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a b s t r a c t

Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted 
time, manpower and material resources. Thus, cell line identification is important and necessary. At present, 
the commonly used cell line identification methods need cell staining and culturing. There is therefore a 
need to develop a new method for the rapid and automated identification of cell lines. Raman spectroscopy 
has become one of the emerging techniques in the field of microbial identification, with the advantages of 
being rapid and noninvasive and providing molecular information for biological samples, which is beneficial 
in the identification of cell lines. In this study, we built a library of Raman spectra for gastric mucosal 
epithelial cell lines GES-1 and gastric cancer cell lines, such as AGS, BGC-823, HGC-27, MKN-45, MKN-74 and 
SNU-16. Five spectral datasets were constructed using spectral data and included the full spectrum, fin-
gerprint region, high-wavelength number region and Raman background of Raman spectra. A stacking 
ensemble learning model, SL-Raman, was built for different datasets, and gastric cancer cell identification 
was achieved. For the gastric cancer cells we studied, the differentiation accuracy of SL-Raman was 100% for 
one of the gastric cancer cells and 100% for six of the gastric cancer cells. Additionally, the separation 
accuracy for two gastric cancer cells with different degrees of differentiation was 100%. These results de-
monstrate that Raman spectroscopy combined with SL-Raman may be a new method for the rapid and 
accurate identification of gastric cancer. In addition, the accuracy of 94.38% for classifying Raman spectral 
background data using machine learning demonstrates that the Raman spectral background contains some 
useful spectral features. These data have been overlooked in previous studies.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As common materials in life sciences and clinical medicine re-
search, cell lines are widely used in antitumour drug screening [1], 
proto-oncogenes and oncogenes analysis [2], monoclonal antibody 
preparation [3] and cytokine activity detection [4]. However, in ex-
perimental research, cell misuse or cross-contamination has always 
been a common but easily ignored problem for researchers. Using 
'wrong' cells will affect the accuracy and reliability of the results and 
waste time, manpower and resources. In recent years, the National 
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Institutes of Health (NIH) and other agencies have called on re-
searchers to identify cells before experiments are performed [5]. 
There are various methods for cell identification, such as isozyme 
assays [6], cell-specific antibody staining [7], HLA typing [8], and 
short tandem repeat (STR) analysis [9]. These methods require 
complex operations such as the staining or culturing of cells. 
Therefore, we need a new method for cell line identification that is a 
convenient, label-free and noncontact approach.

The discovery of Raman spectroscopy can be traced to 1925, 
when an Indian scientist C. V. Raman developed Raman testing. 
Today, Raman spectroscopy is applied in various fields [10]. The 
Raman scattering that occurs between matter and photons can be 
reflected in the received Raman spectrum, and thus, the molecular 
movement of matter can be visualized. In recent years, Raman 
spectroscopy has been widely used in the fields of microbial iden-
tification, species identification, food authentication, microplastic 
identification, pharmaceutical analysis and tumour diag-
nosis [11–16].

The Raman features associated with DNA, RNA, proteins, lipids, 
collagen and other biomolecules are mainly found in the range of 
800–1800 cm−1 of the Raman spectrum, namely, the fingerprint re-
gion. Most studies have analysed the spectral data from the finger-
print region, and a few studies have investigated the effect of high 
wavenumber (HW) regions (2800–3800 cm−1) on spectral recogni-
tion. Relevant studies have shown that analysing the fingerprint 
region alone is superior to analysing the HW region alone, but 
analysing the fingerprint and HW regions together is optimal [17,18]. 
In addition, in previous Raman spectroscopy studies, spectral base-
lines were removed in the spectral preprocessing stage using 
methods such as adaptive iteratively reweighted penalized least 
squares (airPLS) algorithm [19–21]. However, Tomasz et al. specu-
lated in the study that there is a correlation between the Raman 
baseline and the fluorescence background of the sample [22]. At 
present, no one has explored whether the baseline of Raman spec-
troscopy can be used for spectral analysis. Some studies have also 
used Raman spectroscopy to study and differentiate the spectral 
compositions of tumour cells [23–25], but they use fewer cell lines 
and traditional spectral data analysis methods.

Due to the small characteristic differences among Raman spectra, 
computer methods such as machine learning and deep learning are 
often used to differentiate the spectra when analysing them. 
Algorithms such as the principal component analysis-linear dis-
criminant analysis (PCA-LDA), K-nearest neighbour (KNN), partial 
least squares-discriminant analysis (PLS-DA), support vector ma-
chine (SVM), artificial neural network (ANN), and convolutional 
neural network (CNN) algorithms are widely used [20,26,27]. PCA 
can perform linear dimensionality reduction by orthogonal trans-
formation [28] and reduce the difficulty of data analysis. However, 
reduction in variables might lose useful information and change the 
original patterns of the spectral data [21]. LDA and SVM are two 
popular methods for solving classification problems, but they en-
counter difficulties in setting boundaries for high-dimensional 
spectral data due to the curse of dimensionality [29]. ANN can be 
used in nonlinear calibration but has a tendency toward overfitting 
[21]. Model training for deep learning methods such as CNN often 
requires larger datasets [30].

Most of the existing Raman spectroscopy studies use classifica-
tion models to identify and analyse individual spectral datasets. This 
data processing method cannot fully utilize the characteristics of 
different models and datasets. In data mining, to identify and ana-
lyse similarities among datasets, one of the commonly used com-
bination-based methods is stacking ensemble learning [31,32]. 
Ensemble learning combines multiple models in some way, so it is 
better than any individual model [33]. Marquis de Condorcet proved 
that if the probability of each voter being correct is greater than 0.5 
and the voters are independent, then adding more voters increases 

the probability of the majority vote being correct [34]. Here, we use 
model fusion based on different datasets to enhance the traditional 
stacking ensemble learning algorithm.

In order to better evaluate the ability of Raman spectroscopy for 
cell line identification and overcome the shortcomings of existing 
methods for Raman data analysis, a self-built SL-Raman model was 
used to classify the Raman spectra of normal and gastric cancer cells. 
With fewer data samples, SL-Raman can execute several machine 
learning models for various dimensions spectrum datasets and 
provide quick recognition results through ensemble election. This 
not only allows for the full utilization of the spectra's information, 
but it also produces findings that are more accurate and re-
presentative of the data. We established a Raman spectral database 
of gastric cancer cell lines, constructed five different datasets 
through interception and recombination, and fully analysed the 
classification results for the different datasets. We distinguished the 
differences in biochemical composition between normal and gastric 
cancer cells, correctly identified gastric cancer cells, and correctly 
differentiated gastric cancer cells with different degrees of differ-
entiation. This is the first time that a stacking ensemble learning 
model for different datasets has been proposed and applied for data 
processing. SL-Raman integrates the predictions from different un-
derlying models, so it is more representative than the predictions 
from a single model. In addition, SL-Raman innovatively integrates 5 
datasets, which enables the base model to obtain more compre-
hensive prediction results from different feature levels.

2. Materials and methods

2.1. Sample preparation

We used one normal cell line GES-1 and six gastric cancer cell 
lines in this study: AGS, BGC-823, HGC-27, MKN-45, MKN-74 and 
SNU-16. Cells were frozen and preserved in a − 80 °C freezer and 
were defrosted in a 37 °C water bath to promote melting before 
sample preparation. AGS cells were maintained in DMEM/F12 
medium supplemented with 10% foetal bovine serum and 1% peni-
cillinestreptomycin, while the other cell lines were cultured in 
RPMI-1640 medium with 10% foetal bovine serum and 1% penicilli-
nestreptomycin. These cell lines were routinely cultured in a 5% CO2 

humidified incubator at 37 °C. After culturing in a cell culture flask 
for 48 h, the cells were removed from the flask surface with 0.25% 
trypsin-EDTA and washed 3 times with phosphate buffered saline. 
The suspended cells were then collected via centrifugation and fixed 
in sterilized deionized water with 4% paraformaldehyde. Cells were 
then diluted to 10,000 per millilitre using deionized water, im-
mobilized on a slide and air dried for Raman spectra measurements. 
The Raman detection sample of each cell line is about 7.5 μl (2.5 μl/ 
drop * 3). The slide used in the experiment is a glass slide coated 
with 25 nm thick aluminum film. All reagents used in this process 
were purchased from Gibco Company, USA.

2.2. Raman measurements

We collected the Raman spectra of gastric cancer cell lines using 
a Raman spectroscopy system (R300 (Objective lens: Olympus, 100 ×, 
NA=0.8), Hooke Instrument, Changchun, China) with a laser wave-
length of 532 nm. To collect as much Raman data for gastric cancer 
cells as possible, we collected Raman spectra from five locations for 
each cell to create an average spectrum. In the subsequent spectral 
analyses, the average spectrum represents the overall spectral data 
of the unit. The conditions for collecting Raman spectra were a 
grating of 600, a 9 mW laser power and an 8 s integral time. Since 
the diameter of gastric cancer cells is about 20 µm, and the spot size 
of the laser is <  1 µm during the actual measurement, it is not 
possible to determine whether the specific location for detection is 
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Fig. 1. The dataset composition and the algorithm used for the Raman spectrometer. a. Components of 5 datasets: Dataset 1, full spectrum dataset, 400–3800 cm−1; Dataset 2, 
fingerprint region dataset, 800–1800 cm−1; Dataset 3, HW region dataset, 2800–3800 cm−1; Dataset 4, background dataset; and Dataset 5, all data dataset, Datasets 1 + 2 + 3 + 4. b. 
Schematic diagram of the SL-Raman algorithm. The main process is as follows. (1) For each dataset, the model with the highest accuracy is selected as the base model. (2) The 
based model is trained using each dataset, and predictions are obtained; then, the predictions are combined into a new characteristic dataset through five-fold cross-validation. 
(3) The new feature dataset is input into each of the five meta-models, and the meta-model with the highest accuracy is selected for use with SL-Raman.
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the nucleus, cytoplasm, or cell membrane when collecting spectra of 
gastric cancer cells. Therefore, we collected spectra from approxi-
mately 5 locations in each cell and used the average spectrum for 
spectroscopy in our analysis. We collected spectra from about 100 
cells of each cell line for a total of about 3500 spectra and about 700 
average spectra. A total of 3300 spectra and 660 average spectra 
were used for model training after signal-to-noise filtering.

2.3. Data preprocessing

Data preprocessing can effectively attenuate unnecessary spec-
tral signal changes and interference caused by instruments and the 
environment [35]. The preprocessing process for Datasets 1–3 is: 
cosmic ray removal, filtering, background removal, and normal-
ization. The preprocessing process for Dataset 4 is: cosmic ray re-
moval, filtering, background removal, data before background 
removal minus data after background removal to obtain spectral 
background, normalization. Dataset 5 is composed of data sets 1–4 
without additional data processing. By linear fitting the points 
around the singular values of the spectral data, we removed the 
cosmic rays. We filtered the data with a SavitzkyeGolay filter, used 
the airPLS algorithm to gradually approximate the Raman spectral 
baseline and normalized the spectral data with min-max 

normalization [36,37]. It is worth mentioning that to handle for 
minor differences in the x-axis among the different spectra, we 
processed the data using cubic spline interpolation. All processing 
was conducted in Python.

2.4. Composition of the dataset

To fully utilize all the spectral information in Raman spectra, we 
divided the Raman data for gastric cancer cell lines into five datasets 
through data segmentation and merging. We used the spectral data 
from the 400–3800 cm−1 spectral range to form a dataset (Dataset 1, 
full spectrum dataset) and then selected the spectral data from the 
fingerprint region (800–1800 cm−1) and the HW number region 
(2800–3800 cm−1) as two separate datasets, namely, Dataset 2 
(fingerprint region dataset) and Dataset 3 (HW region dataset). In 
addition, we merged the spectral backgrounds obtained with airPLS 
into a new dataset (Dataset 4, background dataset) and then merged 
Datasets 1–4 into a single dataset (Dataset 5, all data dataset). 
Dataset 5 exists to ensure that we have used all spectral information 
again.

2.5. Machine learning classification methods

We used some popular machine learning classification models in 
this study: SVM, KNN, LDA, eXtreme gradient boosting (XGBoost), 
and decision tree (DT) [27] methods. We built a classification model 
using the sklearn machine learning library. Notably, we trained five 
classification models with five different datasets and compared the 
classification performance of different classifiers. 528 of the 660 
spectra were used as the training set and 132 as the test set during 
model training. The 132 spectra used as the test set were not used in 
the training process. In addition to this, in the model selection phase 
of training 5 datasets using 5 base models, both 5-fold cross vali-
dation and grid search were used during training. At the end of 
training, the optimal model was used to predict 132 data from the 
test set.

2.6. Stacking ensemble learning

Stacking is a common ensemble learning framework in data 
mining. In general, this process involves training a learning structure 
with approximately two layers. In the first layer, N different base 
models are cross-validated to obtain the prediction results for each 
sample. These predictions are then combined into a new feature set 
and used as input to the next layer of the classifier. Each cross-va-
lidation consists of two processes: (i) training the model based on 
the training data and (ii) testing the model with test data. The pre-
dicted values for all samples are obtained after all the cross-valida-
tion steps are completed.

Unlike ordinary model stacking, we performed ensemble 
learning using different datasets from the same sample. In this way, 
a model with high classification accuracy based on all available 
spectral information was obtained. First, we used dataset 1 to train 
five base models and made subsequent predictions; then, we se-
lected the most accurate model. By analogy, the optimal model for 
each dataset was finally obtained. The optimal model corresponding 
to each dataset is directly used to train and predict each dataset, and 
a 5-fold cross validation is used to predict each 132 data, and the 
final prediction results are obtained for all samples. We combined 
the predictions from the five best models for each of the five data-
sets and input them into the second layer of each model. Next, we 
compared the classification results. The optimal second layer was 
selected by comparing the prediction results, and the optimal two- 
layer ensemble learning model was identified for the selected 
sample. To ensure that the predictions based on different datasets 
were associated with the same sample, we decomposed the samples 

Fig. 2. Average Raman spectra of normal and gastric cancer cells. 

Table 1 
The average number of spectra per cell line used for model training. 

Cell line name Number of spectra

AGS 98
BGC-823 97
GES-1 96
HGC-27 84
MKN-45 93
MKN-74 89
SNU-16 103
Total 660
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prior to training and ensured that the sample order remained the 
same in all subsequent training sessions. We call this ensemble 
learning model for Raman spectroscopy SL-Raman.

3. Results

Previous Raman spectroscopy-based studies use machine 
learning or deep learning to classify and analyse the fingerprint re-
gion (800–1800 cm−1) of the Raman spectrum. First, the different 
datasets for the Raman spectra, spectral fingerprint regions, spectral 
HW regions and spectral backgrounds of normal and gastric cancer 
cells were obtained using five different machine learning methods. 
Second, the SL-Raman recognition model based on stacked ensemble 
learning for different datasets was successfully used to identify 
gastric cancer cells from different datasets. Finally, we analysed the 
differences between normal gastric epithelial cells and gastric 
cancer cells in the fingerprint area. Specifically, the composition of 
the five datasets is shown in Fig. 1.a, and the principle of the SL- 
Raman algorithm is shown in Fig. 1.b. Fig. 2 shows the average 
Raman spectra of normal gastric epithelial cells and all gastric cancer 
cells. The fingerprint region (800–1800 cm−1) involves most of the 
biomolecular vibrational modes within individual cells and exhibits 

unique observable features, the so-called Raman phenotype. The 
high wave number region (2800–3800 cm−1) is mainly associated 
with lipid and protein content.

3.1. Distinguishing normal cells from single gastric cancer cells

A total of 3300 spectra and 660 average spectra were used for 
model training after signal-to-noise filtering. The specific number of 
each cell line is shown in Table 1. Raman spectral data for normal 
gastric mucosal epithelial cells and gastric cancer cells were dis-
tinguished using five machine learning algorithms: SVM, KNN, LDA, 
XGBoost and DT algorithms. Five different Raman spectral datasets 
were distinguished using these five classification algorithms, and the 
recognition accuracies are shown in Table 2. The accuracies in the 
table are based on the probabilities that the classification model 
correctly distinguished between normal GES-1 cells and each gastric 
cancer cell line. If we treat all the gastric cancer cell identification 
processes in Table 2 as 30 identification tasks and use the average 
accuracy as a measure of the recognition effectiveness of each ma-
chine learning model, we can conclude that the recognition ac-
curacies of the SVM, KNN, LDA, XGBoost and DT algorithms are 
98.66%, 97.73%, 99.20%, 93.61% and 95.51%, respectively. Thus, 
Raman spectroscopy-based and general machine learning models 
are effective for the identification of gastric cancer cells. Among 
them, LDA yielded the best identification effect.

We then compared the overall classification results of different 
models for the same dataset. The recognition accuracies of the dif-
ferent models for the full spectrum dataset, fingerprint region da-
taset, HW region dataset, background dataset and all data dataset 
were 97.72%, 97.62%, 98.85%, 94.38% and 96.13%, respectively. That is, 
in a binary classification task with high signal noise in Raman 
spectral data, the full spectrum, fingerprint region and HW region 
were all effectively used to identify the differences in spectral data. 
In this classification task, the highest classification accuracy was 
achieved with the HW region dataset. In addition, five classification 

Table 2 
Accuracy of machine learning models in identifying the Raman spectra of gastric cancer cells. 

Dataset SVM KNN LDA XGBoost Decision Tree

AGS Full Spectrum 100% 99.36% 100% 92.95% 100%
Fingerprint Region 100% 100% 100% 94.23% 98.72%
HW Region 100% 100% 100% 100% 99.36%
Background 96.15% 94.87% 96.79% 90.38% 87.18%
All Data 97.44% 96.79% 99.36% 92.95% 88.46%

BGC-823 Full Spectrum 100% 100% 100% 94.84% 100%
Fingerprint Region 100% 97.5% 100% 89.03% 92.90%
HW Region 100% 99.35% 100% 99.35% 100%
Background 96.13% 94.19% 89.03% 91.61% 91.61%
All Data 96.77% 97.5% 100% 94.84% 100%

HGC-27 Full Spectrum 100% 100% 100% 95.14% 94.44%
Fingerprint Region 100% 100% 100% 95.83% 100%
HW Region 100% 100% 100% 93.06% 100%
Background 98.61% 95.83% 96.53% 95.14% 93.75%
All Data 100% 98.61% 100% 95.14% 97.22%

MKN-45 Full Spectrum 97.14% 95.39% 99.34% 87.5% 94.08%
Fingerprint Region 99.34% 99.34% 100% 96.71% 88.16%
HW Region 92.76% 98.03% 100% 95.39% 95.39%
Background 96.71% 87.5% 98.68% 84.87% 91.48%
All Data 98.03% 90.13% 99.34% 87.5% 91.48%

MKN-74 Full Spectrum 100% 100% 100% 93.24% 100%
Fingerprint Region 100% 99.32% 100% 100% 100%
HW Region 100% 100% 100% 95.95% 97.97%
Background 95.95% 95.27% 99.32% 92.27% 95.27%
All Data 96.62% 95.95% 100% 93.34% 94.59%

SNU-16 Full Spectrum 100% 100% 100% 91.88% 96.25%
Fingerprint Region 100% 99.38% 100% 86.88% 91.25%
HW Region 100% 100% 100% 100% 98.75%
Background 99.38% 98.75% 97.5% 96.25% 94.38%
All Data 98.75% 98.75% 100% 91.88% 92.5%

Table 3 
Accuracy of gastric cancer cell identification with SL-Raman and different meta- 
models. 

SVM KNN LDA XGBoost Decision Tree

AGS 100% 100% 100% 100% 100%
BGC-823 100% 100% 100% 100% 98.71%
HGC-27 100% 100% 100% 100% 100%
MKN-45 99.34% 100% 100% 98.68% 100%
MKN-74 100% 100% 100% 100% 100%
SNU-16 100% 100% 100% 100% 99.38%
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models reached an accuracy of 94.38% in the task of identifying 
gastric cancer cell lines using the background dataset. This result 
suggests that the Raman spectral background is biologically in-
formative [22].

When distinguishing AGS gastric cancer cells from GES-1 normal 
cells, we found that the LDA classification model yielded the highest 
recognition accuracy for different datasets. We then chose LDA as the 
base classification model for this round of SL-Raman modelling. Five 
predictions were made for each of the five datasets using five-fold 
cross-validation and LDA for each sample. The prediction results were 
combined into a new feature set and then input into the five classi-
fication models, namely, the SVM, KNN, LDA, XGBoost and DT models, 
and the classification accuracies were all 100%. Therefore, in this round 
of recognition tasks, we obtained particularly high accuracy values 
regardless of which meta-model we chose. The process for identifying 
other gastric cancer cells was similar. All identification results are 
shown in Table 3. After choosing the most effective machine learning 
model as the base model for SL-Raman, the fast and simple KNN meta- 
model was used to obtain good recognition results.

3.2. Distinguishing normal cells from multiple types of gastric cancer 
cells

To validate the classification capability of SL-Raman in different 
cases, we trained the model on a total of seven cell line datasets for 
normal and gastric cancer. The resulting classification accuracy, 
confusion matrix and receiver operating characteristic (ROC) curve 
are shown in Fig. 3. The recognition accuracies of the SVM for the 
different datasets in Fig. 3a were 85.61%, 97.73%, 66.29%, 54.92% and 
96.21%, respectively; those for the KNN approach were 87.5%, 
92.99%, 89.39%, 46.59% and 71.21%, respectively; those for LDA were 
99.81%, 99.81%, 99.62%, 88.45% and 99.62%, respectively; those for 
XGBoost were 90.72%, 91.29%, 91.86%, 54.73% and 92.80%, respec-
tively; and those for the DT were75.38%, 82.20%, 80.49%, 46.97% and 
76.70%, respectively. When LDA was used as the base model for SL- 
Raman, the SL-Raman accuracies for different meta-models were 
100%, 100%, 15.15%, 100% and 99.43%, respectively. The final SL- 
Raman base model was LDA, and the meta-model was selected was 
the KNN, with a model accuracy of 100%.

Fig. 3. Results of SL-Raman and different machine learning models in the identification of 7 cell lines. a. SL-Raman recognition accuracy for different models. b. Confusion matrix 
for the recognition of gastric cancer cells with SL-Raman. c. ROC curve for SL-Raman classification.
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Fig. 4. Results of SL-Raman and different machine learning models in identifying gastric cancer cell lines with different degrees of differentiation. a. SL-Raman recognition 
accuracy for different models. b. Confusion matrix for the identification of gastric cancer cells with SL-Raman. c. ROC curve for SL-Raman classification.

Fig. 5. Raman spectroscopy analysis. a. Average Raman spectrum of the normal gastric mucosal epithelial cell line GES-1 compared to that for the gastric cancer cell line AGS. b. 
Sum of the Raman peak intensities of the major biomolecules of GES-1 and AGS. c. Comparison of the average Raman spectra for two gastric cancer cell lines with different degrees 
of differentiation: AGS and BGC-823. d. Sum of the Raman peak intensities of major biomolecules for AGS and BGC-823.
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3.3. Distinguishing gastric cancer cells with different degrees of 
differentiation

To verify the ability of SL-Raman to identify gastric cancer cells 
with different degrees of differentiation, we constructed datasets for 
the gastric cancer cell lines AGS (highly differentiated) and BGC-823 
(poorly differentiated). The classification accuracy, confusion matrix 
and ROC curve results are shown in Fig. 4. As shown in Fig. 4a, the 
recognition accuracies of the SVM for different datasets were 96.79%, 
100%, 91.67%, 59.62% and 98.72%, respectively; those of the KNN 
were 92.95%, 98.72%, 96.79%, 62.18% and 82.05%, respectively; those 
of LDA were 98.08%, 100%, 99.36%, 85.26% and 98.72%, respectively; 
those of XGBoost were 85.90%, 99.36%, 92.95%, 67.95% and 88.90%, 
respectively; and those of the DT were 92.95%, 85.90%, 93.59%, 
72.44% and 83.33%, respectively. When LDA was used as the base 
model for SL-Raman, the SL-Raman accuracies for different meta- 
models were 99.36%, 99.36%, 100%, 98.08% and 99.36%. The final SL- 
Raman base model and meta-model were both LDA, and the model 
accuracy was 100%.

3.4. Raman spectroscopy of gastric cancer cells

Raman spectroscopy can be used to identify cell lines and assess 
the biochemical composition of cells. As presented in Fig. 5a and 
Table 4, there was a significant difference in the spectra of normal 
and gastric cancer cells. The spectral intensity of gastric cancer cells 
was slightly higher than that of normal gastric epithelial cells in the 
range of 800–1300 cm−1. The Raman intensities at several distinct 
Raman peak positions, such as 853, 970, 1000, 1030, 1096, 1246, 1575 
and 1656 cm−1, were also significantly different. We summed the 
intensity of the characteristic peak ranges to intuitively compare the 
overall variations in the different biochemical components. The 
spectral regions of the characteristic peaks were based on those 
suggested by Ye, J.[38]. The sums of the Raman characteristic peak 

intensities of six major biomolecular components, namely, lipids, 
amide III, amide I, nucleic acid, tyrosine and phenylalanine, for 
normal and gastric cancer cells are shown in Fig. 5.b. As the results 
show, the gastric cancer cells had more lipids, nucleic acids and 
phenylalanine. This finding also indicates that gastric cancer cells 
need more energy than non-cancer cells.

Fig. 5c and d show the Raman spectra of two gastric cancer cells 
with different degrees of differentiation: AGS (highly differentiated) 
and BGC-823 (poorly differentiated). Highly differentiated AGS cells 
contained more nucleic acid and lipids.

4. Discussion

Raman spectroscopy can be used for the identification of pa-
thogenic bacteria and malignant tumours. Lihao Zhang et al. used 
Raman spectroscopy to identify breast cancer cell lines with an ac-
curacy of 97% [23]. However, they downscaled the Raman spectral 
data before analysis, which resulted in the loss of many spectral 
features. In this study, instead of downscaling the spectral data, we 
constructed multiple datasets and implemented operations to ex-
pand data features so that the recognition model could better 
identify spectral features. SL-Raman integrates features from data-
sets with different spectral ranges and machine learning classifica-
tion models that yield good classification results to obtain precise, 
accurate and stable recognition results.

We not only compared the classification ability of different 
classification models for the fingerprint region of Raman spectra but 
also verified the ability of machine learning models to classify the 
HW region of these spectra, the full spectra, and the Raman back-
ground. The accuracies of the SVM, KNN, LDA, XGBoost and DT al-
gorithms in distinguishing gastric cancer cells from normal cells 
were 98.66%, 97.73%, 99.20%, 93.61% and 95.51%, respectively. The 
classification accuracy of Raman background data also reached 
94.38%. The accuracy of SL-Raman based on stacking-ensemble 
learning for normal cells and gastric cancer cells from different da-
tasets was 100%. The accuracy of SL-Raman in differentiating seven 
cell types was 100%, and the accuracy of differentiating two different 
gastric cancer cell lines was 100%.

The high accuracy obtained by SL-Raman in identifying the 
Raman spectra of gastric cancer cells also reflects the differences in 
chemical composition among different cells. This differentiation was 
the main objective of this study, and a powerful cell line identifi-
cation technique for classifying Raman spectroscopy data was es-
tablished. Overall, SL-Raman is more accurate than most machine 
learning algorithms and is able to fully utilize all the characteristic 
information in Raman spectral data.

Our current work is still based on Raman spectroscopy detection 
in pure samples, but this is only at the method exploration stage. We 
are figuring out the ratio of mixed samples, sample handling process, 
and spectral acquisition conditions. The use of Raman spectroscopy 
for cell identification in mixed samples is the next research we are 
working on. In addition, one of the main advantages of Raman 
spectroscopy is the ability to directly detect samples in liquids, and 
using Raman spectroscopy in combination with optical tweezers and 
microfluidics for liquid detection of biological samples is one of our 
next research efforts.

5. Conclusions

Raman spectroscopy can be used to identify differences in the 
biotic component of biological samples. Raman spectroscopy com-
bined with SL-Raman enables the identification of normal gastric 
epithelial cells and gastric cancer cells. SL-Raman achieves 100% 
accuracy in distinguishing one gastric cancer cell line from normal 
cells, 100% accuracy in distinguishing six gastric cancer cell lines 
from normal cells and 100% accuracy in distinguishing two gastric 

Table 4 
Peak positions and tentative assignments of the major Raman bands from biological 
samples. 

Peak position, cm−1 Major Assignments

826[39] O-P-O stretch DNA
853[40] Ring breathing mode of tyrosine and C-C stretch of 

proline ring
875[41] Antisymmetric stretch vibration of choline 

group N + (CH3)3, characteristic for phospholipids 
Phosphatidylcholine, sphingomyelin

928[42] ν(C-C), stretching-probably in amino acids proline & 
valine (protein band)

970[43] Phosphate monoester groups of phosphorylated 
proteins & cellular nucleic acids

1000[44] Phenylalanine 
Bound & free NADH

1030[45] Phenylalanine of collagen
1096[46] O-P-O (stretching PO2) symmetric (Phosphate II) of 

phosphodiesters
1122[47] νsym(C-O-C) (polysaccharides, cellulose)
1172[48] δ(C-H), tyrosine (protein assignment)
1246[45] Amide III (of collagen)
1310[49] CH3CH2 twisting mode of collagen/lipids
1330[44,50,51] Typical phospholipids 

Region associated with DNA & phospholipids 
Collagen 
Nucleic acids and phosphates

1447[52] CH2 bending mode of proteins. CH2 (overlapping) 
asymmetric CH3 bending, and CH2 scissoring 
(associated with elastin, collagen, and 
phospholipids)

1575[53] Ring breathing modes in the DNA bases 
G, A (ring breathing modes of the DNA/RNA 
bases)

1656[52] Amide I (C = O stretching mode of proteins, a-helix 
conformation)/C = C lipid stretch
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cancer cell lines with different degrees of differentiation. The find-
ings show that SL-Raman successfully integrates the benefits of 
various machine learning techniques with the data from a multi-
dimensional spectral dataset. The technique offers a novel way to 
analyze Raman spectrum data since it can achieve high recognition 
accuracy with a small amount of data. In addition, the accuracy of 
classifying the Raman spectral background using machine learning is 
94.38%. These results suggest that the Raman spectral background 
also contains some useful features that may be related to the 
fluorescent background of the biological samples. In subsequent 
research, we will continue to build a Raman spectral database that 
includes other human cells so that Raman spectroscopy can be used 
in new ways for cell lineage identification.
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