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Abstract 
RNA regulators are often found in complex regulatory networks and may mediate metabolism 
and virulence in bacteria. Small RNAs (sRNA’s), a class of non-coding RNAs that interact with 
an mRNA transcript via base pairing, modulate translation initiation and mRNA degradation. To 
better understand the role of sRNAs in pathogenicity several studies identified sRNAs in 
Streptococcus pneumoniae, however little functional characterization has followed. The goal of 
this study is threefold: 1) take an inventory of putative sRNAs in S. pneumoniae; 2) assess the 
conservation of these sRNAs; and 3) examine their predicted targets. Three previous studies in S. 
pneumoniae identified 287 putative sRNAs by high-throughput sequencing using a variety of 
distinct inclusion criteria. This study narrows the candidates to a list of 59 putative sRNAs. 
BLAST analysis shows that each of the 59 sequences are highly conserved across the S. 
pneumoniae pangenome while only 5 sRNAs have corresponding sequences with substantial 
similarity in other members of the Streptococcus genus. We used four RNA-RNA interaction 
prediction programs (IntaRNA, CopraRNA, sRNARFTarget, and TargetRNA3) to predict targets 
for each of the 59 putative sRNAs. Across all probable predictions, only seven sRNAs have 
overlap in the targets predicted by multiple programs, four of which target numerous 
transposases. Moreover, sRNAs targeting transposases do so with nearly identical and perfect 
base pairing. One sRNA, named M63 (Spd_sr37), has several probable targets in the CcpA 
regulon, a network responsible for global catabolite repression, suggesting a possible biological 
function in control of carbon metabolism. Further, each M63-target interaction exhibits unique 
base pairing increasing confidence in the biological relevance of the result. This study produces a 
curated list of S. pneumoniae putative sRNAs whose predicted targets suggest functional 
significance in transposon and carbon metabolism regulation. 
 
Introduction 
Streptococcus pneumoniae is a Gram positive bacterium that causes various diseases including 
pneumonia, meningitis, bacteremia, otitis media and sinusitis, and invasive pneumococcal 
disease is particularly dangerous in children and the elderly (CDC, 2013). In 2004, invasive 
pneumococcal disease was responsible for approximately 4 million illness episodes, 445,000 
hospitalizations, and 22,000 deaths (Huang et al., 2011). Despite the threat S. pneumoniae poses, 
important components of regulation relating to metabolism and virulence remain less well 
characterized. Small regulatory RNAs (sRNA) are sequences of 40-500 nucleotides (nt) in length 
(Li et al., 2012) that can be transcribed by 5’-UTRs, 3’-UTRs, coding, and non-coding sequences 
(Felden and Augagneur, 2021), however, studies seeking to identify sRNAs tend to focus on 
intergenic regions. Among the different types of sRNAs are trans-encoded and cis-encoded 
RNAs. Trans-encoded sRNAs regulate genes from distant regions often with imperfect 
complementarity allowing them to interact with more than one target (Jabbour and Lartigue, 
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2021). Cis-encoded sRNAs act on the mRNA transcript encoded by the opposite DNA strand 
leading to perfect complementarity (Zorgani et al., 2016) (Figure 1a). sRNAs modulate the 
expression of target mRNAs by base pairing to sequester a ribosome binding site or accelerate 
decay (Papenfort and Vanderpool, 2015). Some sRNAs are dependent on a chaperone like the 
Hfq or FinO family proteins that have a well-characterized role in aiding the formation of 
duplexes between sRNAs and their mRNA targets in Enterobacteriaceae. However, there are no 
confirmed RNA chaperone homologs in the S. pneumoniae genome (Zhang et al., 2003).  
 
Identification of putative sRNAs in S. pneumoniae has been performed several times, but follow-
up characterization has been extremely limited. The exception is a group of sRNAs called cia-
dependent sRNAs (csRNAs) that have been studied across Streptococcus with considerable work 
done in S. pneumoniae. The csRNAs are controlled by the CiaRH two-component system (TCS) 
that is involved in natural competence and general virulence (Halfmann et al., 2007, Marx et al., 
2010, Tsui et al., 2010). In S. pneumoniae the CiaRH TCS expresses five sRNAs, with 
experimentally verified targets, that prevent autolysis triggered by various conditions, like the 
presence of deoxycholate, to allow the maintenance of stationary growth phase (Mascher et al., 
2006). The csRNAs have also recently been implicated in promoting Zn homeostasis (De Lay et 
al., 2024). Three previous studies identified hundreds of additional putative sRNAs using diverse 
inclusion criteria. Some of these sequences may be annotated as homologs of RNA families such 
as Pyr elements (RF00515) or TPP riboswitches (RF00059), BOX elements (AT-rich repeats that 
are highly transcribed), or ribosomal protein leaders (sequences in the 5’-UTR of ribosomal 
protein transcripts that control the concentration of the ribosomal protein) (Mann et al., 2012, Fu 
et al., 2013, Babina et al., 2015). However, it remains unclear which of the remaining sequences 
are regulatory. Here we find that 59 of the putative sRNAs are highly conserved in the S. 
pneumoniae pangenome and we predict the mRNA targets of these sRNAs. The predictions 
suggest 8 putative sRNAs, which have highly probable targets, interact with transposases and 
genes involved in carbon metabolism regulation. 
 
Results and Discussion 
S. pneumoniae genome contains +70 putative sRNAs 
In assessing which previously identified sRNA candidates are likely to have a biological function 
and prioritize candidates for further investigation we examined a pool of 287 putative sRNAs 
originating from three studies (Acebo et al., 2012, Mann et al., 2012, and Sinha et al., 2019, 
Additional Datafile 1). We note 72% are functionally uncharacterized whereas the other 28% 
may be annotated as homologs of cis-regulators, BOX elements, or csRNAs (Figure 1b). We 
further narrowed this pool to a list containing only sequences identified in multiple studies, 
sequences confirmed by Northern blot or RT-qPCR, and the previously characterized csRNAs 
while excluding cis-regulators and BOX elements. This new list contains 81 putative sRNAs that 
were assigned names “M1” through “M81”. However, 5 sequences are <50 nt and were 
subsequently removed from the list leaving a final total of 76 candidate sRNAs (Figure 1c). We 
observe that many of these sRNAs were found in a single study emphasizing the different 
sequencing strategies and inclusion criteria of the previous studies (Figure 1d). After compiling 
the final list for further analysis, we conclude there are over 70 putative sRNAs in the S. 
pneumoniae genome (Additional Datafile 2). 
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Figure 1: a) The cis-encoded sRNA, found on the strand opposite to the mRNA coding strand, binds the target 
mRNA with perfect complementarity. The trans-encoded sRNA, expressed from a region distant to the target, binds 
with imperfect complementarity. b) The classifications of the 287 putative sRNAs. c) Process of narrowing the 287 
putative sRNAs to a list of 76 candidates for further analysis. d) Among the candidates, 7 are found in all three 
studies and 15 are found in two of the three studies. 
 
Majority of sRNA candidates are conserved across the S. pneumoniae pangenome 
To increase our confidence in the biological relevance of the putative sRNAs and prioritize them 
for further investigation, we assessed the conservation of the candidate sRNAs across the 
genomes of 385 S. pneumoniae strains. BLAST (Altschul et al., 1990) analysis indicated 70/76 
candidates are present in the genomes for a majority of 385 S. pneumoniae strains (Figure 2a) 
(Cremers et al. 2015, Rosconi et al., 2022). Among these 70, only 60 candidates appear to be 
non-repetitive sequences, 58 of which display average sequence identity >97% to the best hit in 
each genome, indicating the sequences are highly conserved across the S. pneumoniae 
pangenome (Table 1). Interestingly, 6 of the sRNAs are found in <12 strains and all of them were 
identified in the S. pneumoniae strain TIGR4 (Figure 2a), highlighting the possibility for strain 
specific sRNAs in S. pneumoniae. From this group of candidates, we observed that synteny is 
preserved (see Methods) across the S. pneumoniae strains in 43 of the 60 final candidates. One of 
the final candidates, M8, was later identified as a cis-regulator and removed, leaving a total of 59 
sRNAs for further analysis. To determine if any of the sRNAs are conserved to species related to 
S. pneumoniae we also analyzed other members of the Streptococcus genus. Only 5 of the 
candidate sRNAs align with sequence identities >65% to each of S. pyogenes, S. mutans, and S. 
suis, and 6 additional sRNA candidates align with only one or two of these organisms. It appears 
most of the sRNAs are unique to S. pneumoniae. This is consistent with the narrow distribution 
of many sRNAs across other bacterial species (Peer and Margalit, 2014). 
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Figure 2: a) The conservation of sRNA candidates across the S. pneumoniae pangenome. b) The four degrees of 
conservation of the sRNA candidates. “Conserved”, “non-repetitive sequence”, and “synteny preserved” refer to the 
criteria for each level of the tree diagram in part a. 
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The 76 in-house sRNAs and their conservation  
In-house 

ID 
Other IDs TIGR4 

coordinates 
D39 coordinates Sequence 

identity 
Genomes with 

match 
Matches per 

genome 
M1 srn061/F7/CcnE 209768-209916 212278-212426 99.99% 3851 1 

M2 srn135 438151-438275 
 

100.00% 8 1 

M3 srn151 501260-501363 
 

96.32% 385 19 

M4 F15 501732-501843 
 

99.04% 3851 1 

M5 srn206 781187-781304 
 

99.77% 3841 1 

M6 srn231 853483-853605 
 

97.97% 3481 1 

M7 srn235/F59/Spd_sr49 869478-869804 825803-826129 99.39% 3851 1 

M8** srn241/F35 909029-909179 
 

98.93% 3851 1 

M9 srn254/F38/Spd_sr17 956782-956927 912572-912717 97.90% 3851 1 

M10 srn266/Spd_sr55 1035442-1035581 1697549-1697677 97.33% 385 15 

M11 srn277/F41 1071102-1071213 
 

91.09% 4 1 

M12 srn351/R21/Spd_sr78 1461066-1461188 1404039-1404161 99.93% 3851 1 

M13 srn477/Spd_sr105 1984829-1984968 1873277-1873416 99.86% 3851 1 

M14 trn0978 1986229-1986310 
 

99.70% 3851 1 

M16 srn491/Spd_sr106 2005533-2005682 1892401-1892550 99.86% 3851 1 

M17 srn502/F66/Spd_sr109 2086085-2086325 1972860-1973100 99.55% 385 2 

M18 srn503/F67/Spd_sr111 2086380-2086628 1973155-1973403 98.41% 385 2 

M19 trn0012/CcnC 24164-24263 23967-24066 99.62% 385 2 

M20 trn0057 124989-125050 
 

97.19% 385 1 

M21 Spd_sr18 
 

134413-134576 96.75% 385 92 

M22 trn0157/F10 284239-284316 
 

99.67% 3741 1 

M23 trn0332/F25/Spd_sr42 623244-623344 587440-587542 95.89% 3781 1 

M24 trn0485/F60 950115-950195 
 

99.99% 3851 1 

M25 trn0696 1423633-1423713 
 

93.05% 364 1 

M27 trn0830/R12 1731041-1731439 
 

94.32% 385 209 

M28 trn0935/R9 1903548-1903637 
 

99.82% 385 19 

M29 trn1025 2048577-2048643 
 

99.99% 3661 1 

M30 R7 1791010-1791079 
 

98.58% 385 6 

M31 R8 1892645-1892716 
 

99.54% 9 1 

M32 R14 1034021-1034099 
 

98.69% 3851 1 

M33 R17/Spd_sr69 1277241-1277387 1217391-1217537 97.32% 385 79 

M34 R18/Spd_sr72 1364575-1364763 1299979-1300167 98.30% 3791 1 

M36 F1 91593-91663 
 

99.09% 361 1 

M37 F3 117143-117247 
 

98.43% 385 1 

M39 F6 130439-130494 
 

98.30% 3831 1 

M40 F8/CcnA 228626-228807 231143-231324 97.12% 3851 2 

M41 F11 286614-286707 
 

99.13% 3841 1 

M42 F14 499570-499688 
 

99.77% 3391 1 

M43 F18 538437-538491 
 

97.84% 385 7 

M44 F19/Spd_sr33 543000-543149 508238-508388 99.11% 3851 1 

M45 F22 592573-592711 
 

99.44% 3851 1 

M46 F24 610528-610659 
 

98.04% 385 12 

M47 F31 810811-810861 
 

98.29% 385 12 
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M48 F33 863736-863817 
 

98.28% 3851 1 

M49 F36 941435-941486 
 

99.66% 3851 1 

M50 F39 972498-972606 
 

98.15% 3851 1 

M51 F40 1063101-1063150 
 

100.00% 4 1 

M52 F43/Spd_sr63 1216148-1216245 1170289-1170386 99.87% 3851 1 

M53 F45 1408204-1408274 
 

100.00% 3841 1 

M54 F48 1778293-1778426 
 

99.27% 385 36 

M56 F53 588512-588589 
 

99.92% 385 26 

M57 F55 1696066-1696161 
 

97.13% 385 48 

M58 F56 158993-159089 
 

98.09% 11 1 

M59 F61 972327-972383 
 

98.82% 3851 1 

M60 F62 995726-995786 
 

100.00% 9 1 

M61 Spd_sr5 
 

39980-40081 97.40% 3581 1 

M62 Spd_sr6 
 

41494-41558 97.76% 384 7 

M63 Spd_sr37 
 

131773-131841 99.83% 3851 1 

M64 Spd_sr14 
 

149223-149340 99.59% 3851 1 

M65 CcnB 
 

231331-231426 99.71% 385 3 

M66 Spd_sr24 
 

231853-232034 99.34% 371 1 

M67 CcnD 
 

233715-233808 99.89% 3851 1 

M68 Spd_sr31 
 

476085-476234 98.76% 3851 1 

M69 Spd_sr47 
 

825484-825544 99.38% 3851 2 

M70 Spd_sr60 
 

1079136-1079199 99.99% 3831 1 

M71 Spd_sr67 
 

1212230-1212526 98.77% 3651 2 

M72 Spd_sr71 
 

1264469-1264569 99.06% 385 37 

M73 Spd_sr81 
 

1464371-1464684 99.17% 3851 1 

M74 Spd_sr83 
 

1528062-1528186 99.64% 3851 1 

M75 Spd_sr84 
 

1595446-1595563 98.99% 3851 1 

M76 Spd_sr89 
 

1673201-1673322 99.92% 3851 1 

M77 Spd_sr96 
 

1759320-1759411 100.00% 3851 1 

M78 Spd_sr108 
 

1913212-1913442 97.60% 385 52 

M79 Spd_sr110 
 

1973001-1973113 99.16% 385 2 

M80 Spd_sr112 
 

1973343-1973456 98.78% 385 2 

M81 Spd_sr116 
 

2020113-2020228 99.98% 3851 1 

Table 1: The 76 candidate sRNAs and their conservation. In the “Other IDs” column, sRNAs with the prefix “srn”, 
“trn”, “R”, and “F” were identified in TIGR4 (Acebo et al., 2012, Mann et al., 2012) and sRNAs with the prefix 
“Spd_sr” and “Ccn” were identified in D39W (Sinha et al., 2019). The TIGR4 coordinates indicate the sequence 
location in the NC_003028.3 genome. Likewise, D39 coordinates corresponds to the NC_008533.2 genome. The 
“Sequence identity” and “Matches per genome” are averages across the 385 strains. Preservation of synteny 
indicated by 1 in the “Genomes with match” column. **M8 later identified as a cis-regulator (pyrR element: 
RFAM:RF00515). 
 
RNA target prediction programs struggle to correctly predict validated targets 
Several RNA-RNA interaction prediction (RIP) programs have been developed to predict 
mRNA:sRNA interactions with newer models displaying the highest accuracies. These include 
IntaRNA (Busch et al., 2008, Wright et al., 2014, Mann et al., 2017, Raden et al., 2018), 
CopraRNA (Wright et al., 2013, Wright et al., 2014, Raden et al., 2018), sRNARFTarget 
(Naskulwar and Peña-Castillo, 2022), and TargetRNA3 (Tjaden, 2023). The programs take 
various approaches with newer RIP programs implementing machine learning algorithms. 
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Despite the improvement over time, all the tools have a high false positive rate (Tjaden, 2023). 
Moreover, most of the data on which the models are validated and trained is from Hfq-dependent 
sRNA networks in Escherichia coli that may not be reflective of sRNA-target interactions in 
organisms without Hfq like S. pneumoniae. This poses a challenge to determining the validity of 
a predicted target through computational methods alone. By examining the targets of multiple 
programs with different approaches we hope to increase the confidence in the validity of 
predicted sRNA-target pairs. 
 
As a baseline evaluation of the RIP programs, we compared the predicted and known targets of 
the csRNAs using IntaRNA, sRNARFTarget, and TargetRNA3 (Table 2) (Schnorpfeil et al., 
2013). None of the programs correctly predicted any of the known csRNA targets (SP_2237, 
SP_0090, SP_0161, SP_0626, and SP_1215) as the most likely target. If we include the top five 
most likely targets, then IntaRNA correctly predicts that csRNAs 2 and 3 target SP_0090 
(SP_RS00460) and both IntaRNA and TargetRNA3 correctly predicted that csRNA4 targets 
SP_0090. We also confirmed that the sequences we examined are consistent with reported 5’ and 
3’ RNA-seq data in TIGR4 (Warrier et al., 2018, Furumo and Meyer, 2024) to ensure our inputs 
were not causing the low accuracy. These results support the existing notion that even the best 
RIP programs suffer from a high false positive rate, but do provide informative results. 
 
RIP programs predict thousands of sRNA-target pairs 
We used multiple programs to make target predictions for the candidates. For all 59 sRNAs we 
used IntaRNA, sRNARFTarget, and TargetRNA3. Targets were predicted in six different S. 
pneumoniae strains: TIGR4, D39, and four arbitrarily selected strains from PRJNA514780 
(Rosconi et al., 2022) (see Methods). We also used CopraRNA, but only for a group of 5 sRNAs 
with sequence identities >65% in each of S. pyogenes, S. mutans, and S. suis because of the 
algorithm’s comparative approach. CopraRNA made predictions for S. pneumoniae, S. pyogenes, 
S. mutans, and S. suis instead of the various S. pneumoniae strains. Each program produces a 
variable number of outputs per sRNA per strain/species. IntaRNA and CopraRNA made five 
predictions (a customizable parameter), sRNARFTarget predicted a probability for every gene in 
the S. pneumoniae transcriptome (>2000 genes), and TargetRNA3 reported a variable number of 
targets with a probability and p-value above a customizable threshold. 
 
In total, we obtained thousands of predictions, the majority of which have low probabilities 
(≤0.5) (See Additional Datafiles 3-7)  To focus our attention on likely sRNA-target pairs without 
excluding too many predictions we settled on targets with a predicted probability ≥0.7, referred 
to as probable going forward. We also define the term MPT, most probable target, as the 
prediction given the highest probability across all predictions for a given sRNA. Lastly, we 
define a consensus target as a gene that was predicted to be the MPT for an sRNA in at least four 
of the six S. pneumoniae strains. This term only pertains to the predictions made by IntaRNA, 
sRNARFTarget, and TargetRNA3. We observe none of the sRNARFTarget predictions are 
probable. This in combination with our baseline evaluation of the csRNAs led us to focus on the 
predictions made by IntaRNA, TargetRNA3, and CopraRNA when applicable.  
 
To assess whether the sRNAs are interacting with an mRNA region likely to affect overall 
structure and function, we examined the mRNA structures and sRNA-mRNA base pairing. 
RNAfold (Lorenz et al., 2011) predicted the structure of the mRNA interacting sequences 
including 25 nucleotides up/downstream. We denote a structured region to be a segment of the 
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mRNA sequence base pairing with itself. Across the MPTs predicted by IntaRNA and 
TargetRNA3, 52 out of 59 sRNAs in each strain and each method base pair with a structured 
region. We see that base pairing may occur with as little as two nucleotides or over 20 
nucleotides in structured regions. Regardless of length, we believe that interactions in a 
structured region are more likely to induce conformational changes. 
 
sRNAs may play a role in pathogenesis via their targets 
Previous studies used transposon insertion mutants to conclude specific sRNAs may support 
virulence in TIGR4 (Mann et al., 2012). We compared our predicted targets for these sRNAs 
to evaluate these hypotheses. Previous work suggested 8 putative sRNAs (Table 3) play a 
definitive role in pathogenesis, and some individual loci were identified by microarray analysis 
of attenuated sRNA mutants (Mann et al., 2012). Only 3 of these sRNAs met our criteria for 
further investigation (Figure 2a). The others overlap with known cis-regulatory elements (F20 
and F44), transfer-messenger RNA (F32), or were removed following conservation analysis 
(F41, F48). F41 is one of the sRNAs found in <12 strains, and F48 was deemed a repetitive 
sequence. Among the three remaining candidates, one (M1) is a csRNA with known function and 
targets associated with virulence. The other two, M45 and M23, are not well characterized. M45 
is predicted to target type IV teichoic acid flippase TacF that is responsible for transporting 
choline across the cytoplasmic membrane, a nutritional requirement of S. pneumoniae 
(Damjanovic et al., 2007). M23 is predicted to target a transposase (SP_RS13320) (Table 3). We 
can confirm M1 is involved in pathogenesis as we know that the CiaRH TCS controls processes 
like natural competence and virulence (Patenge et al., 2012). We can only speculate that M45 and 
M23 are involved in pathogenesis without validating their targets, however the predicted target 
(tacF) of M45 is suggestive of a role in pathogenesis. 
 

 
Table 2: A comparison of the in-house target predictions and the putative targets identified by microarray analysis. 
The putative targets SP_RS08340-50 are three neighboring loci involved in carbohydrate transport and proposed to 
be collectively regulated by three of the sRNAs. 
 
To further assess whether specific sRNAs are potentially regulating multiple targets in a 
previously recognized regulatory response, we investigated whether the predicted targets belong 
to established operons or regulons in TIGR4. The regulons that appeared the most often are 
PyrR, CodY, and CcpA and we noticed the targets belonging to established operons are always 
the first or last gene in the operon with the first gene being more common. This suggests that the 
sRNAs are inhibiting, typically corresponding to blocking the ribosome binding site (e.g. start of 
an operon) or stabilizing, binding to the 3’ end of the mRNA, depending on the relative location 
of interaction (Papenfort and Vanderpool, 2015). Most notably one sRNA, M63 (Figure 4a), is 
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predicted to target four different genes in the CcpA regulon (Table 4) which encodes the 
catabolite control protein A (CcpA), an essential transcription factor in Gram-positive bacteria 
that is responsible for mediating carbon catabolite repression and activation. In S. pneumoniae, 
mutations in CcpA reduces virulence in mouse models (Giammarinaro & Paton, 2002; Iyer et al., 
2005). We also see that M63 interacts with the different targets in various regions of the sRNA 
with unique base-pairing (Figure 4b). Lastly, M63 is unique in that it is the only sRNA candidate 
with every reported target to have a probability ≥0.7 and this is true for all 6 S. pneumoniae 
strains that were tested. The observation that M63 has multiple probable targets acting on a 
regulon associated with virulence (Iyer et al. 2005) makes this sRNA a high priority candidate 
for further validation.  
 

 
Table 3: The regulons, according to the RegPrecise database, in which all targets of M63 are involved. Predictions 
made by TargetRNA3 in TIGR4. 
 

Figure 3: a) The most favorable secondary structure of M63 predicted by RNAfold. b) Three of the M63 
interactions predicted by TargetRNA3 in TIGR4. The gene names are predicted targets of M63 in the CcpA regulon. 
The numbers on either end are relative positions of the interacting sequences within the full RNA sequence. A 
negative number indicates the sequence is upstream of the mRNA start codon. A “:” indicates a G-U pair. 
 
Transposase associated sRNAs are frequent 
Among the TargetRNA3 predictions, we noticed a large number of transposase targets. 
Candidates targeting transposases include M10, M47, M62, and M69. These sRNAs are all 
encoded antisense to an annotated transposase (IL3 or IL30 family), overlapping with the 5’-
UTR or first few amino acids of the gene. A subset of these, M10, M47 and M62, show 
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substantial sequence identity to each other, with M10 having a 3’-extention compared to M47 
and M62 (Supplemental Figure S2). Notable, M10, M47, and M62 all have a large number of 
BLAST hits in the genome, but these sequences did not exceed our threshold of >15 hits in the 
genome to be considered repetitive sequences. M47 and M62 have consensus targets present 
across several S. pneumoniae strains, with both IntaRNA and TargetRNA3 predicting transposase 
targets. The collected targets for this set of sRNAs (M10, M47, and M62) includes over 18 
different transposases, with all but two interactions showing high probability ≥0.92. This large 
number of targets results from the duplicated nature of the sequence immediately surrounding the 
transposase (Figure 3). However, we note that all but one of the transposase targets of M62 have 
a predicted probability below our threshold of 0.7 and is likely the result of the differences 
between the M62 sequence and the M10 and M47 sequences (region accessibility is a factor in 
target prediction). There are several well-characterized examples of transposon antisense 
encoded RNAs including RNA-OUT, inhibiting IS10 (Simons and Kleckner, 1983), art200, 
inhibiting IS200 (Ellis et al., 2015), and RNA-C inhibiting IS30 (Arini et al., 1997). Transposon 
associated antisense RNAs that overlap the transposon coding sequence proximal to the start 
codon typically act in trans, blocking the translation of the transposase (Simons and Kleckner 
1983, Ellis, 2015), but RNA-C, which is antisense to the transposase but not directly at the start 
codon, only appears to act in cis (Arini, 1997). Thus, based on the position of these sRNAs 
proximal and overlapping the ribosome-binding site, it is likely that they are trans-acting across 
the many transposon copies present in the genome. The sequence of M69 is distinct from that of 
M10, M47, and M62, however its placement upstream and antisense to an annotated transposase 
suggests a similar functionality. 
 

 
Figure 4: Three of the M10 interactions predicted by TargetRNA3 in TIGR4. The numbers on either end are relative 
positions of the interacting sequences within the full RNA sequence. A negative number indicates the sequence is 
upstream of the mRNA start codon. SP_RS### is the TIGR4 target locus. 
 
To identify other cis-encoded sRNA candidates we compared the genomic coordinates of the 
candidates and MPTs. Candidates suspected to be cis-encoded must have genomic coordinates 
overlapping with the target coordinates. IntaRNA shows 20 candidates may be cis-encoded, three 
of which exhibit probable interaction (Figure 5a). In contrast, TargetRNA3 suggests only two 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/


candidates are cis-encoded, both of which are probable and in common with IntaRNA’s results 
(Figure 5b). 
 
The two possible cis-encoded sRNAs predicted by TargetRNA3 are M12, and M66 (Figure 5c).  
The M12 interaction is antisense and extends across 40 nucleotides. M12 targets mntE, the gene 
coding for the CDF family manganese efflux transporter MntE. This protein is an active 
transporter that removes intracellular manganese ions to maintain metal ion homeostasis, and a 
knockout reduces fitness and virulence in S. mutans (O’Brien et al., 2020). Like the M12 
interaction, M66 is antisense to the target with perfect binding across 40 nucleotides. M66 targets 
ruvB that codes for the Holliday junction branch migration DNA helicase RuvB, a subunit in the 
RuvABC complex. The complex processes Holliday junctions, nucleic acid structures that 
contain four joined double-stranded arms, during genetic recombination and DNA repair. The 
individual RuvB subunit is a hexameric ring helicase that acts like a motor to draw the DNA 
through the complex (Sharples et al., 1999). We believe that the overlap in predictions made by 
TargetRNA3 and IntaRNA strongly suggest that these targets are valid. 5’ end-Seq data in TIGR4 
indicates that transcription is initiating and terminating at the coordinates in which M12 is found 
(Warrier et al. 2018 Table S1) suggesting that M12 is likely to be expressed.  
 

 
 
Figure 5: a) The distribution of sRNA locations relative to its targets predicted by IntaRNA. b) The distribution of 
sRNA locations relative to its targets predicted by TargetRNA3. c) The M12 and M66 interactions are predicted by 
TargetRNA3 and in both cases the sRNA is found on the complement strand and the target on the top strand. The 
numbers on either end of the are exact positions of the interacting sequences. A “:” indicates a G-U pair. 
 
Eight notable sRNAs for future experimental validation 
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Across the 59 sRNAs, 8 stood out for reasons that we believe warrant future work to 
experimentally validate this study’s results. Each sRNA is highly conserved and targets a gene 
with high probability. 5 of the notable sRNA candidates share a consensus target between at least 
two RIP programs (M12, M18, M47, M62, M66) and one (M12) shares a consensus target across 
IntaRNA, CopraRNA, and TargetRNA3 (Table 5). We believe a consensus target, a gene 
predicted to be the MPT for an sRNA in at least four of the six S. pneumoniae strains, is 
indicative of a highly likely true sRNA-target pair. Four of the notable candidates target multiple 
transposases (M10, M18, M47, M69). However, there are also sRNA candidates with potential 
metabolic targets. M63 has 13 probable targets and four of them are in the CcpA regulon. For the 
above reasons, we suspect these 8 sRNAs are the most likely to lead to future validation of true 
sRNA-target pairs that may inform us about how sRNAs relate to S. pneumoniae metabolism and 
virulence. 
 

 
Table 4: Notable sRNAs a high degree of conservation and interesting predicted targets. The other IDs are the labels 
assigned in the data source studies. The “Regulatory mechanism” column refers to whether the sRNA is suspected to 
be cis-acting or trans-acting. 
 
Conclusion 
This study compiled a list of sRNAs in S. pneumoniae, then analyzed the conservation in the 
pangenome and predicted mRNA targets of the widely conserved sRNAs. BLAST indicates 59 
sRNAs exhibit strong conservation across 385 strains. Four RNA-RNA interaction prediction 
programs made thousands of predictions for the 59 sRNAs. Ultimately, only the probable targets 
predicted by IntaRNA and TargetRNA3 were the focus of this study’s target examination. It 
appears that there are a handful of reported transposon associated sRNAs that target 
transposases, likely based on position acting in trans. However, we also identified high 
probability targets for other sRNA candidates. For example, M63, may be highly involved in 
carbon metabolism within the CcpA regulon. Through this work, we have identified a list of 8 
sRNAs for which biological function can be hypothesized, and future work will strive to 
experimentally validate these hypotheses to reveal more regarding the nature of sRNAs and their 
targets in S. pneumoniae. 
 
Methods 
Compiling sRNA data sources 
Previous studies identified putative sRNAs by high-throughput sequencing in S. pneumoniae 
strains TIGR4 (NC_003028.3) and D39W (CP000410.1). The putative sRNAs in TIGR4 (Acebo 
et al., 2012, Mann et al., 2012) and D39W (Sinha et al., 2019) were narrowed down to a new list 
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of candidates for further analysis of conservation and target prediction (see Results and 
Discussion). 
 
Creating the in-house list of putative sRNAs 
A list of in-house putative sRNAs was created from the candidates. Previous TIGR4 studies 
identified different coordinates for transcription initiation and termination sites, so new in-house 
coordinates were created by combining the smallest initiation and largest termination site 
coordinates (Supplemental Figure S1a). In-house Python scripts retrieved the sRNA sequences 
from the TIGR4 and D39W genomes using the new coordinates. sRNAs identified in multiple 
studies under different names were assigned an in-house ID and sequence using the new 
coordinates (e.g. csRNA5/SN35/srn061/F7/CcnE becomes M1). Differences between the TIGR4 
and D39W genomes forced the need to compare sequences rather than coordinates. 
VectorBuilder (https://en.vectorbuilder.com/tool/sequence-alignment.html) aligned sRNAs to 
confirm the sequences overlap. The largest possible sequence became the new in-house sRNA by 
joining the overlapping subsequence and trailing sequences on either end (Supplemental Figure 
S1b). After forming the list of in-house sRNAs, sequences with length <50 nucleotides were 
removed. 
 
Assessing conservation of sRNAs 
The in-house sRNAs were aligned to the genomes of 385 S. pneumoniae strains (Cremers et al., 
2015, Rosconi et al., 2022), S. pyogenes (NZ_LS483338.1), S. mutans (NZ_CP044221.1), and S. 
suis (NC_012926.1). Raw reads and the mapping results for 350 S. pneumoniae strains (Cremers 
et al., 2015) available in BAM format were converted to consensus files in FASTA format with 
the samtools consensus mode (Danecek et al., 2021). Then, a database, created with 
makeblastdb, containing the sRNA sequences was aligned to each genome using blastn with the 
task parameter set to megablast. An in-house Python script retrieved the average number of 
alignments, best sequence identity, and number of genomes with an alignment for each sRNA. 
In-house sRNAs with an average number of alignments per strain ≥15 were classified as 
potentially highly repetitive sequences and removed from the in-house list. sRNAs not appearing 
in the majority of the 385 strains were also removed. A database containing the S. pyogenes, S. 
mutans, and S. suis genomes, created with makeblastdb, was used to search for sRNA sequence 
alignments using blastn with the task parameter set to blastn. Synteny of the sRNAs was 
evaluated by comparing the 1000 nt upstream and downstream of the sequences to those in 
TIGR4. Then, the 1000 nt on either end of the sRNA sequences for the other 384 strains were 
compared base-wise to obtain sequence identities. The average sequence identities, both up and 
downstream, were averaged across all 384 strains, and if either average sequence identity, up or 
downstream, is ≥75% then it was concluded that the synteny of the sRNA is preserved. 
 
sRNA target prediction 
IntaRNA version 3.3.2, sRNARFTarget, and TargetRNA3 were used to predict targets for the 59 
sRNA candidates. CopraRNA version 2.1.4 was only used to predict targets for six sRNAs with 
significant alignments in S. suis, S. pyogenes, and S. mutans. Predictions for each sRNA were 
made in six different S. pneumoniae strains consisting of TIGR4 (NC_003028.3), D39 
(NC_008533.2), TVO_Taiwan19F-14, TVO_1901920, TVO_1901934, TVO_1902277 (Rosconi 
et al., 2022). IntaRNA was run with the IntaRNAsTar personality, the number of predictions set 
to 5, and otherwise default parameters. sRNARFTarget was run with the provided Docker 
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container. sRNARFTarget requires a user input transcriptome, so an in-house Python script 
created two transcriptome files for each of the six S. pneumoniae strains using the coordinates 
from the respective GenBank files and retrieving the sequences from the genome. The two 
transcriptomes are defined by the exact gene coordinates and coordinates adjusted to include 100 
nucleotides upstream of the start codon and 300 nucleotides downstream of the stop codon or 
until the next gene’s start codon, whichever comes first. TargetRNA3 was run with the 
probability threshold lowered to 0.25 and otherwise default parameters. Note, the six genomes 
were first added to the local user database by providing the accession identifier. CopraRNA was 
run with default parameters in S. pneumoniae, S. suis, S. pyogenes, and S. mutans. 
 
sRNA target analysis 
An in-house Python script retrieved the sequences including 25 nucleotides upstream and 
downstream of the mRNA interacting sequence. The structures of these sequences were predicted 
using RNAfold version 2.6.4 with default parameters. If the sRNA interacting sequence overlaps 
with a structured region of the mRNA, then the interaction was labeled as interacting with a 
structured region. Only the MPTs of each sRNA in the six strains predicted by IntaRNA were 
analyzed. The RNA structure illustrated in Figure 4b used RNAfold version 2.6.4 with default 
parameters to predict the structure and the image was made with StructureEditor. To determine if 
the sRNAs are acting in regulons we searched the target loci against the RegPrecise database 
(https://regprecise.lbl.gov/index.jsp). Only the MPTs and probable targets predicted by 
TargetRNA3 in TIGR4 were searched seeing as TIGR4 is the only S. pneumoniae strain for 
which the database contains information. The expression of sRNA sequences was confirmed by 
checking if the transcription initiation and termination sites were present in 5’ and 3’ RNA-end 
sequencing data (Warrier et al., 2018). 
 
Additional Data Files  
Additional_Data_1_source-sRNAs.xlsx – initial list of putative sRNAs from three studies. 
Additional_Data_2_In-house-sRNAs.xlsx – final in-house list after deduplication (Fig. 1c) 
Additional_Data_3_CorprRNA.xlsx – CopraRNA target predictions 
Additional_Data_4_IntaRNA.xlsx –IntaRNA target predictions 
Additional_Data_5_sRNARFTarget-Transcriptome-Exact.xlsx –sRNARFT target predictions 
 (coding sequences only) 
Additional_Data_6_sRNARFTarget-Transcriptome-100-300.xlsx sRNARFT target predictions 
 (coding sequences and flanking regions) 
Additional_Data_7_TargetRNA3.xlsx – TargetRNA3 target predictions 
 
Supplemental Files 
Eichelman_SupplementalFigs.pdf 
Eichelman_SuppleementalFile2_python_scripts.zip 
 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/


References 
Acebo, Paloma, Antonio J. Martin-Galiano, Sara Navarro, Ángel Zaballos, and Mónica Amblar. 

2012. “Identification of 88 Regulatory Small RNAs in the TIGR4 Strain of the Human 
Pathogen Streptococcus Pneumoniae.” RNA 18 (3): 530–46. 
https://doi.org/10.1261/rna.027359.111. 

Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. 1990. 
“Basic Local Alignment Search Tool.” Journal of Molecular Biology 215 (3): 403–10. 
https://doi.org/10.1016/S0022-2836(05)80360-2. 

Arini, Achille, Marcel P. Keller, and Werner Arber. 1997. “An Antisense RNA in IS30 
Regulates the Translational Expression of the Transposase.” Biological Chemistry 378 (12). 
https://doi.org/10.1515/bchm.1997.378.12.1421. 

Babina, Arianne M., Mark W. Soo, Yang Fu, and Michelle M. Meyer. 2015. “An S6:S18 
Complex Inhibits Translation of E. Coli rpsF.” RNA 21 (12): 2039–46. 
https://doi.org/10.1261/rna.049544.115. 

Busch, Anke, Andreas S. Richter, and Rolf Backofen. 2008. “IntaRNA: Efficient Prediction of 
Bacterial sRNA Targets Incorporating Target Site Accessibility and Seed Regions.” 
Bioinformatics 24 (24): 2849–56. https://doi.org/10.1093/bioinformatics/btn544. 

CDC, National Center for Emerging Zoonotic and Infectious Diseases (U.S.), National Center 
for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (U.S.), and National Center for 
Immunization and Respiratory Diseases (U.S.). 2013. Antibiotic Resistance Threats in the 
United States, 2013. https://stacks.cdc.gov/view/cdc/20705/cdc_20705_DS1.pdf. 

Cremers, Amelieke J. H., Fredrick M. Mobegi, Marien I. De Jonge, Sacha A. F. T. Van Hijum, 
Jacques F. Meis, Peter W. M. Hermans, Gerben Ferwerda, Stephen D. Bentley, and Aldert 
L. Zomer. 2015. “The Post-Vaccine Microevolution of Invasive Streptococcus 
Pneumoniae.” Scientific Reports 5 (1): 14952. https://doi.org/10.1038/srep14952. 

Damjanovic, Marlen, Arun S. Kharat, Alice Eberhardt, Alexander Tomasz, and Waldemar 
Vollmer. 2007. “The Essential tacF Gene Is Responsible for the Choline-Dependent Growth 
Phenotype of Streptococcus Pneumoniae.” Journal of Bacteriology 189 (19): 7105–11. 
https://doi.org/10.1128/JB.00681-07. 

Danecek, Petr, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O 
Pollard, Andrew Whitwham, et al. 2021. “Twelve Years of SAMtools and BCFtools.” 
GigaScience 10 (2): giab008. https://doi.org/10.1093/gigascience/giab008. 

De Lay, Nicholas R., Nidhi Verma, Dhriti Sinha, Abigail Garrett, Maximillian K. Osterberg, 
Daisy Porter, Spencer Reiling, David P. Giedroc, and Malcolm E. Winkler. 2024. “The Five 
Homologous CiaR-Controlled Ccn sRNAs of Streptococcus Pneumoniae Modulate Zn-
Resistance.” Edited by Rachel M. McLoughlin. PLOS Pathogens 20 (10): e1012165. 
https://doi.org/10.1371/journal.ppat.1012165. 

Ellis, Michael J., Ryan S. Trussler, and David B. Haniford. 2015. “A Cis -Encoded sRNA, Hfq 
and mRNA Secondary Structure Act Independently to Suppress IS 200 Transposition.” 
Nucleic Acids Research 43 (13): 6511–27. https://doi.org/10.1093/nar/gkv584. 

Felden, Brice, and Yoann Augagneur. 2021. “Diversity and Versatility in Small RNA-Mediated 
Regulation in Bacterial Pathogens.” Frontiers in Microbiology 12 (August):719977. 
https://doi.org/10.3389/fmicb.2021.719977. 

Fu, Yang, Kaila Deiorio-Haggar, Jon Anthony, and Michelle M. Meyer. 2013. “Most RNAs 
Regulating Ribosomal Protein Biosynthesis in Escherichia Coli Are Narrowly Distributed to 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/


Gammaproteobacteria.” Nucleic Acids Research 41 (6): 3491–3503. 
https://doi.org/10.1093/nar/gkt055. 

Furumo, Quinlan, and Michelle Meyer. 2024. “PIPETS: A Statistically Informed, Gene-
Annotation Agnostic Analysis Method to Study Bacterial Termination Using 3’-End 
Sequencing.” https://doi.org/10.1101/2024.03.18.585559. 

Giammarinaro, Philippe, and James C. Paton. 2002. “Role of RegM, a Homologue of the 
Catabolite Repressor Protein CcpA, in the Virulence of Streptococcus Pneumoniae.” 
Infection and Immunity 70 (10): 5454–61. https://doi.org/10.1128/IAI.70.10.5454-
5461.2002. 

Halfmann, Alexander, Márta Kovács, Regine Hakenbeck, and Reinhold Brückner. 2007. 
“Identification of the Genes Directly Controlled by the Response Regulator CiaR in 
Streptococcus Pneumoniae : Five out of 15 Promoters Drive Expression of Small Non‐
coding RNAs.” Molecular Microbiology 66 (1): 110–26. https://doi.org/10.1111/j.1365-
2958.2007.05900.x. 

Huang, Susan S., Kristen M. Johnson, G. Thomas Ray, Peter Wroe, Tracy A. Lieu, Matthew R. 
Moore, Elizabeth R. Zell, et al. 2011. “Healthcare Utilization and Cost of Pneumococcal 
Disease in the United States.” Vaccine 29 (18): 3398–3412. 
https://doi.org/10.1016/j.vaccine.2011.02.088. 

Iyer, Ramkumar, Nitin S. Baliga, and Andrew Camilli. 2005. “Catabolite Control Protein A 
(CcpA) Contributes to Virulence and Regulation of Sugar Metabolism in Streptococcus 
Pneumoniae.” Journal of Bacteriology 187 (24): 8340–49. 
https://doi.org/10.1128/JB.187.24.8340-8349.2005. 

Jabbour, Nancy, and Marie-Frédérique Lartigue. 2021. “An Inventory of CiaR-Dependent Small 
Regulatory RNAs in Streptococci.” Frontiers in Microbiology 12 (May):669396. 
https://doi.org/10.3389/fmicb.2021.669396. 

Li, Wuju, Xiaomin Ying, Qixuan Lu, and Linxi Chen. 2012. “Predicting sRNAs and Their 
Targets in Bacteria.” Genomics, Proteomics & Bioinformatics 10 (5): 276–84. 
https://doi.org/10.1016/j.gpb.2012.09.004. 

Lorenz, Ronny, Stephan H Bernhart, Christian Höner Zu Siederdissen, Hakim Tafer, Christoph 
Flamm, Peter F Stadler, and Ivo L Hofacker. 2011. “ViennaRNA Package 2.0.” Algorithms 
for Molecular Biology 6 (1): 26. https://doi.org/10.1186/1748-7188-6-26. 

Mann, Beth, Tim Van Opijnen, Jianmin Wang, Caroline Obert, Yong-Dong Wang, Robert 
Carter, Daniel J. McGoldrick, et al. 2012. “Control of Virulence by Small RNAs in 
Streptococcus Pneumoniae.” Edited by Pascale Cossart. PLoS Pathogens 8 (7): e1002788. 
https://doi.org/10.1371/journal.ppat.1002788. 

Mann, Martin, Patrick R. Wright, and Rolf Backofen. 2017. “IntaRNA 2.0: Enhanced and 
Customizable Prediction of RNA–RNA Interactions.” Nucleic Acids Research 45 (W1): 
W435–39. https://doi.org/10.1093/nar/gkx279. 

Marx, Patrick, Michael Nuhn, Martá Kovács, Regine Hakenbeck, and Reinhold Brückner. 2010. 
“Identification of Genes for Small Non-Coding RNAs That Belong to the Regulon of the 
Two-Component Regulatory System CiaRH in Streptococcus.” BMC Genomics 11 (1): 
661. https://doi.org/10.1186/1471-2164-11-661. 

Mascher, Thorsten, Manuel Heintz, Dorothea Zähner, Michelle Merai, and Regine Hakenbeck. 
2006. “The CiaRH System of Streptococcus Pneumoniae Prevents Lysis during Stress 
Induced by Treatment with Cell Wall Inhibitors and by Mutations in Pbp2x Involved in β-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/


Lactam Resistance.” Journal of Bacteriology 188 (5): 1959–68. 
https://doi.org/10.1128/JB.188.5.1959-1968.2006. 

Naskulwar, Kratika, and Lourdes Peña-Castillo. 2022. “sRNARFTarget: A Fast Machine-
Learning-Based Approach for Transcriptome-Wide sRNA Target Prediction.” RNA 
Biology 19 (1): 44–54. https://doi.org/10.1080/15476286.2021.2012058. 

O’Brien, Joseph, Alexander Pastora, Andrew Stoner, and Grace Spatafora. 2020. “The S. Mutans 
mntE Gene Encodes a Manganese Efflux Transporter.” Molecular Oral Microbiology 35 
(3): 129–40. https://doi.org/10.1111/omi.12286. 

Ohishi, Tomokazu, Daniel Ken Inaoka, Kiyoshi Kita, and Manabu Kawada. 2018. 
“Dihydroorotate Dehydrogenase as a Target for the Development of Novel Helicobacter 
Pylori-Specific Antimicrobials.” Chemical and Pharmaceutical Bulletin 66 (3): 239–42. 
https://doi.org/10.1248/cpb.c17-00796. 

Papenfort, Kai, and Carin K. Vanderpool. 2015. “Target Activation by Regulatory RNAs in 
Bacteria.” FEMS Microbiology Reviews 39 (3): 362–78. 
https://doi.org/10.1093/femsre/fuv016. 

Patenge, Nadja, Tomas Fiedler, and Bernd Kreikemeyer. 2012. “Common Regulators of 
Virulence in Streptococci.” In Host-Pathogen Interactions in Streptococcal Diseases, edited 
by G. Singh Chhatwal, 368:111–53. Current Topics in Microbiology and Immunology. 
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/82_2012_295. 

Peer, Asaf, and Hanah Margalit. 2014. “Evolutionary Patterns of Escherichia Coli Small RNAs 
and Their Regulatory Interactions.” RNA 20 (7): 994–1003. 
https://doi.org/10.1261/rna.043133.113. 

Raden, Martin, Syed M Ali, Omer S Alkhnbashi, Anke Busch, Fabrizio Costa, Jason A Davis, 
Florian Eggenhofer, et al. 2018. “Freiburg RNA Tools: A Central Online Resource for 
RNA-Focused Research and Teaching.” Nucleic Acids Research 46 (W1): W25–29. 
https://doi.org/10.1093/nar/gky329. 

Rosconi, Federico, Emily Rudmann, Jien Li, Defne Surujon, Jon Anthony, Matthew Frank, 
Dakota S. Jones, et al. 2022. “A Bacterial Pan-Genome Makes Gene Essentiality Strain-
Dependent and Evolvable.” Nature Microbiology 7 (10): 1580–92. 
https://doi.org/10.1038/s41564-022-01208-7. 

Schnorpfeil, Anke, Miriam Kranz, Martá Kovács, Christian Kirsch, Julia Gartmann, Ines 
Brunner, Sabrina Bittmann, and Reinhold Brückner. 2013. “Target Evaluation of the Non‐
coding csRNAs Reveals a Link of the Two‐component Regulatory System CiaRH to 
Competence Control in  S Treptococcus Pneumoniae  R 6.” Molecular Microbiology 89 (2): 
334–49. https://doi.org/10.1111/mmi.12277. 

Sharples, Gary J., Stuart M. Ingleston, and Robert G. Lloyd. 1999. “Holliday Junction 
Processing in Bacteria: Insights from the Evolutionary Conservation of RuvABC, RecG, 
and RusA.” Journal of Bacteriology 181 (18): 5543–50. 
https://doi.org/10.1128/JB.181.18.5543-5550.1999. 

Simons, Robert W., and Nancy Kleckner. 1983. “Translational Control of IS10 Transposition.” 
Cell 34 (2): 683–91. https://doi.org/10.1016/0092-8674(83)90401-4. 

Sinha, Dhriti, Kurt Zimmer, Todd A. Cameron, Douglas B. Rusch, Malcolm E. Winkler, and 
Nicholas R. De Lay. 2019. “Redefining the Small Regulatory RNA Transcriptome in 
Streptococcus Pneumoniae Serotype 2 Strain D39.” Edited by Victor J. DiRita. Journal of 
Bacteriology 201 (14). https://doi.org/10.1128/JB.00764-18. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/


Tjaden, Brian. 2023. “TargetRNA3: Predicting Prokaryotic RNA Regulatory Targets with 
Machine Learning.” Genome Biology 24 (1): 276. https://doi.org/10.1186/s13059-023-
03117-2. 

Tsui, Ho-Ching Tiffany, Dhriti Mukherjee, Valerie A. Ray, Lok-To Sham, Andrew L. Feig, and 
Malcolm E. Winkler. 2010. “Identification and Characterization of Noncoding Small RNAs 
in Streptococcus Pneumoniae Serotype 2 Strain D39.” Journal of Bacteriology 192 (1): 
264–79. https://doi.org/10.1128/JB.01204-09. 

Warrier, Indu, Nikhil Ram-Mohan, Zeyu Zhu, Ariana Hazery, Haley Echlin, Jason Rosch, 
Michelle M. Meyer, and Tim Van Opijnen. 2018. “The Transcriptional Landscape of 
Streptococcus Pneumoniae TIGR4 Reveals a Complex Operon Architecture and Abundant 
Riboregulation Critical for Growth and Virulence.” Edited by Carlos Javier Orihuela. PLOS 
Pathogens 14 (12): e1007461. https://doi.org/10.1371/journal.ppat.1007461. 

Wright, Patrick R., Jens Georg, Martin Mann, Dragos A. Sorescu, Andreas S. Richter, Steffen 
Lott, Robert Kleinkauf, Wolfgang R. Hess, and Rolf Backofen. 2014. “CopraRNA and 
IntaRNA: Predicting Small RNA Targets, Networks and Interaction Domains.” Nucleic 
Acids Research 42 (W1): W119–23. https://doi.org/10.1093/nar/gku359. 

Wright, Patrick R., Andreas S. Richter, Kai Papenfort, Martin Mann, Jörg Vogel, Wolfgang R. 
Hess, Rolf Backofen, and Jens Georg. 2013. “Comparative Genomics Boosts Target 
Prediction for Bacterial Small RNAs.” Proceedings of the National Academy of Sciences 
110 (37). https://doi.org/10.1073/pnas.1303248110. 

Zhang, Aixia, Karen M. Wassarman, Carsten Rosenow, Brian C. Tjaden, Gisela Storz, and Susan 
Gottesman. 2003. “Global Analysis of Small RNA and mRNA Targets of Hfq.” Molecular 
Microbiology 50 (4): 1111–24. https://doi.org/10.1046/j.1365-2958.2003.03734.x. 

Zorgani, Mohamed A., Roland Quentin, and Marie-Frédérique Lartigue. 2016. “Regulatory 
RNAs in the Less Studied Streptococcal Species: From Nomenclature to Identification.” 
Frontiers in Microbiology 7 (July). https://doi.org/10.3389/fmicb.2016.01161. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2024. ; https://doi.org/10.1101/2024.11.14.623631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.623631
http://creativecommons.org/licenses/by-nc/4.0/

