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Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous

tumors that present a wide spectrum of different clinical and biological characteristics.

Currently, tumor grading, determined by Ki-67 staining and mitotic counts, represents

the most reliable predictor of prognosis. This time-consuming approach fails to

reach high reproducibility standards thus requiring novel approaches to support

histological evaluation and prognosis. In this study, starting from a microarray analysis

of paraffin-embedded tissue specimens, we defined the miRNAs signature for poorly

differentiated NETs (G3) compared to well-differentiated NETs (G1 and G2) consisting of

56 deregulated miRNAs. We identified 8 miRNAs that were expressed in all GEP-NETs

grades but at different level. Among these miRNAs, miR-96-5p expression level was

progressively higher from grade 1 to grade 3; inversely, its target FoxO1 expression

decreased from grade 1 to grade 3. Our results reveal that the miRNAs expression

profile of GEP-NET is correlated with the tumor grade, showing a potential advantage of

miRNA quantification that could aid clinicians in the classification of common GEP-NETs

subtypes. These findings could reliably support the histological evaluation of GEP-NETs

paving the way toward personalized treatment approaches.

Keywords: miRNAs, neuroendocrine tumors, gastrointestinal tract, tumor grading, molecular

markers, miR-96-5p, FoXO1

INTRODUCTION

Neuroendocrine Tumors (NETs) are rare and heterogeneous tumors that present with a wide
spectrum of different clinical and biological characteristics (1). In the last years, several studies have
been conducted to gain a better understanding of NETs pathogenesis, and refined grading systems
and classification according to the site of origin, cell types, and pathological features.

Regardless of the new classification (2010/2017 WHO), the low incidence, tumor heterogeneity,
non-specific symptoms at presentation, undefined nomenclatures and classifications, NETs remain
an unpredictable disease often difficult to be diagnosed, particularly when the disease is still at an
early stage. In fact, the absence of pathognomonic symptoms makes the diagnosis difficult; they
remain asymptomatic for years and are discovered only when they are already metastatic (2). NETs
are commonly observed in the gastrointestinal tract, in the pancreas and in the lung; incidence rates
have risen from 1.52 to 7.41 cases per 100,000 (3, 4). According to the latest WHO classification,
NETs are classified by morphological characteristics and the assessment of proliferation in two
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main categories: well-differentiated (WD) and poorly
differentiated (PD), also called G1/G2 and G3, respectively.
Specifically, Ki-67 index and mitotic count were used to assess
the grading (G1-G2-G3) (5, 6). According to WHO 2010, grade
G1 and G2 are defined as neuroendocrine tumors (NETs) and
G3 as neuroendocrine carcinoma (NEC3); they feature different
prognoses, outcomes, and treatment approaches (7). Since
well-differentiated, high-grade NETs clearly exist (mostly in the
pancreas) and it were not considered a homogeneous entity, the
WHO described a new classification in 2017 that discriminates
the well-differentiated (low-grade, intermediate-grade, or high-
grade) pNETs and poorly differentiated (high-grade) pancreatic
NECs (pNECs) (8); but this term is currently limited to patients
with pancreatic NETs (pNETs). A more recent classification was
made to the histological and cytology pattern, in particular NECs
are no longer graded, as they are recognized to be uniformly high
grade by definition, but continue to be separated into small-and
large-cell types (9, 10).

Recent studies have demonstrated that molecular markers
could be added to morphologic evaluation for more accurate
classification, especially in small biopsies where diagnostic
materials may be limited. In our previous studies, we highlighted
the importance of a better characterization of NETs grading
to gain more reliable prognostic and therapeutic indications.
In particular, we analyzed the role of programmed cell
death ligand 1 (PD-L1) in GEP-NET: PD-L1 expression was
significantly associated with a high-grade WHO classification
(G3), becoming a new gold standard for G3 NET discrimination
(11). Furthermore, pharmacological approaches using anti-PD-1
antibodies may become the choice for the treatment of G3 cases
with a poor prognosis, while for G1/G2 cases anti-angiogenic
drugs could be an excellent therapeutic choice, as demonstrated
in another recent study by our group (12).

In NETs, the traditional cytotoxic drugs have shown
limited efficacy, although their biological features have been
characterized and can be therapeutically exploited. Hence,
further investigations into the molecular basis of neuroendocrine
tumors are needed. Among these potential novel diagnostic and
therapeutic targets, microRNAs (miRNAs) represent a class of
small and endogenous non-coding RNAs that regulate gene
expression at post-transcriptional level, inhibiting the translation
of specific mRNAs (13). Specifically, miRNAs can regulate
various cellular processes including proliferation, migration,
apoptosis, and differentiation (14). The role of miRNAs in
cancer is well-established, and many studies have demonstrated
their function in cancerogenesis and tumor aggressiveness (15,
16). Several studies have already underlined specific miRNA
biomarkers in different types of cancer such as lung cancer
(17), pancreatic cancer (18), liver cancer (19), colorectal cancer
(20), gastric cancer (21), and esophageal cancer (22). Moreover,

Abbreviations: GEP-NETs, Gastroenteropancreatic neuroendocrine tumors;
NETs, Neuroendocrine tumors; miRNA, microRNA; PD-L1, programmed cell
death ligand 1; H&E, Hematoxylin and eosin; FFPE, formalin fixed paraffin
embedded; IHC, Immunohistochemistry; DMSO, Dimethyl sulfoxide; FDR, false
discovery rate; DAPI, 4′,6-diamidino-2-phenylindole.

miRNAs dysregulation was also associated with tumor prognosis
and therapy response.

In Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-
NETs), data on miRNAs expression are limited (23–25) and
the main studies have been conducted in pNETs (26). Specific
miRNAs signatures were able to discriminate pNETs from
pancreatic ductal adenocarcinoma (27) and acinar pancreatic
tumors (28), cystic forms of pNETs from other pancreatic
cystic lesions (29). In small bowel NETs, especially those of the
ileum, 29 deregulated miRNAs were identified in primary tumors
including the upregulated miR-204-5p, miR-7-5p, and miR-375
that inhibits cell proliferation/induces apoptosis. Comparison
between primary tumors with liver and lymph node metastases
highlighted numerous deregulated miRNAs (30). High levels of
circulating miR-21-5p and miR-22-3p and low levels of miR-
10-5p were found in patients with metastatic small intestine
neuroendocrine tumors, and there was a direct correlation
between the levels of these miRNAs and overall survival (31).

In this study, starting from microarray analysis, we examined
the global miRNAs expression profile of GEP-NET in different
anatomic sites, correlating their expression with grading. For the
first time we provide the specific miRNA signature for each GEP-
NET grade identifying miRNAs differently expressed in grade 1
to grade 3. In particular, we showed that miR-96-5p expression
levels was increased from grade 1 to grade 3, whereas its target
FoxO1 decreased from grade 1 to grade 3. Our results support
an important and unreported link between miRNA expression
andGEP-NET grades. Our data support future studies focused on
personalized pharmacological approach and offering a point of
reference for the use of miRNA expression as target for GEP-NET
grading using liquid biopsy specimens.

MATERIALS AND METHODS

Patients Characteristics and Pathological
Assessment
Ninety formalin-fixed and paraffin-embedded tissue specimens
of NETs collected from January 2006 to January 2019 at the
IRCCS “Saverio De Bellis” of Castellana Grotte (BA, Italy) were
enrolled in this study after approval of the Ethics Committee of
the “Istituto Tumori Giovanni Paolo II” (BA, Italy). The study
was carried out according to the principles of the Declaration of
Helsinki. The patients provided written informed consent. For all
patients, we collected the following clinicopathological features:
age, gender, primary site, tumor grade, metastasis, angioinvasion
and lymphocytic infiltration (Table 1).

Formalin fixed paraffin embedded (FFPE) tissue sections
stained with hematoxylin and eosin (H&E) was reviewed by
two pathologists and a representative paraffin block from each
specimen was chosen for immunohistochemistry (IHC) analysis.
On H&E and PAS mucin-stained sections, the cytological
characteristics of cells and the presence of ulcerations, perineural
infiltration, vascular permeation necrosis, and lymph node
metastasis were evaluated. All the cases were reviewed to confirm
the diagnoses according to the WHO 2010 and to the last WHO
2017 only for p-NETs (8).
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TABLE 1 | Clinicopathologic features of 90 GEP-NET patients.

Tot %

Gender

Men 48 53

Women 42 47

Age, years

Median, range 62.7, (20–93)

Tumor site

Stomach 25 27.78

Small intestine 24 26.67

Liver 13 14.44

Pancreas 11 12.22

Colon-rectum 7 7.78

Appendix vermiform 7 7.78

Gallbladder 3 3.33

Grade WHO classification

G1 62 68.89

G2 12 13.33

G3 16 17.78

Angioinvasion

Absent 73 81.11

Present 17 18.89

Lymphocytic infiltration

Absent 71 78.89

Present 19 21.11

Lymph nodes metastasis 3 3.3

Treatments 81 72.90

miRNA Isolation
Total RNA, including small RNA fraction, was isolated from
FFPE section of 5 µm-thickness using miRNeasy FFPE kit
(Qiagen) according to the manufacturer’s protocol including the
treatment of sections with Deparaffinization Solution (Qiagen).
Total RNA was then eluted in ribonuclease-free water. The RNA
concentration was determined with the NanoDrop ND-2000
Spectrophotometer (Nanodrop Technologies).

miRNA Microarray
The miRNA expression levels were assessed using SurePrint G3
Human Microarray Agilent Human 8x60K miRNA Microarray
(Agilent Technologies) based on Sanger miRBase release 21,
according to the manufacturer’s instructions. Briefly, 100
ng of total RNA isolated from FFPE section of 18 NETs
patients were firstly dephosphorylated with a calf intestine
alkaline phosphatase treatment for 30min at 37◦C before
labeling. Samples were diluted with Dimethyl sulfoxide (DMSO),
denatured for 10min at 100◦C, and labeled using pCp-Cy3
in T4 RNA ligation buffer. The labeled RNA was hybridized,
washed, stained, and scanned with an Agilent microarray scanner
(G2565BA, Agilent). Microarray data analysis was performed
using Agilent Feature Extraction Software 12.1 (Agilent) using
default parameters.

Microarray data are available under accession number
GSE135034 at the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/).

Statistical Analyses and Bioinformatics
For microarray analysis, the raw expression signals were log-
transformed, normalized, and filtered according to the median
corrected signal of all the miRNAs with an intensity >100
(considered as expressed) and analyzed using Agilent Gene
Spring GX 14.9 software. Probe sets were selected based
on significant P-value and were adjusted to account for
multiple testing using the Benjamini-Hochberg FDR method. To
determine miRNAs that were differentially expressed between
NETs grading, we applied a filter for FDR < 0.05 and a fold
change of ± 2. Hierarchical clustering and principal component
analyses (PCA) were created with Genesis software (http://www.
genesis-softwareonline.com/) using average-linkage clustering
method (32).

miRNA targets were predicted by means of miRBase 21.1
(33), TargetScan 7.1 (http://www.targetscan.org/vert_71/)
(34), miRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/apps/
zmf/mirwalk2/) (35), miRDB (http://www.mirdb.org/) (36),
and TarBase v.8 (http://carolina.imis.athena-innovation.gr/
diana_tools/web/index.php?r=tarbasev8/index) (37) algorithms.
Potential targets on the basis of overlapping results from the five
algorithms, and selecting targets genes predicted by at least two
of the algorithms. To assess biologic relationships among genes
controlled by deregulated miRNAs, we used miRSystem ver.
20160513 (38) and miRPath v.3 (39) software. Statistical analysis
was performed using GraphPad Prism statistical software release
5.0. Starting from the list of target genes for the eight deregulated
miRNAs predicted by miRWalk, the gene ontology enrichment
analysis was performed with Panther analysis tool (40).

Statistical differences between different conditions were
assessed with two-tailed Student’s t-test. All values are expressed
as the mean ± SEM. Results were considered statistically
significant at p < 0.05.

Quantitative Real-Time PCR
Total RNA, including small RNA fractions, was reverse
transcribed with the TaqMan Advanced miRNA cDNA
Synthesis Kit (Thermo Fisher Scientific, MA, USA) following
the manufacturer’s protocol. Real-time RT-PCR for the
quantification of a set of miRNAs (miR-96-5p, miR-7-5p,
miR-130b-3p, miR-192-5p, and miR-194-5p, plus an endogenous
control miR-26a-5p) was carried out with TaqMan Advanced
miRNA assays and TaqMan Fast Advanced Master mix (Thermo
Fisher Scientific, MA, USA). Real-time PCR amplification
reactions were performed in 20 µl of final volume on a CFX96
System (Biorad Laboratories, CA, USA). Normalization was
performed on the endogenous control miR-26a-5p, which has
been found highly and equally expressed in microarray data.

In situ Hybridization
In situ hybridization for miR-96-5p and FoxO1 was performed
on 6µm paraffin sections with probes using double or single
FAM-labeled locked nucleic acid (LNA) according to the
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manufacturer’s instructions (Exiqon). Briefly, FFPE sections
were deparaffinized in xylene and then rehydrated through
an ethanol dilution series (from 100 to 70%). Then, sections
were treated with Proteinase K at 37◦C for 15min and then
washed with PBS. Labeled probes for miR-96-5p and FoxO1 were
denatured at 90◦C for 4min. Slides were incubated with the
diluted probes in hybridization buffer at 57◦C for 1 h. Stringent
washes were performed with 5X saline sodium citrate (SSC),
1X SSC, and 0.2 SSC buffers at 57◦C for 5min. Slides were
washed in PBS and mounted in medium containing DAPI (4′,
6-diamidino-2-phenylindole dihydrochloride) (Thermo Fisher
Scientific). Fluorescent images of FAM and DAPI were taken at
488 and 358 nm, respectively, on a Nikon Eclipse Ti2 microscope
(Nikon, Tokyo, Japan). Scramble probe was used as a negative
control, and β-actin as positive control.

IHC and IHC Evaluation
IHC analysis for FoxO1 protein was performed in the FFPE of
90 patients with NETs. Tumor sections of 4µm were freshly
cut and dried at 60◦C for 30min. IHC analysis was carried
out in sections after deparaffinization for 30min and then
rehydration in grades of alcohol. Antigen retrieval was performed
at 90◦C for 20min with Tris-borate-EDTA Buffer. To assess the
FoxO1 staining employed for the present study, antibodies (clone
EP927Y, Abcam, at 1:250 dilution) were evaluated on the NETs,
using an automated autostainer (cat. K5007, Dako, Glostrup,
Denmark). The Real Envision DAB Substrate Kit (DAKO)
was used according to the manufacturer’s instructions. FoxO1
expression was scored for all staining patterns, according to both
the staining intensity and the percentage of positively stained
cells, by two independent, blinded pathologists. The proportion
of FoxO1-positive cells was estimated as the percentage of total
tumor cells; tumor cells typically showed cytoplasmatic staining
with a variable nuclear staining component. FoxO1 expression
was scored as 0: (no staining) negative; 1: weak expression, but
weaker than the positive control, staining in <5% of tumor cells;
2: moderate expression in > 5% of tumor cells; and 3: strong
more than positive control staining in>5% of the tumor cells. For
data assessment, our cases were considered positive for FoxO1
expression only if they had scores of 2+ or 3+.

Ki67 IHC was carried out again on all cases on paraffin-
embedded sections using an Ab anti-Ki67 diluted 1:100 (Mib-
1; DAKO) following the manufacturer’s instructions. All cases
were reviewed and re-evaluated and then assigned a precise
proliferation index number that encompassed the amplitude
limit of the 2010/2017 WHO range.

RESULTS

Clinicopathologic Features
Table 1 summarizes the main clinicopathological characteristics
of the 90 patients enrolled in the study. Median age of patients
was 62.7 years (range: 20–93): 42 females (47%) and 48 males
(53%). The most common primary site in our cohort of GEP-
NET patients was the stomach (27.78%), followed by the small
intestine (26.67%), liver (14.4%), pancreas (12.2%), colon-rectum
(7.78%), appendix (7.78%), and gallbladder (3.33%). According

to 2010/2017 WHO, the 90 cases analyzed were classified as
follows: 62 grade 1 (68.89%), 12 grade 2 (13.33%), and 16 grade
3 (17.78%) Lymph node metastases and visceral peritoneum
invasion were observed in 3 (2.7%) NETG1 (head of the pancreas
and ileum). Curative treatments, such as surgery or endoscopic
resection, were performed in 72.9% of patients (n= 81).

miRNA Expression Profile in Patients With
GEP-NETs
The role of miRNA expression in GEP-NETs tumor grades
has not been well-explored. In order to determine whether the
analysis of miRNA expression profiles may discriminate between
the 3 GEP-NETs tumor grades, we performed miRNA global
expression profile in 18 GEP-NETs patients (7 G1, 5 G2, and
6 G3).

Differential expression analysis (FDR ≤ 0.05 and fold change
threshold >2) between G3 vs. G1 patients identified 113
deregulated miRNAs (72 upregulated and 41 downregulated),
instead the comparison between patients with grading G3
(poorly differentiated NETs) vs. G1 and G2 (well-differentiated
NETs) showed 56 deregulated miRNAs (44 upregulated and
12 downregulated) (Supplementary Table 1). Surprisingly, there
were significant differences in miRNAs expression between G1
and G2 NETs patients (50 deregulated miRNAs, 25 upregulated,
and 25 downregulated). Unsupervised hierarchical clustering
analysis generated a tree showing two clearly separated groups,
one for G1 and G2 and the other one for G3 patients (Figure 1A).
Principal component analysis (PCA) further confirmed this
separation (Figure 1B).

NETs Tumor Grades Are Associated With
Selected miRNAs Expression Level
Starting from miRNAs expression data obtained in each
comparison, we first focused our attention on miRNAs
commonly expressed in all grades. The Venn diagram of
grade-specific genes revealed that 8 miRNAs were expressed
in all grades (Figure 2). Specifically, the miRNAs expressed in
all grades were: hsa-miR-10b-5p, hsa-miR-130b-3p, hsa-miR-
192-5p, hsa-miR-194-5p, hsa-miR-210-3p, hsa-miR-214-3p,
hsa-miR-7-5p, and hsa-miR-96-5p. Moreover, the analysis
of microarray data demonstrated that these 8 miRNAs
had a different expression level in each grade (Figure 2).
To validate microarray results, we performed quantitative
real-time PCR (qRT-PCR) for miR-96-5p, miR-7-5p, miR-
130b-3p, and miR-194-5p on miRNAs isolated from a
cohort of 24 GEP-NETs patients (8 G1, 8 G2, and 8 G3).
The expression of all analyzed miRNAs was significantly
modulated in all NETs tumor grades confirming microarray
data (Figure 3).

In silico Analysis of miRNA Targets
To study the molecular mechanisms in which these miRNAs
are involved, we performed a bioinformatic analyses to predict
target genes of aforementioned eight deregulated miRNAs
(hsa-miR-10b-5p, hsa-miR-130b-3p, hsa-miR-192-5p, hsa-
miR-194-5p, hsa-miR-210-3p, hsa-miR-214-3p, hsa-miR-7-5p,
and hsa-miR-96-5p). Based on bioinformatic analyses we
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FIGURE 1 | Unsupervised hierarchical clustering and principal component analysis (PCA) of 18 GEP-NETs patients by miRNAs expression profiles. (A) Hierarchical

clustering using the 56 significantly deregulated miRNAs (FDR ≤ 0.05 and fold change threshold >2) discriminating patients with grading G3 (poorly differentiated

NETs) vs. G1 and G2 (well-differentiated NETs) analyzed by microarray. Each column represents a sample and each row a miRNA. Red color indicates high expression

and green low expression, according to the legend at the top. miRNA symbols are specified on the right side. Based on miRNA expression, we identified two principal

clusters. (B) PCA based on the expression of differentially expressed miRNA in all samples. PCA displayed evident clustering and confirmed the separation between

poorly differentiated NETs and well-differentiated NETs.

FIGURE 2 | Differentially expressed miRNA across GEP-NETs grades. (A) Venn diagram showing the number of dysregulated miRNAs for each analyzed comparison.

(B) Normalized probe signals are plotted for eight commonly expressed miRNAs that were differentially expressed in all 3 grades.

found that deregulated miRNAs were mainly involved in
several characteristic pathways of cancer. In particular, the
identified miRNAs are involved in crucial pathways for
cancer onset and progression, specifically Proteoglycans in
cancer, Hippo signaling, Pathways in cancer, p53 signaling,

FoxO signaling, HIF-1 signaling (Supplementary Table 2).
Importantly, within these pathways, multiple miRNAs
were predicted to regulate the same target genes, and one
single miRNA could target several crucial genes. Moreover,
Gene Ontology enrichment analysis demonstrated that the

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 1187

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cavalcanti et al. miRNAs in GEP-NETs Grading

FIGURE 3 | Validation of differentially expressed miRNAs. Expression levels of miR-96-5p, miR-7-5p, miR-130b-3p, and miR-194-5p from miRNAs isolated from a

cohort of 24 GEP-NETs patients (8 G1, 8 G2, and 8 G3). Expression levels were quantified using qRT-PCR. The miRNA relative expressions were normalized to the

expression of miR-26a-5p. The expression of all analyzed miRNAs was significantly modulated in all NETs tumor grades, confirming microarray data. The histograms

represent the mean ± SEM. By ANOVA *p < 0.05, **p < 0.01, ***p < 0.001.

predicted gene targets of the eight deregulated miRNAs
were significantly enriched in 313 biological processes
(Supplementary Table 3). Using functional enrichment
analysis, predicted target genes were categorized into several
biological processes including regulation of cellular processes,
regulation of cellular metabolic process, and regulation of
cell communication.

miR-96-5p Targets FoxO1 in GEP-NETs
The role of miR-96-5p has been extensively studied in various
type of tumors, whereas no studies have yet addressed miR-96-
5p expression in GEP-NETs tumor grades. miR-96-5p was found
to be abnormally expressed in colorectal cancer, prostate cancer,
and several other malignant tumors (41–44) where miR-96-5p
can regulate FoxO1 levels and consequently inhibit proliferation
(45). To confirm the relationship between miR-96-5p and
FoxO1 expression in GEP-NETs, we studied their expression and
localization in an independent cohort of different grade GEP-
NETs patients by in situ hybridization. In particular, miR-96-
5p was predominantly localized in the cytoplasm in all grades
and showed increasing expression from G1 to G3 (Figure 4). By
contrast, FoxO1 expression was localized in the nucleus in G1
and G2 sections and in the cytoplasm in G3. Contrariwise to
miR-96-5p, the expression of FoxO1 was decreased from G1 to
G3 (Figure 4).

FoxO1 Protein Expression in GEP-NETs
To evaluate the biological significance of miRNA associated with
G3 NETs, we analyzed the FoxO1 tissue expression in 90 GEP-
NETs tissue by IHC (Figure 5). Among them, 78 cases resulted
positive (86.7%) and 12 cases were negative (13.3%). The staining
highlighted FoxO1 in the cytoplasm or in the nucleus. The
relationship between FoxO1 expression and patients’ gender,
age, as well as tumor size and lymph node metastasis status,
was not significant (data not shown). Notably, we highlighted a
significant correlation between the protein expression of FoxO1
and grading of GEP-NETs (p = 0.001). In particular, the FoxO1
staining intensity score on neoplastic cells was different among
the three grades (Figures 5A–C). Based on the FoxO1 signal
intensity, we created a score (Table 2) from 0 to 3+ (absent
to strong). In particular, G1 patients showed no signal in one
tumor (1.61%), a weak signal in 9 (14.5%), moderate signal in
13 tumors (21%) and strong signal in 39 tumors (63%). FoxO1
expression was absent in 11 (68.7%) G3 patients while in G2
FoxO1 expression was present in all cases, although with a
different intensity: weak staining in 1 (8.3%) cases, medium in
4 (33.3%) and strong in 7 (58.4%) cases (Table 2). Importantly,
only one sample (6.3%) of G3 cases showed moderate positivity
and cytoplasmic staining. Instead, 58.4% of G2 cases showed
strong positivity and nuclear staining. Therefore, there is a
direct correlation between FoxO1 signal intensity and GEP-NETs
grading from G1 to G3 (p= 0.001) (Table 2).
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FIGURE 4 | Detection of miR-96-5p and FoxO1 mRNA by in situ hybridization. LNA-modified probes (double or single FAM-labeled) complementary to miR-96-5p and

FoxO1 mRNA were hybridized on consecutive 6µm paraffin sections from G1, G2, and G3 GEP-NETs patients. An additional section was stained with H&E to reveal

the overall morphology (A–C). miR-96-5p was predominantly localized in the cytoplasm in all grades and its expression increased from G1 to G3 (D–F). Inversely,

FoxO1 expression was localized in the nucleus in G1 and G2 sections and in the cytoplasm in G3 (G–I). Original magnification, ×20. HE, hematoxylin and eosin stain.

DISCUSSION

GEP-NETs are a heterogeneous group of tumors with a common
phenotype but different origin, morphology, function, type and
aggressiveness of the specific site prognosis and response to
treatment. In these neoplasms, the histological evaluation is a
crucial element in clinical management. Currently, Ki-67 staining
and mitotic counts, is considered the most reliable predictor for
tumor grading (46). This scoring method is poorly reproducible
and time-consuming (47), thus there is an urgent need for novel
approaches to support histological evaluation and prognosis.

miRNAs, a class of small non-coding RNAs, are recognized as
key regulators of gene expression involved in diverse biological
processes. Dysregulation of miRNA has been shown to play
an important role in many cancers (48). Due to the specificity
and stability of miRNAs in FFPE tissues, the assessment of
miRNAs expression represents a promising novel approach to
subclassify some tumors (49). Currently available data regarding
miRNAs expression in GEP-NETs are limited since many studies
has been conducted in pNETs (26–29). Some studies evaluated
the clinical utility of miRNA as biomarkers in GEP-NETs and
assessed their expression in different tissue and blood but to

date no one highlights their expression in different grades of
GEP-NETs. In particular, Panarelli N. et al. classified accurately
pathological types of GEP-NET based on miRNA expression and
constructed a double hierarchical classifier that firstly separates
midgut from non-midgut NETs based on miR-615 and miR-92b
expression. In the second, the classifier differentiated ileal from
appendiceal NETs based on miR-125b, miR-192, and miR-149
expression, and rectal from pancreatic NETs based on miR-429
and miR-487b expression (50). Another interesting study, after a
systematic literature overview of dysregulated miRNAs in GEP-
NET, identified miR-21 as a potential marker for small bowel and
pancreas NETs, although this marker required prospective (23).

In the present study, we defined the miRNAs signature for
poorly differentiated NETs compared to well-differentiated NETs
identifying 56 deregulated miRNAs. Moreover, for the first time,
we found 8 miRNAs that were expressed in all GEP-NETs grades
(miR-10b-5p, miR-130b-3p, miR-192-5p, miR-194-5p, miR-210-
3p, miR-214-3p, miR-7-5p, and miR-96-5p), but their expression
level was different between GEP-NETs grades. Among these
miRNAs, we focused our attention to miR-96-5p that raised
its expression levels from grade 1 to grade 3. Several studies
have demonstrated that miR-96 was remarkably increased in
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FIGURE 5 | Representative patterns of FoxO1a staining intensity and grade: (A) G1, IHC strong expression; (B) G2, medium expression; (C) G3, weak expression.

Original magnification, ×20.

TABLE 2 | FoxO1a expression on different grade of GEP-NET.

Grade

G1 G2 G3 p-value*

(n = 62) (n = 12) (n = 16)

Score FoxO1(%) <0.001

Absent 1 (1.61) 0 (0.00) 11 (68.7)

Weak 9 (14.5) 1 (8.3) 4 (25.0)

Moderate 13 (21.0) 4 (33.3) 1 (6.3)

Strong 39 (63.0) 7 (58.4) 0 (0.00)

*Refers to the statistical significance of the comparison.

several different types of cancers, such as pancreatic cancer,
lung cancer, osteosarcoma, and gastric carcinoma, suggesting
the expression of miR-96 was associated with the progression
of tumor (51–53). In GEP-NET, we demonstrated that FoxO1
expression was markedly decreased in G3 patients, but was
substantially higher in G1 patients.

FoxO1a is a Forkhead box O (FOXO) transcription factor and
a downstream target of the IGF-1R/PI3K/Akt pathway implicated
in several physiological and pathological processes including
cancer. In malignancies, FoxO1 was shown to be an important
tumor suppressor gene and was downregulated in many types
of tumors (54). However, the molecular mechanism resulting

in FoxO1 aberrant expression is poorly understood and the
role of FoxO1 in tumorigenesis is not entirely clear. It has
been hypothesized that the downregulation of this gene is an
important step in tumor formation (55, 56). FoxO1 activity and
function is regulated through shuttling between the nucleus and
the cytoplasm (57). The nuclear active form of FoxO1 mediates
the transcription of a broad array of target genes implicate in
apoptosis, redox homeostasis, cell cycle inhibition, angiogenesis,
and metabolism (58).

Several points of evidence suggest that the FoxO family
of transcription factors are regulated by miRNAs. In prostate
cancer, FoxO1 was regulated by miR-96, promoting cancer
progression (59). In breast cancer cells, FoxO1 expression was
directly regulated by three miRNAs (miR-27a, miR-96, and miR-
182). The inhibition of these mRNAs led to the restoration of
FoxO1 expression that in turn contributes to the transformation
or maintenance of an oncogenic state in breast cancer cells
(55). A recent study described that miR-96 was up-regulated
in HCC tissues and HepG2 cells, miR-96 inhibiting FoxO1 and
thus activating the AKT/GSK-3β/β-catenin signaling pathway,
exerted its carcinogenic effect (60).

In our study, we demonstrated that in poorly differentiated
GEP-NETs, miR-96-5p expression is upregulated and FoxO1
downregulated, suggesting a potential direct involvement of
miR-96-5p in regulating FoxO1 expression. On the contrary, in
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well-differentiated G1 GEP-NETs patients miR-96-5p expression
was lower and FoxO1 positive cells were more frequent.
Furthermore, we localized miR-96-5p and FoxO1 expression,
finding that miR-96-5p was predominantly localized in the
cytoplasm in all tumor grades and its expression increasing from
G1 to G3. Interestingly, FoxO1 expression was localized in the
nucleus in G1 and G2 section and in the cytoplasm in G3.
Likewise, analysis of FoxO1 at protein levels showed that in 68.7%
of G3 patients FoxO1 signal was absent and the remaining part
of G3 cases showed weak positivity and cytoplasmic localization.
Instead, the 63% of G1 patients showed strong positivity and
nuclear staining.

Our data are in line with data reported by several previous
studies suggesting that low expression of the FoxO family is
correlated with poor clinical outcomes in several cancers (57, 61).
Similarly, other studies reported a correlation among high FoxO
expression, nuclear localization and good prognosis (62). Here,
we have shown a significant negative correlation between FoxO1
expression and grading, whereby well-differentiated NETs (G1-
G2) cases have a persistent positive FoxO1 nuclear/cytoplasmatic
expression that decreases with the tumor progression, confirming
the more favorable outcomes in patients G1/G2 GEP-NETs.

In addition, the effect of FoxO1 activity on chemosensitization
has been demonstrated in several tumors (63). Our data on
FoxO1 absence in poorly differentiated GEP-NET patients could,
at least partially explain the chemoresistance observed in this
group of patients (64).

In conclusion, our study explored the miRNA expression
profile of GEP-NETs, correlating their expression with grading.
We defined the specific miRNA signature for each GEP-NET
grade identifying miRNAs that were commonly expressed in all
GEP-NET but at different levels. In particular, we demonstrated
that miR-96-5p expression level was higher in grade 3 GEP-
NETs. In line with this observation, we proved that the miR-
96-5p target FoxO1 was poorly expressed in G3 GEP-NETs.
Furthermore, FoxO1 nuclear expression was detected in G1 and
G2 GEP-NETs, in line with a more favorable prognosis of these
patients. Altogether, our results indicate a potential advantage
of miRNAs quantification to aid clinicians in the classification
of common GEP-NETs subtypes. Therefore, the combination of
conventional strategies implemented with miRNAs expression
and FoxO1 histological assessment may represent a new gold
standard to for GEP-NETs evaluation. Furthermore, miRNAs
represent an innovative target for personalized treatment of
several disease, but further studies on multicenter larger cohorts
are needed to confirm and validate their potential as NETs
markers. Our data demonstrate an important and unreported

role of miRNAs as biomarker in GEP-NETs grading and suggest
further investigation to address their therapeutic potentials.
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