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ABSTRACT Quantitative stable isotope probing (qSIP) estimates isotope tracer in-
corporation into DNA of individual microbes and can link microbial biodiversity and
biogeochemistry in complex communities. As with any quantitative estimation tech-
nique, qSIP involves measurement error, and a fuller understanding of error, preci-
sion, and statistical power benefits qSIP experimental design and data interpretation.
We used several qSIP data sets—from soil and seawater microbiomes—to evaluate
how variance in isotope incorporation estimates depends on organism abundance
and resolution of the density fractionation scheme. We assessed statistical power for
replicated qSIP studies, plus sensitivity and specificity for unreplicated designs. As a
taxon’s abundance increases, the variance of its weighted mean density declines.
Nine fractions appear to be a reasonable trade-off between cost and precision for
most qSIP applications. Increasing the number of density fractions beyond that re-
duces variance, although the magnitude of this benefit declines with additional frac-
tions. Our analysis suggests that, if a taxon has an isotope enrichment of 10 atom%
excess, there is a 60% chance that this will be detected as significantly different
from zero (with alpha 0.1). With five replicates, isotope enrichment of 5 atom%
could be detected with power (0.6) and alpha (0.1). Finally, we illustrate the impor-
tance of internal standards, which can help to calibrate per sample conversions of
%GC to mean weighted density. These results should benefit researchers designing
future SIP experiments and provide a useful reference for metagenomic SIP applica-
tions where both financial and computational limitations constrain experimental
scope.

IMPORTANCE One of the biggest challenges in microbial ecology is correlating the
identity of microorganisms with the roles they fulfill in natural environmental sys-
tems. Studies of microbes in pure culture reveal much about their genomic content
and potential functions but may not reflect an organism’s activity within its natural
community. Culture-independent studies supply a community-wide view of composi-
tion and function in the context of community interactions but often fail to link the
two. Quantitative stable isotope probing (qSIP) is a method that can link the identity
and functional activity of specific microbes within a naturally occurring community.
Here, we explore how the resolution of density gradient fractionation affects the er-
ror and precision of qSIP results, how they may be improved via additional experi-
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mental replication, and discuss cost-benefit balanced scenarios for SIP experimental
design.

KEYWORDS stable isotope probing, environmental microbiology, experimental
design, metagenomics, microbial communities, microbial ecology, qSIP, statistical
power

Stable isotope probing (SIP) of nucleic acids is one of the few non-culture-dependent
methods that can identify the functionality of microorganisms in their native

communities, making it one of the most powerful techniques in microbial ecology
(1–6). In SIP, a substrate labeled with a heavy isotope is added to an environmental
sample. Following an incubation period ranging from hours to weeks (depending on
the substrate uptake rate), the DNA (or RNA) of growing microbial populations that
have consumed the isotope-enriched substrate becomes more dense due to their
incorporation of the heavy isotope. Community nucleic acids can then be extracted and
separated along a density gradient using ultracentrifugation. DNA/RNA from organisms
that incorporated the labeled substrate will appear in denser fractions of the gradient
compared to where it would be with addition of an unlabeled substrate (4, 7). While
previous studies include some consideration of best practices for designing SIP exper-
iments and handling SIP data (4, 6, 8–12), here we address several additional issues
regarding reproducibility, sensitivity, cost, and the minimum detectable effect size of
experiments with different designs.

Quantitative SIP (qSIP) is a recently developed adaptation of SIP that makes sub-
strate uptake measurements possible at the scale of individual taxa (9, 13). In qSIP,
isopycnic separation of nucleic acids in cesium chloride is combined with a mathemat-
ical model to quantify isotope enrichment. This approach allows a user to measure
growth and mortality rates of individual taxa in complex communities, particularly
when using 18O-labeled “heavy water” (H2

18O) as a universal substrate, since cells
incorporate oxygen from water during nucleic acid synthesis, quantitatively reflecting
cell division (DNA synthesis) and metabolism (RNA synthesis) (14, 15). Similarly, cell
mortality rates may be quantitatively related to the degradation of unlabeled nucleic
acids. In a similar manner, qSIP can be used to calculate enrichment of specific taxa due
to incorporation of substrate 15N or 13C (16, 17). By normalizing relative abundance to
the total number of organisms per fraction (estimated by quantitative PCR [qPCR] of the
16S-rRNA gene), the sensitivity of qSIP has been shown to be less susceptible to taxon
abundance, the fraction of the community that incorporates isotope, and level of
enrichment, compared to other SIP methods (10).

Designing modern SIP and qSIP experiments involves a tension between collecting
many density fractions per sample (to increase precision) versus the costs of labor and
sequencing (18). While early SIP studies inspected only the “heaviest” fractions—
considered to host the most isotopically enriched DNA—these fractions may contain
unlabeled high-GC-content DNA. Conversely, enriched low-GC-content DNA may not
reach the heaviest fractions. The current practice is to examine many density fractions
and perform statistical analyses comparing isotope-labeled versus unlabeled control to
indicate the extent to which organisms have “shifted” within a density gradient in
response to the isotope treatment (9, 10). Density shifts can be used to calculate
substrate assimilation rate per taxon (atom% excess), and with the universal substrate
H2

18O, they can be used to infer specific growth rates (13, 15, 19–21). However, even
the most basic SIP experiment (e.g., one type of substrate with labeled and unlabeled
versions, 2 treatments, 2 time points, 3 replicates, 10 density fractions per sample) can
easily generate nearly 250 samples for processing and sequencing. Thus, it is critical to
plan an experimental design that will ensure high-quality data at sustainable costs.
Doing so will become even more important as the field of environmental microbiology
transitions to more ambitious applications, such as metagenomics qSIP (MG-qSIP) and
SIP-metatranscriptomics (22), since shotgun sequencing adds substantially higher costs

Sieradzki et al.

July/August 2020 Volume 5 Issue 4 e00151-20 msystems.asm.org 2

https://msystems.asm.org


relative to amplicon sequencing and the amount of data per sample may become a
computational limitation.

The majority of SIP studies published in the past 20 years targeted marker genes to
identify substrate assimilators, usually with 16S rRNA gene-based analysis. However,
focusing only on 16S rRNA misses a wealth of genetic information. A handful of more
recent studies have combined SIP with metagenomics or metatranscriptomics to
investigate genomic potential and actively expressed genes by functional guild (23–25),
but the combination of SIP with shotgun sequence analysis quickly becomes limiting
both financially and computationally. Some investigators have tried to downsize these
burdens by sequencing only highly labeled fractions (12), pooling density fractions, or
sequencing unfractionated DNA and matching assembled genomes to SIP-identified
substrate assimilators (26–30). One additional way to address the cost issues inherent
to metagenomic analysis (e.g., larger amounts of DNA required, higher sequencing
costs, and higher computational complexity) is to use only the minimum number of
density fractions that are needed to yield a desired level of sensitivity. In addition,
adding more sample replicates but collecting a reduced number of fractions (gradient
resolution) could lead to higher accuracy with similar effort.

Using multiple SIP data sets (Table 1), we tested the effects of fraction size and
sample replication on the robustness and sensitivity of qSIP. We combined (in silico)
density fractions and measured the effects of lower gradient resolution on per-taxon
density shifts and unlabeled weighted mean density. We also calculated the repercus-
sions of reducing the number of density fractions in replicated and unreplicated data
sets from both marine and terrestrial microbial communities. Our results show that
reducing the gradient resolution from an average density fraction size of 0.002 g ml�1

(�50 fractions) down to 0.011 g ml�1 (�9 fractions in a 5.1-ml tube) yields comparable
shift detection and a detection limit of 0.005 g ml�1 (equal to 9% enrichment with 13C).
We discuss using the small inherent variability between replicates as a way to define a
shift detection limit and show that this inherent variability is comparable between
replicates centrifuged together (within spin) and between replicates centrifuged sep-
arately (between spins). Finally, we stress the need for internal standards that can be
spiked into each sample, and evaluate the statistical and financial benefits of different
experimental design options.

RESULTS
Variability of taxon density shifts is greatest for rare OTUs. In SIP, taxon density

shifts, or changes in weighted mean density (WMD) due to incorporation of a stable-
isotope-labeled substrate, are the basis for calculating isotope enrichment. In silico qSIP
analyses have shown that these shifts are detectable in moderately to highly abundant
operational taxonomic units (OTUs) (�0.1% relative abundance) (10). Using unlabeled
sample experimental data from data set 2, we first examined variation in qSIP-derived
density estimates for both rare and common OTUs. We found that OTU abundance
(log10 transformed) was positively correlated with the proportion of density fractions in
which that OTU was detected (Pearson’s r � 0.704, P � 0.0001). In other words, the
most abundant OTUs tended to occur in all (or nearly all) fractions of the density
gradient, whereas the least abundant OTUs tended to occur in fewer density fractions.
Variability of the unlabeled WMD was lowest for common OTUs and greatest for rare

TABLE 1 Data sets used in this study, including source, number of replicates, and
analyses performed

Data set Source No. of replicates No. of density fractions

1 [13C]naphthalene-enriched seawater 1 50
2 SPRUCE peatland H2

18O addition 5a 18
3 Grassland soil H2

18O addition 3 9
4 E. coli and P. putida 4–6 30
5 Mock community 9 48
aThe number of replicates is per preincubation temperature.
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OTUs (Fig. 1). WMD variation (expressed as 2� standard deviation of the WMD for a
given OTU) correlated negatively with the proportion of density fractions in which that
OTU was detected (Fig. 1; Pearson’s r � �0.560, P � 0.0001). Similarly, WMD variation
also correlated negatively with log10-transformed OTU abundance (Pearson’s r �

�0.217, P � 0.0001).
Density shifts are consistent across medium-to-high gradient fraction resolu-

tion. While it is widely assumed that the detection limit in a SIP experiment will depend
on the number of fractions collected from each density gradient (18), to our knowledge,
this has not been comprehensively tested. We first examined how fraction resolution
affects density shift, using the 100 most abundant OTUs (from all fractions combined)
in an unreplicated data set of OTUs from naphthalene-enriched seawater (data set 1)
where the DNA had been divided into 50 fractions, of which 45 had quantifiable DNA.
Consecutive density fractions were consolidated in silico (every 2, 3, 4 fractions, etc.) to
represent a range of fraction sizes spanning 0.002 to 0.028 g ml�1 (4 to 50 fractions,
assuming a standard 5.1-ml tube). We found that the estimated magnitude of OTU
density shifts remained consistent at fraction sizes from 0.002 up to 0.011 g ml�1,
expanding previous results that demonstrated this trend with fractions of 0.003 to
0.008 g ml�1 (Fig. 2A) (10). This indicates that fractionating the sample into more than
nine fractions had negligible additional effects on OTU density shifts.

The magnitude of density shift data can also be represented as a relative error,
which we define as the density shift in resolution r (r � original number of fractions)
compared to the density shift realized with maximum resolution. As relative error
increases, power declines, so the likelihood that taxa are misassigned as nonisotope
incorporators increases. We found a positive linear correlation between fraction size
and mean relative error (R2 � 0.95; Fig. 2B). Additionally, the increase in the mean
relative error is accompanied by an increase in its variation.

We next assessed the correlation between the number of fractions and the relative
standard deviation of the WMD in a study with replication (data set 2, n � 5, preincu-
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bation temperature of 15°C); here we found the relationship is not linear. Instead,
between 2 and 11 fractions, every additional fraction reduced the standard deviation
exponentially, but for 12 fractions or more, the proportional differences are much
smaller and linearly correlated with the number of fractions (Fig. 3A).
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Low variance influences minimum detectable density shift. In a SIP experiment,
it is important to identify statistically significant density shifts between samples treated
with a labeled substrate versus control samples (unlabeled substrate). To define a
minimum detectable effect size, we calculated the inherent variability of WMD of
unlabeled DNA from taxa in data set 2—a well-replicated SIP experiment (n � 10, time
zero). Reducing the resolution of the density gradient may impact this variability. We
evaluated this by merging and averaging data from an increasing number of consec-
utive fractions. Our initial analysis with medium resolution (fraction size 0.007 g ml�1;
e.g., 18 fractions in a 4.7-ml tube) revealed that the WMD of abundant taxa varied little
between replicates (Fig. 3B). The WMD per OTU was calculated over 10 replicates. The
resulting WMDs varied around a median of 0.004 to 0.007 g ml�1 at gradient resolu-
tions varying from 0.007 to 0.034 g ml�1 (3 to 18 fractions). With progressively fewer
fractions (decreasing gradient resolution), variation in WMD remained statistically
indistinguishable for fraction sizes between 0.007 and 0.027 g ml�1 (4 to 18 fractions)
but increased significantly (analysis of variance [ANOVA], Tukey 95% confidence level)
with a fraction size of 0.034 g ml�1 (3 fractions in a 4.7-ml tube) (Fig. 3B). This variability
of the WMD as a function of fraction size can be used to choose an acceptable
minimum shift in density which a researcher would like to detect with a desired
confidence level.

We found the range of relative error increased with larger fraction sizes. To explore
how this variation affects the detection of substrate incorporators, we calculated the
putative sensitivity (proportion of true positives) and specificity (proportion of true
negatives) as a function of the shift detection threshold for all gradient resolutions in
data set 1. The shift detection threshold can be thought of as the smallest difference
between labeled and unlabeled WMD that would be considered a significant density
shift. We performed these calculations using the assumption that a density shift higher
than a specific threshold in the original experimental setup (data set 1, 50 fractions)
represented significant enrichment. Therefore, all our comparisons are relative to the
originally measured results, which likely contain some inherent error. As the sensitivity
and specificity of qSIP have been shown to be high, we assume this error is very small.
Both sensitivity and specificity parameters were stable down to a fraction resolution of
0.011 g ml�1 (9 fractions), using a shift detection threshold of 0.005 g ml�1 or higher.
Specificity was �95% for all gradient resolutions at a threshold of �0.003 g ml�1, but
sensitivity was more impacted by a gradient resolution of �0.013 g ml�1 (Fig. 4).

We also tested how fraction number affects error in the estimates of isotope
incorporation using a replicated experiment (data set 2, SPRUCE [Spruce and Peatland
Responses Under Changing Environments] soil). Our analyses show that confidence
intervals widen as the number of density fractions declines (see Fig. S2 in the supple-
mental material). In other words, as the number of density fractions declines, the
likelihood of detecting a given level of isotope assimilation declines as well.

Replication, statistical power, and detection thresholds in SIP experiments. In
experiments with replicate samples, the number of replicates and desired statistical
power influence the detection limit. When designing an experiment, it is valuable to
use the desired statistical power and desired enrichment detection threshold in ad-
vance, to decide on the number of replicates needed. Both parameters depend on the
scientific purpose of the study. The higher the power and threshold, the fewer
replicates are necessary (Fig. 5).

Variation in mean weighted density is comparable within and between spins.
To assess the impact of spin-to-spin and tube-to-tube variability on WMD, we tested the
variability of WMD using pure culture DNA (data set 4). DNA extracted from pure
cultures of unlabeled Escherichia coli and unlabeled or 100% 13C-labeled Pseudomonas
putida was aliquoted into replicates, ultracentrifuged in CsCl, and fractionated in an
automated pipeline. The known genome differences in %GC of these organisms (i.e.,
distance between their peak densities) allowed us to calculate their WMD, even when
both were unlabeled. When we compared the WMD mean of E. coli replicates between
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spins, we found the variation was comparable to the range of WMDs measured within
a spin (up to 0.004 g ml�1) (Fig. 6).

We also tested within- and between-spin effects with a genomic mock community
(data set 5) by centrifuging triplicates of a DNA mixture comprised of four organisms
with distinguishable genomic %GC in equal quantities. In this test, between-spin
variation was 0.0013 to 0.0025 g ml�1, whereas within-spin variation ranged up to
0.0056 g ml�1 (see Data Set S1 in the supplemental material [raw data]).

Using genomic mock communities to explore density-to-GC content conver-
sion. One potential strategy for decreasing the costs and labor needed for meta-
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genomic-SIP experiments would be to sequence only the labeled samples and calculate
an approximate density shift using the %GC of the genomic bins. The conversion of
density to the GC content of a genome is a linear function of the unlabeled (12C)
weighted mean. There is a canonical equation describing this function (31–33), but it
has also been determined empirically in the past with a ladder of three bacterial taxa
with different GC contents (9). If this equation were identical for each gradient in a SIP
experiment (as is usually assumed), unlabeled replicates of the same organism should
have the same weighted mean in every run. However, as shown here and previously,
this is not the case (9, 16). To address this variation, we hypothesized that an external
standard could help to calibrate the conversion of %GC to the mean weighted density
for each sample. To test this, we ran nine replicates of a mock community (data set 5)
with a wide range of known GC content, generated a calibration curve from each, and
fitted a linear equation to it. In this mock community, which consisted of high-
molecular-weight genomic DNA from four bacterial taxa, we found mean weighted
density and %GC were highly correlated with a linear relationship (n � 9, R2 � 0.94) but
that the slopes and intercepts for each individual replicate varied (Table 1, Fig. S3). We
found similar results when using the peak (highest) buoyant density per genome rather
than the WMD. There was a significant difference between the WMD as calculated
according to the canonical equation � � �0.098�G � C�� � 1.66 (32) and the observed
mean of WMDs per genome over all replicates (n � 9, paired t test, P � 0.02). For
example, using the canonical equation, the GC content of the four mock community
members in replicate 1 are 38%, 46.5%, 62%, and 72.1%, respectively. These values
deviate by several percent from the known GC content of these genomes (Table 2).

DISCUSSION

SIP is a powerful tool for investigating taxon-specific microbial functions in complex
assemblages. Like any method, SIP-derived measurements have some inherent vari-
ability which can be managed— within limits—to address research questions of
interest. Our results show how experimental design (number of replicates, number of
fractions, use of standards) can be customized to achieve the goals of a particular
research question and the level of sensitivity/detection required. Despite the wide use
of SIP, there has been relatively little benchmarking of interpretation of its results. Here,
we attempt to shed light on some practical aspects of the method and discuss how to
adjust it to maximize results within the limits of labor and cost.
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FIG 6 Tube-to-tube variability and effect of other taxa. Variability in the weighted mean density (WMD) of pure
culture DNA. (A) WMD of unlabeled Escherichia coli DNA in three separate centrifuge spins (n � 6, n � 4, and
n � 4) mixed with unlabeled or labeled Pseudomonas putida grown with 99 atom% [13C]glucose at a 1:1 ratio,
and (B) within the same spin in the presence of unlabeled (Pputida0) versus 100 atom% 13C-labeled P. putida
(Pputida100) (n � 6). The horizontal line within the box represents the mean, the box represents the 25 and 75
percentiles, and the whiskers represent the 10 and 90 percentiles for 100 OTUs in each fraction size. The raw data
are plotted on top of the boxes.
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Within a replicated qSIP experiment, it is important to evaluate statistical power—
the probability of detecting a given level of isotopic enrichment. Yet, power is evalu-
ated infrequently, because avoiding type I errors is typically prioritized above avoiding
type II errors, reflecting the common practice of identifying thresholds for alpha (0.01,
0.05), while beta (�) thresholds remain unreported. This perspective makes sense in
some contexts, e.g., incorrectly inferring that a medical treatment is effective is often
viewed as more hazardous than concluding it is not effective, when in fact it is.
However, in contrast, applying the precautionary principle to the impact of a potential
pollutant or toxin, it is in some cases wiser to avoid type II errors over type I (i.e., erring
on the side of environmental caution [34]). For a SIP experiment, power analysis
involves evaluating the trade-offs among several parameters: (i) the effect size of
interest, which for qSIP studies is the density shift (or amount of isotope incorporation)
that the researcher wishes to detect (this can be thought of as the minimum detectable
difference); (ii) the acceptable � value, or acceptable probability of type I error (for qSIP,
a type I error occurs when the researcher concludes that there is isotope incorporation,
when in fact none occurred); (iii) the acceptable � value, or acceptable probability of
type II error (for qSIP, a type II error occurs when the researcher infers “no isotope
incorporation,” when in fact some isotope incorporation actually occurred); and (iv) the
number of true, independent replicates (sample size) used in the experiment. Power is
defined as 1 – � and is the probability that a true difference will be detected in a given
experimental design. Applied to qSIP, power analysis can show how increasing the
number of replicates increases the probability of detecting a given level of isotope
incorporation. Power analysis can also show, at a constant level of power, how
increasing the number of replicates decreases the threshold level of isotope incorpo-
ration that can be detected—making it more likely to detect taxa that are slower
growing, or perhaps are secondary consumers in a substrate trophic chain. Last, power
analysis can clarify the trade-offs between type I and type II errors and gives useful
context for interpreting results from qSIP experiments.

In any SIP experiment, the detection of density shifts is a critical goal. However,
variability in a number of factors, including fraction resolution and replication, can limit
this ability. In addition, variation of the weighted mean density (WMD) of the same
unlabeled taxon over numerous replicates, observed even between samples processed
simultaneously and identically, implies that there are physical and/or chemical factors
unrelated to genomic %GC that can affect SIP metrics. The results of the unlabeled
WMD variation and interpretation error analyses we conducted imply that when using
qSIP, researchers can expect that a minimum detectable effect size of 0.005 g ml�1 in
unreplicated 13C experiments with would result in low type I and type II errors. This
cutoff applies when a DNA density gradient has been divided into at least four density

TABLE 2 Relationship between observed versus expected GC content for known genomes varies between mock community replicatesa

Parameter or replicate

GC value (%)

Slope Intercept R2T. pseudethanolicus B. licheniformis B. longum S. violaceoruber

Known value 34.5 45.9 60.1 72.7

Replicate
1 37.8 46.9 62.2 72.4 0.090 1.665 0.995
2 37.8 52 64.3 NA 0.099 1.664 0.984
3 40.8 48 64.3 75.5 0.093 1.666 0.993
4 39.8 48 64.3 76.5 0.098 1.664 0.995
5 40.8 50 66.3 78.6 0.099 1.665 0.997
6 NA 45.9 53.1 68.4 0.082 1.666 0.943
7 39.8 50 63.3 74.5 0.090 1.668 0.999
8 40.8 51 63.3 75.5 0.089 1.669 0.999
9 42.9 52 65.3 NA 0.087 1.671 0.999

Mean 39.8 49 63.3 74.5 0.090 1.668 0.999
aCalculated %GC (32) for nine replicates of a four-member genomic mock community, and slope, intercept, and R2 for linear plots of observed versus expected values.
The top row shows the known %GC in each genome. NA, not available.
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fractions, but we note that precision will increase if additional fractions are utilized.
Adding additional replication would lead to increased statistical power using the same
detection limit. However, we found that density shift estimates of taxon-specific isotope
incorporation are broadly robust across a wide range of fraction sizes. For example, the
relative error of high incorporators only varied by an average of 0.02% in shift from
fraction size 0.002 to 0.011 g ml-1 (n � 5, 50 to 9 fractions in a 5.1-ml tube).

Variable WMD values mean that the same organism may peak at a density anywhere
within a specific range. Moreover, the unlabeled mean and labeled mean of a single
replicate can deviate in different directions, increasing the observed density shift and
leading to a type I error. We show that the potential for such deviation increases at low
gradient resolution. This may explain why variation in the WMD relative error increases
as resolution decreases.

The physics of DNA behavior within a density gradient during centrifugation and
processing will affect the number of fractions where OTUs can be detected. For
example, the long tails of DNA concentration versus density distributions (e.g., see
Fig. S1 in the supplemental material) have been attributed to DNA smearing along the
centrifuge tube walls (10). It stands to reason that the more abundant an OTU, the
higher its representation in this smear will be. In addition, the detection limit of an OTU
affects the number of fractions where it can be detected. We found that when
inspecting presence/absence of OTUs in all fractions, OTU abundance was positively
correlated with the proportion of fractions in which it was present. Abundant OTUs
appear in almost all fractions, whereas rare OTUs appear in relatively few fractions, and
in some cases only one fraction. These rare OTUs also tended to have highly variable
WMD values.

Low gradient resolution in combination with higher variability can lead to false
classification of borderline taxa as isotope incorporators when in truth, they are not
(type I error). For example, a recent qSIP model simulation showed that the rate of true
negatives (specificity) and true positives (sensitivity) is 88% and �90%, respectively,
with no effect of fraction size (in the range of 0.003 to 0.008 g ml�1) (10). When we
examined the relative specificity and sensitivity of qSIP using real unreplicated data
over an even wider range of fraction sizes, we found that gradient resolution and shift
detection limit strongly affect specificity and sensitivity. However, the reliability of qSIP
remained extremely high as long as the detection limit was 0.005 g ml�1 or higher
(sensitivity � 90% and specificity � 95%) regardless of gradient resolution. This detec-
tion limit is comparable to 2 standard deviations of unreplicated unlabeled WMD,
further supporting this threshold. This means that if one decides to add experimental
replication, even as few as 3 replicates, one can increase the power of this analysis to
have very low type II error (assuming a 0.005 g ml�1 detection threshold). Thus, our
analysis can be used for experimental design based on the desired statistical power.

SIP is an expensive method (18). All of the experimental design factors we assessed
(number of replicates, number of fractions, distribution of fractions across tubes/spins,
internal standards) directly affect the cost of a SIP experiment—in terms of supplies,
enriched isotope labels, labor, and sequencing. For many researchers, processing only
9 to 12 density fractions (as our analysis suggests is sufficient) could significantly
mitigate labor and sequencing costs. Cost savings will be considerable for amplicon-SIP
studies, and even more so for metagenomic SIP (MG-SIP), given the high cost of
metagenomic analyses.

The combination of metagenomics and SIP (26, 35) involves sequencing metag-
enomes instead of amplified marker genes from density fractions, and assembly of
genomic bins from those metagenomes. But this approach, while powerful, remains
rarely used. Early obstacles such as low DNA yield, multiple displacement amplification
(MDA) biases, and low throughput (5) have now been resolved by improvements in
sequencing platforms and library preparation kits. However, to date, most MG-SIP
studies have sequenced only a few heavy fractions, or at best, two or three light
fractions as well (27, 28, 36). While analyzing so few fractions saves money, doing so
limits detection of substrate incorporators in several ways. (i) Choosing which fractions
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to sequence relies on density shift of the entire community, which may be subtle. (ii)
Low-GC genomes, even if highly enriched, may not become heavy enough to reach the
heavy fractions. (iii) Low-GC genomic islands may not be well covered and therefore not
assembled, leading to increased genome fragmentation (Fig. S4, data set 3). (iv)
Depending on the density of the fractions sequenced, high-GC genomes may be highly
represented regardless of enrichment. (v) As we and others have demonstrated,
abundant organisms can be found in all density fractions (10) and may be erroneously
classified as incorporators. Sequencing all fractions in MG-SIP studies should overcome
all of these obstacles, even if only a small number of fractions are used (37). While low
gradient resolution (�4 fractions) may limit detection to only highly enriched taxa,
medium gradient resolution (and the decreasing price of shotgun sequencing) should
keep the financial and computational costs of MG-SIP manageable while maintaining
acceptable detection limits. Specifically, our data suggest that with circa 10 density
fractions (fraction size 0.011 g ml�1), the increase in error compared to higher resolu-
tion is minor.

Reducing the number of fractions from �40 (typical for many high-resolution SIP
studies [16, 17, 21, 38]) to only 10 will substantially impact the feasibility of a SIP study,
particularly for MG-SIP. As an example, we compared the resources and yield of a
simplified experiment. For a high-resolution MG-SIP study (40 fractions � labeled/
unlabeled � 80 metagenomes) with minimal replication (3), one could easily need to
sequence 240 metagenomes. Assuming shallow sequencing of 2 Gbp per metag-
enome, this translates to 480 Gbp of data that would need to be stored, manipulated,
and assembled and total costs (sequencing, library prep) approaching $50,000. This
highly simplified experiment could easily balloon if experimental treatments or time
points were added. In comparison, our findings suggest one may reduce the number
of fractions to only �10 (0.011 g ml�1) and keep to a relative error lower than 0.005 g
ml�1. We show that for fraction sizes below 0.011 g ml�1, the mean relative error
increases, as does its variability (in both replicated and unreplicated data sets). How-
ever, this increase in variability can be mitigated by reallocating effort toward replica-
tion. Indeed, reducing the number of fractions by just a factor of 2 allows for doubling
the number of replicates without additional costs, while increasing the statistical power
of downstream analyses.

All commonly used SIP protocols rely on a linear conversion between the peak
density (as a measure of the central tendency of the distribution) of an unlabeled
genome and its GC content (4, 8, 29, 32, 33). However, the inherent variations that our
results illustrate suggest that GC content cannot be accurately converted to density
with the canonical equation (32), since the relationships between calculated %GC and
known GC content have a very high R2 but various slopes and intercepts. Instead,
researchers may need to create a calibration curve of %GC/WMD (or peak density) per
tube, using an internal standard. Accurate conversion between WMD and %GC is
particularly important for MG-SIP experiments where only the heavy fractions of
labeled samples are sequenced. Once genomic bins are assembled, their %GC can be
converted into a theoretical unlabeled WMD which can be used to calculate the density
shift, and thus the enrichment level of those bins. It is conceivable that a reliable
calculation like this could obviate the need to analyze most of the unlabeled controls
and is thus another experimental design customization that can save substantial labor
and costs.

If one were to combine MG-SIP with an internal %GC/density ladder, one could
significantly decrease the number of unlabeled controls sequenced and use the cali-
bration curve from the labeled tubes with the GC content of genome bins to calculate
unlabeled WMD and density shift values. The internal standard should be informatically
separable from the sample. This could be done by creating a mock community of
organisms which are highly unlikely to appear in the sample (e.g., in a soil sample, use
genomes of strictly marine organisms) and could be customized per experiment. Due
to the variation within spin, an external ladder (a mock community in a separate
ultracentrifuge tube) would be insufficient. However, it could be argued that finding a
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suitable set of nonindigenous genomes distinguishable from a highly diverse environ-
ment such as soil may prove difficult. Alternatively, if highly complete genomic bins
can be assembled, then their %GC would be more reliable, and their WMD can be
calculated from the gradient. Such bins could be used as an internal standard for
generating a WMD-to-GC formula. As the generation of high-completion bins could
only be assessed post hoc, we would still recommend the use of an internal standard.

Conclusions. The inherent variability in qSIP stems from its many steps: replicate
variation, bottle effects during incubation, extraction efficiencies, tube-to-tube variation
in the gradient, amplification bias, strain heterogeneity, among-treatment shifts in
community composition, and OTU clustering errors (for marker genes). Quantifying the
sensitivity of qSIP to these factors will improve existing amplicon-based qSIP tech-
niques and facilitate efficient ways of extending SIP to more ambitious applications,
such as metagenome-assembled genome-based SIP. The analyses we present here
illustrate how customizing experimental design factors can allow researchers to achieve
ideal levels of sensitivity and specificity while keeping costs in check.

MATERIALS AND METHODS
We used five unpublished data sets from different ecosystems for our in silico analyses: a high-

resolution unreplicated SIP study of [13C]naphthalene in seawater, two medium-resolution replicated SIP
experiments where H2

18O was added to soils (SPRUCE [Spruce and Peatland Responses Under Changing
Environments] peatland from northern Minnesota, Mediterranean grassland from northern California),
replicated genomic DNA from pure cultures of Escherichia coli and Pseudomonas putida, and a replicated
genomic mock community comprised of high-molecular-weight genomic DNA of Thermoanaerobacter
pseudethanolicus, Bacillus licheniformis, Bifidobacterium longum subsp. infantis, and Streptomyces viola-
ceoruber, purchased from ATCC. Table 1 contains the number of density fractions and replicates per data
set. As these experiments were performed by different laboratories, using slightly different protocols, we
describe their SIP pipelines separately (see Text S1 in the supplemental material). All postsequencing
steps were performed identically for all 16S rRNA operational taxonomic units (OTUs).

Data set 1. [13C]naphthalene-enriched seawater. Data set 1 contains bacterial 16S rRNA OTUs from
[13C]naphthalene-enriched seawater collected from the port of Los Angeles, California (30). For full
details, see Text S1.

Data set 2. SPRUCE peatland H2
18O addition. Data set 2 contains 16S-rRNA OTUs from a forested

peat bog soil, part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE)
experiment in the Marcell Experimental Forest in Minnesota incubated with H2

18O. For full details, see
Text S1.

Data set 3. Grassland soil H2
18O addition. Data set 3 contains metagenomes from grassland soil

(California) incubated with H2
18O. For full details, see Text S1.

Data set 4. E. coli and P. putida cultures. A 1:1 mix of DNA from unlabeled E. coli and 0.5 �g DNA
from unlabeled (n � 8) or labeled (n � 12) P. putida was processed on an automated SIP pipeline at the
Joint Genome Institute. For full details, see Text S1.

Data set 5. Genomic mock communities. DNA for a genomic mock community was purchased from
ATCC, resuspended in Tris-EDTA buffer, mixed in equal proportions, and aliquoted into replicates. The
mock community was composed of high-molecular-weight DNA of Thermoanaerobacter pseudethanoli-
cus, Bacillus licheniformis, Bifidobacterium longum subsp. infantis, and Streptomyces violaceoruber (see
Table S1 for accession numbers), and these genomes were selected for their distinct %GC content (34.5%,
46%, 60% and 73%, respectively). For full details, see Text S1.

16S rRNA gene-based microbial community composition in individual fractions. Each data set
was processed separately. For data sets 1 and 2, reads were quality trimmed using Trimmomatic version
0.33 (40) with parameters set at LEADING:20 TRAILING:20 SLIDINGWINDOW:15:25. The resulting reads
were merged using Usearch version 7 (41), clustered in mothur following the MiSeq standard operating
procedure (SOP) (42–44). To track individual operational taxonomic units (OTUs) in separate density
fractions, the relative abundance of the OTU in each fraction was multiplied by either the concentration
of DNA in the same fraction (seawater, data set 1; as in reference 20) or by the total 16S rRNA gene copy
number (SPRUCE soil, data set 2; as in reference 9).

Density shifts. The weighted mean density of each OTU in labeled and control samples was
calculated by multiplying density by OTU abundance (amount of DNA/16S rRNA gene copies � OTU
relative abundance) within each fraction, summing the products and dividing them by the sum of
abundances of the OTU across all fractions. The density shift was calculated by subtracting the weighted
mean density of the OTU in the unlabeled control from the its weighted mean density in the labeled
treatment (9). Density shifts were then plotted in R (45) for the 100 most abundant OTUs in each sample.
The relative error was calculated as the difference between the density shift per OTU in resolution r minus
the shift per OTU in the original high-resolution rmax.

Sensitivity analysis. We used the variation in the weighted mean density (WMD) of the same OTU
in replicated samples to assess the minimum density shift that can be detected. The leading principle
here was that a shift smaller than the natural variation could not be statistically significant.
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Using unlabeled replicated (n � 10) samples from data set 2 time zero (SPRUCE soil, with five
subsamples from each of two preincubation temperatures [15°C and 45°C]), we calculated the WMD for
each OTU in each replicate and the standard deviation of the 10 resulting means for each of the 100 most
abundant OTUs. We also assessed the effect of OTU abundance on WMD variability using all 320 OTUs
from the same data set (Text S1). The use of standard deviation has an underlying assumption of
normality. Consistent with this assumption, we observed only slight leptokurtosis in the distribution of
taxon relative abundance as a function of density that is not thought to strongly influence inference
(Fig. S1).

Sensitivity to number of fractions. We used data set 1 (seawater) and data set 2 (SPRUCE soil) to
estimate how precision in the estimate of taxon isotope incorporation varies with the number of density
fractions collected in a qSIP experiment. We combined fractions in silico to simulate the results of these
experiments had they been run with fewer fractions (f), with the following principles. (i) Only adjacent
fractions were combined. (ii) Fraction combinations were conducted to create new, combined fractions
that were approximately equal in size and sequencing depth (i.e., with minimal variation in the range of
densities represented by each simulated fraction). For example, to simulate an experiment where only
two density fractions were collected instead of 18, we ran three possible scenarios using the original
empirical data: combining the lightest 8, 9, or 10 fractions into a simulated fraction and combining the
remaining heaviest fractions into a second simulated fraction. Similarly, to simulate an experiment with
10 density fractions instead of 18, we ran all 45 possible scenarios of combining eight pairs of adjacent
density fractions with two uncombined single density fractions. In this way, we simulated data sets across
the full range of possible fraction numbers, from 2 to 18. We did this to simulate typical approaches to
SIP experiments, where fractions that span similar density ranges are usually combined. We computed
the weighted-average density for each taxon in each replicate of each simulated data set using the
midpoint of each density fraction (combined or not) and weighting each of those density values by the
area under the curve for that fraction, where the curve is delineated by the plot of 16S rRNA gene copies
versus density. The sum of those weighted densities, divided by the total area under the curve, yielded
the weighted-average density metric used in subsequent analyses. For nonpermuted analyses, fractions
were combined from preincubation samples (temperature, 15°C and 45°C [n � 10]). For each permuted
combination (using the replicated data set 2), we ran the qSIP code (13, 46) and estimated the atom
percent excess 18O for each replicate sample and then calculated the standard deviation of that estimate
across all replicates (n � 5, preincubation temperature of 15°C). Finally, we calculated the relative
standard deviation as a function of increasing number of simulated fractions compared to the original
number of fractions.

Power analysis. We evaluated statistical power using the SPRUCE data set (data set 2). These data
came from a SIP experiment where peat bog soils were incubated for 10 days at an intermediate
temperature (15°C) and then harvested after 5 or 10 days of exposure to H2

18O. An unlabeled control
sample was sampled at day 0. For the power analysis, we omitted 27 taxa that did not occur in all 15
samples (n � 5 for control, H2

18O at day 5, and H2
18O at day 10), 5 rare taxa (relative abundance of

�0.026%), and 7 taxa identified as outliers for variance of the estimate of weighted average density (P �

0.05, Grubb’s test). Excluding taxa with high variance will inflate power, but the effect is likely negligible
given the small number of taxa excluded for this reason. Of the remaining 236 taxa, 211 were included
in the power analysis. We used the observed variation among taxa in weighted average density shift,
which ranged from �0.003 to 0.033 g ml�1. This captures a wide range of possible values of isotope
uptake, from �0 to �60 atom% excess 18O. We used in silico resampling with replacement to estimate
power. For each taxon at each sample date, n random samples were drawn (with replacement) from each
of the 18O-labeled and unlabeled data sets, a t test was performed, and the P value was recorded. This
was repeated 1,000 times, and power was estimated as the frequency of significant t tests among the
1,000 simulations (47, 48). N (number of sample replicates) was varied between 2 and 6 to simulate
experiments with different replication by pruning or duplicating replicates from the original data set.
Average power was calculated across all taxa. The upper 10th percentile of power was also calculated to
estimate power typical for more dominant taxa.

Data availability. Data set 1 sequence data are available in ENA under project number PRJEB26952
and accession numbers ERS2507530 to ERS2507619. Data set 2 sequence data were submitted to NCBI
Sequence Read Archive (SRA) under project ID PRJNA641177 and accession numbers SRR12071929 to
SRR12072082.
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