis familiaris, Gallus gallus,

Xenopus tropicalis and Danio rerio.
Only candidate mutations in WDR26 (c.59G>A [p.G20E]) and RYR2 (c.11017C>T [p.R3673W]) were identified in the same individual.

doi:10.1371/journal.pone.0130329.t005
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substitutions at evolutionarily conserved positions could potentially lead to deleterious effects
on gene functions, these mutations may play an important role in the pathogenesis of LQTS.

To our knowledge, this study is the largest whole-exome sequencing analyses for LQTS. Our
analysis revealed several novel candidate pathogenic genes through PPI analysis and gene-
based association study. We believe our findings will be an anchor point for finding novel path-
ogenesis of this disorder.

Supporting Information
S1 Fig. Pedigree data. Samples with an asterisk were subject to WES analysis and those with a
question mark have unknown affected status.
(PDF)

S2 Fig. Relatedness among Japanese, Han Chinese, European and African individuals. Plot
of the first and the second principle components of the 749 subjects along with 45 East Asian
(HapMap populations of Japanese in Tokyo: JPT), 45 Han Chinese in Beijing: CHB), 90 Afri-
can (HapMap population of Yoruba in Ibadan, Nigeria: YRI), and 90 European (HapMap pop-
ulation of Utah, USA residents with ancestry from northern and western Europe: CEU)
populations. The one outlier indicated by the arrow (case) was excluded.
(PDF)

S3 Fig. A quantile-quantile (QQ) plot for association results. The genomic inflation factor
λGC was 1.027.
(TIFF)

S4 Fig. Coverage plots of all 120 individuals. Each line corresponds to one of the 120 individ-
uals. On average, 92.8% of all target exons had at least 10-fold coverage.
(PDF)

S5 Fig. Missense mutations observed at evolutionally conserved amino acids across seven
species.Homologous sequences were aligned using CLUSTALW. We identified evolutionally
conserved amino acid across seven organisms: Homo sapiens,Macaca mulatta,Mus musculus,
Canis familiaris, Gallus gallus, Xenopus tropicalis and Danio rerio.
(PDF)

S1 Table. Overview of exome-sequencing performance. † Proband.
(DOCX)

Table 6. Clinical background of patients with long-QT interval and RYR2mutation

cDNA level change Protein level change age sex Affected family members QTc event

c.497C>G p.S166C 11 F none 416 Syncope during swim, novel

c.1259G>A p.R420Q 14 M none 412 Syncope during swim (12 y), SD (17 y)

c.1298T>C p.L433P 18 F none 452 VF during exercise (17 y)

c.5278C>T p.R1760W 16 M none 425 Syncope during swim, novel

c.8470C>T p.R2824W 7 M none 439 Asympt, novel

c.11017C>T p.R3673W 16 M none 469 Heart failure, novel

c.12272C>T p.A4091V 16 M none 443 CA during exercise

c.12438G>C p.E4146D 2 F none 401 VF, novel

c.13780A>C p.K4594Q 12 F none 496 Syncope during swim (10 y), novel

doi:10.1371/journal.pone.0130329.t006

Exome Analyses of Long QT Syndrome

PLOSONE | DOI:10.1371/journal.pone.0130329 July 1, 2015 11 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130329.s006


S2 Table. Variants detected in each of the 35 probands. † NS: non-synonymous SNV, SP:
splice-site SNV. � Confirmed candidates: candidates co-segregated in the pedigree and vali-
dated using Sanger sequencing.
(DOCX)

S3 Table. Potential pathogenic mutations detected in 23 of the 35 families. † AR: autosomal
recessive (HMZ = homozygous, CHTZ = compound heterozygous), AD: autosomal dominant.
Bold: LQTS-susceptibility genes.
(DOCX)
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