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Abstract

Small nucleolar RNAs (snoRNAs) constitute a family of non-coding RNAs that are classically 

known as guide RNAs for processing and modification of ribosomal RNAs. Recently, it was 

discovered that snoRNAs can be further processed into sno-derived RNAs (sdRNAs), some of 

which are known to exhibit microRNA-like properties. SdRNAs have been implicated in human 

cancer; however, a systems-level sdRNA landscape in human cancers is lacking. Through 

integrative analysis of ~22 nt size-selected smRNA-seq datasets from 10,262 patient samples 

across 32 cancer types, we mapped a pan-cancer sdRNAome and interrogated its signatures in 

multiple clinically relevant features, particularly cancer immunity and clinical outcome. 

Aggregating sdRNA abundances by parental snoRNAs, these expression signatures alone are 

sufficient to distinguish patients with distinct cancer types. Interestingly, a large panel of sdRNAs 

are significantly correlated with features of the tumor-immune microenvironment, such as 

immunosuppressive markers, CD8+ T cell infiltration, cytolytic T cell activity, and tumor 

vasculature. A set of individual sdRNAs with tumor-immune signatures can also stratify patient 
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survival. These findings implicate snoRNAs and their derivative sdRNAs as a class of prevalent 

non-coding molecular markers of human cancer immunity.

Introduction

Over the past decade, tumor immunity has realized its central importance in oncology 1. 

Checkpoint blockade immunotherapies targeting the Program Cell Death Protein 1 (PD-1) 

and Cytotoxic T Lymphocyte Associated Protein 4 (CTLA-4) pathways have revolutionized 

cancer therapeutics with unprecedented durable responses across multiple cancer types 2–4. 

However, not all patients respond to checkpoint inhibitors 5. Identifying the molecular 

correspondents underlying these differential responses is essential to expanding the patient 

population that can benefit from cancer immunotherapy. Emerging biomarkers for anti-PD-1 

response include the expression level of its ligand PD-L1 2, mutation burden or mismatch-

repair deficiency 6, and tumor-infiltrating lymphocytes 7. However, currently available 

markers are insufficient for accurate prediction of immunotherapy responses. Thus, 

development and investigation of further molecular markers for tumor immunity, especially 

in large cohorts of human patients, might provide novel insights for precision diagnostics 

and treatments in immunooncology.

Somatic mutations in oncogenes and tumor suppressors represent the most classic 

biomarkers as they are the main direct drivers of cancer progression 8,9. Small non-coding 

RNAs have great potential as molecular markers due to their important biological roles and 

bioavailability in circulation, facilitating implementation in liquid biopsy settings 10. Since 

the last decade, microRNAs have been documented as biomarkers for classifying human 

cancers. For example, analysis of the miRnome using Fluidigm expression profiling has 

revealed its functional and prognostic importance in classifying clinical populations 11. More 

recently, molecular profiling of >3,000 tumors from 11 human cancer types in TCGA has 

enabled systematic analysis of microRNAs and their targets 12. Several other types of non-

coding RNAs, such as long-noncoding RNAs (lncRNAs) 13,14, enhancer RNAs 15,16 and 

circular RNAs 17 have also been implicated in various cancer types 18. While these markers 

have enhanced our knowledge of cancer diagnostics and prognosis, the immense 

heterogeneity observed within and across cancer patients far exceeds our current 

understanding. Molecular markers that can further inform distinct signatures of tumor 

initiation, progression, and anti-cancer immunity will continue to be of high clinical 

importance.

Small nucleolar RNAs (snoRNAs) comprise a class of highly conserved small non-coding 

RNAs that are primarily localized in the nucleolus 19. SnoRNAs have essential roles as 

guide RNAs for ribosomal RNA processing and several types of RNA modifications such as 

methylation and pseudouridylation 20. In addition to their essential role in ribosome 

biogenesis, snoRNAs have also been implicated in chromatin structure regulation 21, RNA 

splicing 22,23, and protein signaling 24. A number of biologically and clinically important 

snoRNAs have recently been reported in several cancer types 25,26, implying that snoRNAs 

might have more pervasive roles in human cancer than previously appreciated.
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Recent studies have revealed that snoRNAs can be further processed into smaller RNAs, 

termed sno-derived RNAs (sdRNAs) 27–30. Whereas snoRNAs range widely in size from 

60–300 nt, sdRNAs generally vary from 20–30 nt 27–33 and are similar in size to microRNAs 

(19–25 nt) 34. Interestingly, sdRNAs preferentially arise from the 5’ or 3’ ends of snoRNAs 
31,32,35,36, and the classical RNAi processing proteins Argonaute and Dicer are important for 

catalyzing sdRNA biogenesis 30,37. Crucially, a handful of sdRNAs have also been 

demonstrated to have microRNA-like gene regulatory activity 27. Given the remarkable 

similarities between microRNAs and sdRNAs, it has been hypothesized that sdRNAs might 

also contribute to the pathogenesis of diverse diseases – for instance, cancer.

Here we performed a pan-cancer analysis of ~22 nt size-selected small RNA-seq (smRNA-

seq) datasets from TCGA, exploring the expression of small RNAs mapping to annotated 

human snoRNAs in 10,262 patient samples across 32 cancer types. Due to the size selection 

strategy used for generating the sequencing libraries, it was anticipated that the resultant 

mapped reads were from sdRNAs rather than full-length snoRNAs. This hypothesis was 

borne out by subsequent analysis of the read lengths mapping to snoRNAs and the read 

distributions along individual snoRNAs, which demonstrated heavily skewed read densities 

that are characteristic of sdRNA biogenesis. We therefore generated a landscape of the 

sdRNAome, subsequently linking sdRNAs to clinically significant features including tumor 

immunity and overall survival. Since few sdRNAs have been characterized and officially 

named, in the interest of clarity, we refer to sdRNAs using the name of the parental snoRNA 

(i.e., SNORD116 refers to the sdRNA derived from SNORD116) and aggregate sdRNA 

abundances to the level of snoRNAs. Nevertheless, we emphasize that the data and analyses 

presented here pertain to sdRNAs, rather than full-length snoRNAs.

Aggregated by parental snoRNA, we found that sdRNA expression signatures alone can 

classify patients from distinct cancer types at high resolution. Over 40 single sdRNAs can 

stratify patient survival in two or more cancer types, alongside with numerous single-cancer-

type-specific ones. Furthermore, many sdRNAs significantly correlate with tumor-immune 

microenvironment features such as PD-L1 levels, T cell infiltration, functional anti-cancer 

cytotoxic scores and tumor vascularization. A panel of sdRNAs are significant markers for 

both immune and survival features, with a total of 25 sdRNAs scored in 4 or more cancer 

types, in addition to their angiogenesis, copy number and metastasis signals. Our analyses 

demonstrate that sdRNAs are significant and prevalent molecular markers across multiple 

types of human cancer.

Results

A comprehensive map of the sdRNA transcriptome across multiple human cancer types

We retrieved all available small RNA-seq (smRNA-seq) reads from TCGA via NCI GDC, 

which consist of a total of 10,262 patient tumor samples and 675 adjacent normal samples, 

encompassing 32 cancer types (Methods). The smRNA-seq library construction protocols 

used by TCGA investigators were designed to enrich for ~22nt sized transcripts, with the 

primary goal of capturing microRNAs 38. Whereas full-length snoRNAs range in size from 

60–300nt and thus would not be expected to be captured, sdRNAs are anticipated to be 

found within this size range 27–30,30–33,39. We consequently quantified the reads mapping to 
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all annotated snoRNAs (snoRNAome) 40 to construct the sdRNA transcriptome (Figure S1a-

b, Figure 1a). This pan-cancer sdRNA transcriptome is derived from several subtypes of 

snoRNAs with distinct structures and motifs, such as canonical C/D box snoRNAs, H/ACA 

box snoRNAs, C/D box small Cajal body RNAs (scaRNAs), H/ACA box scaRNAs, hybrid 

snoRNAs, and several other subtypes (Figure 1b, Table S1, Table S2).

To confirm that the TCGA smRNA-seq datasets are indeed suitable for analysis of sdRNAs, 

we randomly selected 5 tumors from each cancer type and tabulated the read lengths 

mapping to the snoRNAome (Figure S2). As anticipated, these analyses revealed that 

snoRNA-mapping reads mostly ranged in size from 20–30 nt, which is consistent with the 

size ranges of known sdRNAs. Prior studies have also established that sdRNAs tend to be 

asymmetrically produced from either the 5’ or 3’ ends of snoRNA transcripts 30. We 

therefore computed the distribution of the reads mapping to each snoRNA to see if the ~22 

nt size-selected transcripts could be consistent with sdRNAs. In the case of C/D snoRNAs, 

these analyses revealed three classes of read distributions, corresponding to 5’ sdRNAs, 3’ 

sdRNAs, or mixed sdRNAs (Figure 1c). For instance, reads that mapped to SNORD30 were 

consistently concentrated on the 5’ end, indicating that SNORD30 is processed into 5’ 

sdRNAs in a highly conserved manner between different cancer types (Figure 1d). In 

contrast, reads that mapped to SNORD104 were heavily concentrated on the 3’ end in all 

cancer types, suggesting that SNORD104 is processed into 3’ sdRNAs (Figure 1e). Unlike 

with SNORD30 and SNORD104, reads mapping to SNORD27 were instead distributed 

along both 5’ and 3’ ends (Figure 1f). Of note, different cancer types exhibited distinct 

balances between the abundance of 5’ and 3’ sdRNAs, suggesting alternate modes of sdRNA 

biogenesis from SNORD27. Across all expressed C/D snoRNAs, read distributions for each 

snoRNA were consistently clustered into these three groups regardless of cancer type 

(Figure 1g, Figure S3). We similarly performed these analyses with H/ACA snoRNAs and 

found three types of read distributions, corresponding to 5’ sdRNAs, 3’ sdRNAs, and 

centrally located sdRNAs (Figure 1h, Figure S4). Collectively, these analyses indicate that 

the TCGA smRNA-seq datasets can be utilized for the study of sdRNAs, and not necessarily 

for full-length snoRNAs. Though we hereafter refer to the data aggregated by parental 

snoRNA, we reiterate that the analyses presented here are based on the sdRNA 

transcriptome, rather than full-length snoRNAs.

To explore the landscape of sdRNA expression across cancers, we calculated the median 

abundance of each snoRNA (specifically, using aggregated sdRNA levels) within each 

cancer type (n = 942 snoRNAs) (Figure S1c, Table S3). The sdRNA transcriptome exhibited 

a wide dynamic range of expression across all cancers (Figure S5a), such that 300.13 ± 4.21 

(mean ± s.e.m.) sdRNAs were identified in each cancer type with abundances of median log2 

tpm ≥ 1. To test whether certain sdRNAs were more highly expressed in specific cancer 

types, we assessed the relative expression patterns for each sdRNA across all cancer types 

(Figure 2a). This revealed that different cancer types are associated with unique sdRNA 

signatures. Based on median expression within each cancer type, there are three categories 

of sdRNAs: (1) highly prevalent sdRNAs (expressed in ≥ 10 cancer types, n = 320); (2) 

subgroup-associated sdRNAs (expressed in 3–9 cancer types, n = 45); and (3) tissue-specific 

sdRNAs (expressed in only 1 or 2 cancer types, n = 34). For instance, 15 different sdRNAs 

appeared highly specific for testicular germ cell tumors (TGCT) in terms of median 
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expression (z-score > 5). We next looked to characterize the sdRNA expression landscape in 

individual tumors, and identified 300 expressed sdRNAs as “high variance” (variance > 0.1, 

median > 0). By examining co-expression modules, we found that a subset of these 300 high 

variance sdRNAs clustered into discrete groups (Figure S5b, Table S4). Note that the 

constituent sdRNAs within a cluster did not necessarily have equivalent median expression 

levels over the dataset (Figure S5b). This analysis indicates that specific sets of sdRNAs are 

coordinately expressed across cancers from different tissues of origin, further suggesting that 

the process of sdRNA biogenesis from snoRNAs is coordinately regulated in cancer.

Of note, previous studies of snoRNAs have occasionally utilized transcription levels of host 

genes (i.e. the protein-coding genes within which snoRNAs are encoded) as a proxy for 

snoRNA expression 24. To evaluate this assumption in the context of sdRNAs in cancer, we 

extracted matching mRNA-seq data from the TCGA database (n = 8,954 cancer samples 

with corresponding smRNA-seq and mRNA-seq data). Using snoRNA-host gene 

annotations 40, we calculated the Spearman correlation between each snoRNA (based on 

sdRNA abundance) and host gene pair (n = 736 annotated pairs with matching data) (Figure 

2b, Table S5). Analysis of the distribution of correlation coefficients revealed that the 50% 

of all pairs had Spearman correlation coefficients less than 0.043 (Figure 2b-c). Additionally, 

80% of all pairs had Spearman correlation coefficients less than 0.179, while 90% of all 

pairs had coefficients less than 0.249 (Figure 2b-c). We further investigated this correlation 

in a cancer type-specific manner (Figure 2d), again finding that the majority of sdRNA-host 

gene pairs are not significantly correlated in any single cancer type (Figure 2e-f, Table S6). 

There were a few notable exceptions, most strikingly SNORD123 and SNHG18, as well as 

ZL79 and GRIP2. SNORD123 was found to be significantly correlated with SNHG18 in 30 

different cancer types, as was ZL79 with GRIP2 (Figure 2f). However, these particular 

examples were clearly not representative of all sdRNA-host gene pairs. Thus, these analyses 

suggest that in the TCGA smRNA-seq data, the bulk of sdRNA expression patterns are 

incompletely captured by the transcription levels of host genes alone, potentially reflecting 

the importance of regulating sdRNA biogenesis from snoRNAs, which in turn may derive 

from host gene transcription. Together, this initial analysis generated a pan-cancer dataset of 

the sdRNA transcriptome (PANCAN32), where the dynamic range and tissue-specific or 

cancer type-specific patterns enables subsequent analysis of associated quantitative 

phenotypes and clinical features.

SdRNA transcriptome stratifies distinct groups of patients from various cancer types

To test whether sdRNA expression can mark molecular signatures or classify distinct cancer 

types, we first utilized a dimensional reduction approach. We performed t-distributed 

stochastic neighbor embedding (t-SNE) 41 on the PANCAN32 dataset and visualized the 

resulting transformations both in individual cancer types (Figure S6) and all cancers as a 

whole (Figure 3a). The t-SNE visualization revealed a high-level clustering map of all 32 

cancer types according to the expression of the sdRNA transcriptome in each patient sample. 

This map showed that while several cancer types clustered together, there are multiple 

clusters that were primarily comprised of patient populations from only one cancer type 

(Figure 3a). These type-specific segregations were particularly apparent for individual 

cancer types such as thyroid carcinoma (THCA), lower grade gliomas (LGG), 
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pheochromocytomas and paragangliomas (PCPG), skin cutaneous melanoma (SKCM), 

kidney papillary cell carcinoma (KIRP), uterine corpus endometrial carcinoma (UCEC) and 

ovarian adenocarcinoma (OV) (Figure 3a, Figure S6). An especially striking example was 

observed for prostate adenocarcinoma (PRAD), where 3 sub-clusters are readily apparent on 

t-SNE visualization (Figure 3a, Figure S6). In general, samples from the same cancer type 

can either cluster tightly as primarily one cluster (e.g. ACC, OV, PAAD, PCPG, SKCM, 

THCA and UVM), fragment into several discrete sub-clusters (e.g. BRCA, CESC, COAD, 

KIRC, PRAD), or have a relatively diffuse distribution across the multi-dimensional space 

(e.g. BLCA, LIHC, LUAD, LUSC, SARC, STAD and UCEC) (Figure S6). Accordingly, 

several clusters were comprised of patient populations from multiple cancer types, as sub-

populations of patients from different types occupied the same multi-dimensional space 

(Figure 3a). Collectively, these results demonstrate that sdRNA expression signatures alone 

are sufficient to distinguish certain cancer types, while also uncovering substantial patient 

heterogeneity within individual cancer types.

We wondered if the divergent sdRNA expression signatures were due to cancer-specific 

molecular changes, or rather simply due to sdRNA expression differences in the normal 

tissues from which the cancers had risen. Analysis of 675 adjacent normal samples revealed 

that sdRNA expression patterns were quite distinct across the various normal tissues (Figure 

S7a), suggesting that the differences in sdRNA expression across different cancer types are 

at least partly attributable to the tissue of origin. To further investigate this possibility, we 

selected tissues with multiple cognate cancer types represented: gastrointestinal (COAD, 

READ, STAD), kidney (KICH, KIRC, KIRP), lung (LUAD, LUSC), and melanocytes 

(SKCM, UVM). We found that whereas kidney-derived and melanocyte-derived cancers 

could be readily distinguished, the gastrointestinal-derived and lung-derived cancers were 

much more heterogeneous (Figure 3b). Even still, the 3 types of kidney cancers and 2 types 

of melanomas were nevertheless clearly distinguishable from each other (Figure S7b). This 

finding indicates that despite having arisen from a similar tissue of origin, different cancer 

types exhibit divergent sdRNA expression patterns. To further investigate this relationship, 

we next directly compared all normal kidney and kidney tumor samples. These analyses 

revealed that while the normal kidney samples were grouped together in the center of the 

multidimensional space, the different kidney cancer subtypes radiated outwards from the 

center, indicating progressive changes in sdRNA expression signatures from the normal 

tissue in a cancer type-specific manner (Figure 3c). This finding was similarly corroborated 

by analysis of all normal lung and lung tumor samples, with normal lung samples grouped 

together and the different lung cancer types splayed out across the multidimensional space 

(Figure 3d). Of note, LUSC tumors were more distant from normal samples compared to 

LUAD samples. This is consistent with our understanding of the different cell types present 

in LUAD vs LUSC; whereas LUAD is characterized by alveolar-like cells that are present in 

the normal lung, LUSC is characterized by basal cells that instead mimic the esophageal 

squamous epithelium 42. In aggregate, these analyses demonstrate that while tissue of origin 

certainly influences sdRNA expression in cancer, different cancers arising from the same 

organ can nevertheless be distinguished by their sdRNA signatures.

The PANCAN32 t-SNE visualization coded by tumor immune signature or patient survival 

presented overviews of the sdRNA transcriptome across all these patients as related to 

Chow and Chen Page 6

Oncogene. Author manuscript; available in PMC 2019 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various relevant clinical features (Figure S7c-f), suggesting that sdRNA expression might 

demarcate these clinical features, which are analyzed in further depth (later in text).

SdRNA transcriptome informs molecular and cellular features of tumor immunity

To investigate the potential utility of sdRNAs in understanding tumor immunity, we first 

systematically assessed the correlation between all individual snoRNAs (through sdRNA 

abundance levels) and PD-L1 (encoded by the CD274 gene) expression as determined by 

mRNA-seq. We reiterate that all analyses pertain to sdRNA abundances, but are described in 

reference to the parental snoRNAs. Remarkably, a total of 350 sdRNAs were found to be 

significantly correlated with PD-L1 in at least one cancer type (Benjamini-Hochberg 

adjusted p < 0.05) (Table S8). We analyzed the distribution of the number of predictive 

sdRNAs for each cancer type, and found that sdRNAs are most predictive (in terms of the 

number of significant sdRNAs) in cancer types such as adrenocortical carcinoma (ACC), 

bladder urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), lower grade glioma 

(LGG), pheochromocytoma and paraganglioma (PCPG), testicular germ cell tumors 

(TGCT), thyroid carcinoma (THCA), and thymoma (THYM) (Figure 4a). In contrast, 

several cancer types have few predictive sdRNAs for PD-L1, such as cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), diffuse large B-cell lymphoma 

(DLBC), esophageal carcinoma (ESCA), kidney chromophobe (KICH), acute myeloid 

leukemia (LAML), mesothelioma (MESO), rectal adenocarcinoma (READ), skin cutaneous 

melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC) and uveal melanoma 

(UVM) (Figure 4a). Among all 32 cancer types, lower grade glioma has the most sdRNAs 

positively correlated with PD-L1, whereas colon adenocarcinoma has the most sdRNAs 

negatively correlated with PD-L1 (Figure 4a). Of the significant sdRNAs, 36 were found to 

be positively correlated in 3 or more cancer types (adjusted p < 0.05) (Figure 4b, Table S8). 

For instance, sdRNAs derived from SNORA44, an H/ACA-type snoRNA, were significantly 

correlated with PD-L1 expression in lower grade gliomas (LGG) (Figure 4c), prostate 

adenocarcinoma (PRAD), thyroid carcinoma (THCA), and thymoma (THYM) (Figure 4d). 

We further identified sdRNAs that were significantly negatively correlated with PD-L1 
expression (adjusted p < 0.05) (Figure 4e, Table S8). A total of 51 sdRNAs were negatively 

correlated with PD-L1 expression in at least 3 cancer types. For instance, sdRNAs produced 

from SNORA31, another H/ACA box snoRNA, were inversely correlated with PD-L1 levels 

in breast adenocarcinoma (BRCA), colon adenocarcinoma (COAD), pancreatic 

adenocarcinoma (PAAD), pheochromocytomas (PCPG) (Figure 4f) and prostate 

adenocarcinoma (PRAD) (Figure 4g). Collectively, these findings link sdRNAs to PD-L1 
expression in cancers of diverse origins, suggesting that sdRNAs have predictive power in 

the expression of this immunosuppressive molecule across diverse patient tumors.

The number of tumor-infiltrating lymphocytes (TILs), especially cytotoxic CD8+ T cells, is 

a strong positive predictive biomarker of checkpoint blockade immunotherapy efficacy and 

patient outcome for certain types of solid tumors 2,5. We therefore interrogated the 

sdRNAome (aggregated by parental snoRNA) in relation to intratumoral CD8+ T cell 

abundance. We found that a total of 366 sdRNAs were significantly correlated with CD8+ 

infiltration level in at least one cancer type (adjusted p < 0.05) (Table S9). The number of 

predictive sdRNAs also varied between cancer types, among which the most predictive ones 
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are breast adenocarcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), 

lower grade glioma (LGG), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 

(LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), stomach 

adenocarcinoma (STAD), testicular germ cell tumors (TGCT) and thymoma (THYM) 

(Figure 5a). In contrast, cancer types such as CESC, COAD, KIRP, READ, SKCM, UCEC, 

UCS and UVM have few or no predictive sdRNAs for CD8+ T cell abundance (Figure 5a). 

Thymoma has the most sdRNAs positively correlated with CD8+ T cell infiltration, whereas 

testicular germ cell tumor has the most sdRNAs negatively correlated with CD8+ TILs 

(Figure 5a). 48 sdRNAs were positively correlated with CD8+ T cell abundance in at least 2 

cancer types (adjusted p < 0.05) (Figure 5b, Table S9). As an example, sdRNAs from the 

C/D box snoRNA SNORD95 were significant in lung adenocarcinoma (LUAD) (Figure 5c), 

lung squamous cell carcinoma (LUSC), sarcoma (SARC), stomach adenocarcinoma 

(STAD), and testicular germ cell tumors (TGCT) (Figure 5d). On the other hand, 23 sdRNAs 

were significantly negatively correlated with CD8+ T cell abundance in 4 or more cancer 

types (adjusted p < 0.05) (Figure 5e, Table S9). These include sdRNAs from SNORD83A, a 

C/D box snoRNA which was found to be significant in head and neck squamous cell 

carcinoma (HNSC) (Figure 5f), pheochromocytoma and paraganglioma (PCPG) (Figure 5g), 

lung squamous cell carcinoma (LUSC), and pancreatic adenocarcinoma (PAAD).

While infiltration of CD8+ T cells is a critical prerequisite for anti-cancer immune 

responses, intratumoral T cells may be anergic, exhausted or nonfunctional. To assess T cell 

cytolytic activity, we next investigated the relationship between expression of sdRNAs and 

GZMA, a gene that encodes the serine protease granzyme A, a key component of cytotoxic 

T cell granules that has previously been used as a marker of cytolytic activity in human 

cancer 43. Of note, mRNA levels of Perforin1 (PRF1) across the PANCAN32 dataset 

strongly correlates with GZMA (correlation = 0.9), and thus the cytotoxic scores using either 

GZMA, PRF1 or GZMA+PRF1 are highly similar. We pinpointed that a total of 346 

sdRNAs were found to be significantly correlated with GZMA level in one or more cancer 

types (adjusted p < 0.05) (Table S10), where the most predictive cancer types include 

BLCA, BRCA, LGG, LUAD, LUSC, PAAD, PRAD, TGCT and THCA (Figure 6a). In 

contrast, cancer types such as ESCA, KICH, PCPG, READ, UCEC and UCS have few 

predictive sdRNAs for GZMA expression (Figure 6a). Thyroid carcinoma has the most 

sdRNAs positively correlated with GZMA expression, whereas lung squamous cell 

carcinoma has most sdRNAs negatively correlated with GZMA (Figure 6a). Among the 

significant sdRNAs, 42 were positively correlated with GZMA levels in 3 or more cancer 

types (Figure 6b, Table S10). Of note, sdRNAs from the hybrid snoRNA SCARNA5 were 

positively correlated in bladder carcinoma (BLCA), melanoma (SKCM) (Figure 6c), 

testicular germ cell tumors (TGCT) (Figure 6d), and thyroid carcinoma (THCA). On the 

other hand, 40 sdRNAs were negatively correlated with intratumoral cytolytic activity in at 

least 3 cancer types (Figure 6e, Table S10). SdRNAs derived from an H/ACA scaRNA 

SCARNA4 were negatively correlated with GZMA in bladder carcinoma (BLCA) (Figure 

6f), breast adenocarcinoma (BRCA) (Figure 6g), cervical squamous cell carcinoma (CESC), 

head and neck squamous carcinoma (HNSC), lung squamous cell carcinoma (LUSC), 

pancreatic adenocarcinoma (PAAD), and testicular germ cell tumors (TGCT). These 
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analyses revealed a set of sdRNAs that significantly correlate with intratumoral cytotoxic T 

cell activity across multiple cancer types.

SdRNA expression associates with angiogenesis in the tumor microenvironment

To further investigate the contribution of sdRNAs to the tumor microenvironment, we 

explored the connection between sdRNA expression signatures and tumor vascularization. 

Surprisingly, 449 sdRNAs were significantly correlated with endothelial cell abundance in at 

least one cancer type (EndothelialScore), among which 61 sdRNAs were positively 

correlated in 4 or more cancer types (Figure S8a-b, Table S11). Testicular germ cell tumors 

again have the most sdRNAs positively correlated with endothelial cell abundance, whereas 

lung squamous cell carcinoma again has the most sdRNAs negatively correlated with 

endothelial cell abundance (Figure S8a). Strikingly, sdRNAs produced from the C/D 

snoRNA SNORD114–1 were positively correlated with endothelial cell abundance in 16 

different cancer types, including breast adenocarcinoma (BRCA), colon adenocarcinoma 

(COAD), head and neck squamous cell carcinoma (HNSC), sarcoma (SARC), melanoma 

(SKCM), stomach adenocarcinoma (STAD), thymoma (THYM), and uterine corpus 

endometrial carcinoma (UCEC) (Figure S8c). These data suggest that sdRNAs derived from 

snoRNAs such as SNORD114–1 play highly conserved roles in tumor vascularization across 

different tissues.

SdRNA expression predicts patient survival across diverse human cancers

Collectively, our analyses above pointed to a wide-ranging set of sdRNAs as statistically 

significant molecular markers of important features of cancer immunity. We therefore 

hypothesized that the expression of sdRNAs might be associated with patient survival, akin 

to previous studies with snoRNAs 44,45. For each cancer type, we classified patients into 

either “high” or “low” expression of an sdRNA based on the median expression value 

(aggregated by parental snoRNA) within the cohort. Using these groups, we performed 

Kaplan-Meier survival analysis to identify sdRNAs with prognostic significance to overall 

survival (OS) (adjusted p < 0.05 by log-rank test) (Table S12). In terms of cancer types, 

KIRC, KIRP, LGG and LIHC have the largest number of OS-predictive sdRNAs (Table S12, 

Figure 7a). Remarkably, 247 sdRNAs had significant survival associations in one or more 

cancer type(s), out of which 45 sdRNAs can stratify OS in 2 or more cancer types (Figure 

7a). For instance, high expression of sdRNAs derived from SNORA116, an H/ACA 

snoRNA, was connected to poorer survival in three independent cohorts: lower grade 

gliomas (LGG), liver hepatocellular carcinoma (LIHC), and uterine corpus endometrial 

carcinoma (UCEC) (Figure 7b). As another example, high levels of sdRNAs from 

SNORD145, a CD snoRNA, were associated with shorter survival times in kidney clear cell 

carcinoma (KIRC), sarcoma (SARC), and uterine corpus endometrial carcinoma (UCEC) 

(Figure 7c). SdRNAs from SNORA116 and SNORD145 thus appear to be indicators of 

cancers with a more aggressive course. Interestingly, several sdRNAs are associated with 

opposite outcomes in different cancer types (Figure 7a). For example, sdRNAs produced 

from the H/ACA snoRNA SNORA77 were divergently associated with survival. In kidney 

clear cell carcinoma (KIRC), patients with high SNORA77 had poor survival, whereas the 

opposite was true in kidney papillary carcinoma (KIRP) and liver hepatocellular carcinoma 
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(LIHC) (Figure 7d). Thus, the same sdRNA can be differentially associated with survival in 

different cancers, even when these cancers arise from the same organ.

Integrative analysis of sdRNAome and pan-cancer tumor immunity

In light of these data, we wondered whether any individual sdRNAs were significantly 

associated with multiple clinically relevant features. Towards this end, we conceived an 

ImmuneSurv score to rank sdRNAs (aggregated by snoRNA) based on several dimensions. 

We calculate the ImmuneSurv score for each sdRNA based on its statistical significance of 

correlations with PD-L1 expression, CD8+ T cell abundance, GZMA expression, and/or 

patient survival (when available) in a cancer type-specific manner (Figure 8a, Table S13). As 

we were particularly interested in sdRNAs with significant associations in multiple aspects 

of cancer immunity, we focused on sdRNAs with ImmuneSurv scores ≥ 2 (Table S14). A 

total of 267 sdRNAs were found to meet this criteria in at least one cancer type (Figure 8b, 

Table S15). Strikingly, 25 sdRNAs met the ImmuneSurv ≥ 2 cutoff in 4 or more cancer types 

(Figure 8b), suggesting potentially more conserved roles for these short non-coding RNAs. 

The top sdRNA was that derived from SCARNA4, an H/ACA scaRNA, which had 

ImmuneSurv scores ≥ 2 in a total of 9 cancer types, including bladder carcinoma (BLCA), 

breast adenocarcinoma (BRCA), colon adenocarcinoma (COAD), head and neck squamous 

cell carcinoma (HNSC), kidney clear cell carcinoma (KIRC), lower grade glioma (LGG), 

lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), and stomach 

adenocarcinoma (STAD) (Figure 8c). This surprising finding implicates sdRNAs derived 

from SCARNA4 as a potential uncharacterized small RNA marker for cancer immunity and 

clinical outcome across tumors from diverse tissues of origin.

Focusing on individual cancer types, we found that each cancer type has a set of sdRNAs 

that were associated with more than one ImmuneSurv features (Table S13). For example, 10 

sdRNAs were significantly associated with PD-L1 expression, intratumoral CD8+ T cell 

abundance, and GZMA levels in pancreatic adenocarcinoma (Figure 8d, Table S14). These 

10 sdRNAs included those derived from C/D snoRNAs (SNORD76, SNORD79, SNORD24, 
SNORD12B, SNORD68, SNORD11B, ZL11) and H/ACA snoRNAs (SNORA3, SNORA8, 
SNORA69, SNORA31). Of note, no individual sdRNAs were significantly associated with 

survival in the TCGA pancreatic adenocarcinoma cohort, perhaps due to the relatively 

smaller patient cohort and the highly aggressive course of this disease. Remarkably, among 

the lower grade glioma patients, 8 sdRNAs had ImmuneSurv scores of 4, meaning that they 

were significantly associated with all 4 dimensions: PD-L1, CD8+ T cell abundance, 

GZMA, and patient survival (Figure 8e, Table S14). These 8 parental snoRNAs were 

SNORD31, SNORD26, SNORD13, SNORD69, SNORD115–10, SNORD123, ZL23, and 

snoID_0379, an as-of-yet unnamed snoRNA encoded within the host gene FLNC. Because 

the ImmuneSurv score analyses were conducted in a cancer type-specific manner, we then 

sought a global assessment of sdRNAs and their relationships to cancer immunity regardless 

of cancer type (PANCAN32), by compiling all sdRNAs that were found to be significant in 

any of the 5 categories: PD-L1, CD8+ T cell abundance, GZMA, survival, or copy number 

variation (supplemental results, Figure S9) in any cancer type. Intersecting these lists, we 

identified 133 sdRNAs that were found to be significant in all 5 categories (Figure 8f). 

Together with the metastatic signature (supplemental results, Figure S10), these data 
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collectively suggest a prevalent role of sdRNAs in tumor immunity, thereby influencing 

significant clinical features of human cancer.

Discussion

SnoRNAs are a class of short RNAs that mainly reside in the nucleolus, though some have 

also been found in the cytoplasm 46. The known primary functions of snoRNAs are to guide 

chemical modifications of other types of RNAs, predominantly rRNAs, and small nuclear 

RNAs (snRNAs). C/D box snoRNAs, together with their protein partners, form small 

nucleolar ribonucleoprotein (snoRNP) complexes that have catalytic function for RNA 

methylation 47. Similarly the H/ACA box snoRNPs can catalyze RNA pseudouridylation 48. 

As mounting evidence points to ribosome biogenesis as a key contributing factor to cancer 
49, it is likely that the canonical functions of C/D and H/ACA snoRNAs to guide rRNA 

processing may play a role in carcinogenesis. ScaRNAs, a subgroup of snoRNAs 

specifically localized to the Cajal body, a nuclear organelle involved in the biogenesis of 

(snRNPs), guide the methylation and pseudouridylation of RNA polymerase II (pol II) 

transcribed spliceosomal RNAs U1, U2, U4, U5 and U12 50. Additionally, scaRNAs have 

been demonstrated to control the nuclear localization of Cajal bodies, indicating a role in 

genome organization and thus gene expression 51.

Various cases of snoRNAs have been associated with cancer progression, behaving as 

oncogenic or tumor suppressive small RNAs. For example, SNORA50A/B have been 

reported to act as tumor suppressors by opposing the KRAS oncogene 24. On the other hand, 

SNORD14D and SNORD35A have recently been demonstrated to potentiate the oncogenic 

effects of the AML1-ETO fusion in leukemia through rRNA methylation 52. A number of 

other studies have reported prognostically relevant snoRNAs, such as SNORD93 in breast 

cancer 33, SNORA42 in lung cancer 53, SNORA21 in colon cancer 54, and SNORD47 in 

glioblastoma 55. Of note, SNORD115 has been demonstrated to act as a regulator of 

alternative splicing 22,23,56, and its deletion is sufficient to cause Prader-Willi syndrome.

It has been discovered that snoRNAs can be processed into smaller RNAs called sdRNAs, 

some of which possess microRNA-like functionality 27,57,58. Certain sdRNAs could 

therefore influence carcinogenesis through gene regulation. As the TCGA smRNA-seq 

libraries were size-selected for ~22 nt species, these datasets offer the opportunity to 

investigate the role of sdRNAs in cancer. A recent study of TCGA smRNA-seq datasets 

looked to explore the associations between snoRNAs and other genomic features, but we 

note this study did not address the issue of ~22nt size-selection during library preparation 

nor comprehensively investigate the relationships to tumor immunity, as we have done here 
59. For the majority of the several hundred sdRNAs, their roles in cancer have been 

unexplored until this point. Moreover, the roles of sdRNAs in the tumor microenvironment – 

for example, whether they are linked to angiogenesis or immunological features – are largely 

unknown. Here, we successfully generated the expression profiles of the sdRNAome across 

more than 10,000 patient samples. With this quantitative map of sdRNA abundance across 

several cancer types, we uncovered a large set of constitutive, cancer type-specific and 

cancer group-specific sdRNAs. Interestingly, the expression signatures of these sdRNAs 

alone are sufficient to distinguish samples from differing cancer types, while also revealing 
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sub-clusters within individual cancer types. Though these differences in sdRNA expression 

are partly driven by the tissue of origin, different cancer types arising from the same organ 

can nevertheless be distinguished. We found that many sdRNAs (aggregated by parental 

snoRNA) are significantly correlated with the immunosuppressive biomarker PD-L1, such as 

sdRNAs derived from SNORA36B in thymoma and SNORA44 in lower grade glioma. 

Various sdRNAs, such as those derived from SCARNA5, SNORD6 and SNORD114–22, are 

strongly positively correlated with intratumoral T cell-mediated cytotoxicity by granzyme A. 

PD-L1 is an indicative biomarker for checkpoint blockade immunotherapy and has been 

successfully used to guide major clinical trials of immunotherapy. GZMA levels have also 

been proposed as a predictor of the overall response rate of checkpoint blockade agents. 

Thus, with further development by the field, the immunological signatures of sdRNAs could 

potentially be implemented into new paradigms to better identify patients who may 

potentially benefit from checkpoint blockade. The ImmuneSurv scores presented here, 

which incorporate both immune and survival signatures, could guide the selection of top 

candidate sdRNAs for further mechanistic investigation and translational efforts. Though the 

library design of the TCGA datasets precludes a direct comparison between parental 

snoRNAs and sdRNAs, it is possible that the differential regulation of sdRNA biogenesis 

from the parental snoRNAs is a key mechanism through which snoRNAs can affect tumor 

behavior. Future studies that explicitly compare the relative abundances of snoRNAs and 

sdRNAs in cancer, as well as the dynamics of snoRNA processing during malignant 

transformation, may uncover an underexplored mechanism through which ncRNAs can 

influence tumor biology.

Intratumoral heterogeneity is increasingly recognized as a critical feature of cancers, 

influencing tumor progression and therapeutic responses 60–62. Given that the TCGA 

smRNA-seq libraries were prepared from bulk RNA preparations, these datasets cannot be 

used to explore intratumoral heterogeneity in sdRNA expression. Additional studies using 

microdissection or single-cell smRNA-seq will be necessary to investigate the potential 

contribution of intratumoral sdRNA expression heterogeneity towards cancer biology, such 

as tumor immunity.

In summary, our comprehensive pan-cancer analysis of sdRNAs generated a global view of 

these transcripts in characterizing different cancer types, leading to the identification of 

multiple sdRNAs strongly associated with fundamentally important clinical features such as 

angiogenesis, tumor immunity and overall survival, while simultaneously identifying large 

sets of novel candidates for further functional studies. Because of their high abundance, 

short length, tissue-specificity and availability in circulation 63, many novel sdRNAs could 

be developed as next-generation diagnostic or prognostic biomarkers.

Materials and methods

Data acquisition and pre-processing

TCGA smRNA-seq sequencing bam files were downloaded through the NIH NCI GDC Data 

Portal (https://portal.gdc.cancer.gov/) in June 2017. Of note, only normal control smRNA-

seq data were available for GBM, leaving a total of 32 cancer types for further analysis. To 

obtain reads specific to sdRNAs, we used featureCounts 64 with settings -Q 20 -
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largestOverlap -minOverlap 3 -s 1, using the human snoRNAome as the reference region set 
40. By this approach, all reads corresponding to sdRNAs were totaled by the parental 

snoRNA. Since an earlier database was used to map the smRNA-seq files, we removed any 

snoRNAs that had ≤ 1 read across all the samples. For confirming concordance between the 

mapped data and our annotations, we visually inspected the bams using IGV 65. We sample-

wise normalized sdRNA read counts to transcripts per million (tpm). mRNA-seq gene-level 

counts were also downloaded from the NIH NCI GDC Data Portal in June 2017, and 

sample-wise normalized to tpm. SdRNA and RNA tpm values were subsequently log2 

transformed. To compare sdRNAs across cancer types, the log2 transformed median 

expression values were further converted to z-scores normalized within each parental 

snoRNA. GISTIC 2.0 copy number variation calls were obtained from the GDAC Firehose 

(http://gdac.broadinstitute.org/) on September 2017. Patient clinical data was obtained 

through cBioPortal 66,67.

Raw fastq files for independent smRNA-seq datasets (GSE33858, GSE46622, E-

MTAB-3494) were accessed by NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) or EBI 

(https://www.ebi.ac.uk/). Data were uniformly processed as for the TCGA smRNA-seq 

datasets, using BWA to first map the reads to the hg38 reference genome prior to 

quantification with featureCounts. Principal component analysis was performed in R.

Characterization of snoRNA expression profiles

To characterize the sdRNA reads mapping to snoRNAs, we employed a normalized binning 

approach. We randomly selected 5 samples from each cancer type, and used these to 

quantify the read density along the length of each snoRNA, with each snoRNA divided into 

50 equally sized bins. For visualization, these values were subsequently normalized by 

maximum intensity, such that the read depths along a given snoRNA were multiplied by a 

constant scaling factor. Average profiles and hierarchically clustered heat maps were then 

produced using deepTools v2.5 68. We also tabulated the lengths of reads mapping to 

snoRNA loci using Samtools 69 and expressed these data as a percentage of total snoRNA-

mapped reads.

To explore the overall expression of sdRNAs, we calculated the median expression of each 

snoRNA within each cancer type. To characterize differences in snoRNA expression across 

different cancers, we then calculated z-scores for the median snoRNA expression values and 

visualized them as a heat map using the NMF R library. For unbiased visualization of 

individual tumors in terms of snoRNA expression, we utilized t-distributed stochastic 

neighbor embedding (t-SNE) 41. Additional t-SNE plots were generated using alternate 

coloring schema – CD274 expression, GZMA expression, EndothelialScore (see below), and 

overall survival. For survival t-SNE visualization, only patients that had died were included 

to circumvent issues with censored data.

Correlation analysis between sdRNAs and host genes

For correlation analysis between different sdRNAs, we first extracted sdRNAs (aggregated 

by parental snoRNA) with a variance > 0.1 and median log2 tpm > 0. These high-variance 

sdRNAs were analyzed by Pearson correlation. For correlation analysis between snoRNAs/
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sdRNAs and host gene expression, we utilized previously published snoRNA annotations 40 

and calculated the Spearman correlation between all defined snoRNA-host gene pairs (n = 

736). The empirical cumulative density function of the Spearman correlation distribution 

was further calculated to illustrate the relative proportion of snoRNA – host gene pairs with 

Spearman correlations above a specified threshold. Cancer-specific analyses were performed 

in the same manner. Statistical significance was determined by conversion to a t-statistic, 

and multiple hypothesis correction was performed by the Benjamini-Hochberg method. The 

Benjamini-Hochberg procedure is based on controlling the false discovery rate. We set a 

significance level of adjusted p < 0.05.

Correlation analysis between sdRNAs and other transcriptomic variables

For correlation analysis between sdRNAs and PD-L1 or GZMA expression, we extracted the 

corresponding mRNA-seq data and computed the Spearman correlation between each 

sdRNA (aggregated by parental snoRNA) and the gene of interest. Using the correlation 

coefficient and sample sizes, the correlation coefficients were converted to a t-statistic, from 

which the associated p-values was calculated. The p-values were then adjusted for multiple 

comparisons within each cancer type by the Benjamini-Hochberg approach, using an 

adjusted p-value of 0.05 as the significance threshold. For visualization in the figures, we 

divided the resulting correlation tables into positive and negative correlations. To improve 

readability in the figures, we selected sdRNAs that were significantly correlated in multiple 

cancer types (precise number indicated on figures). SdRNAs that were not significantly 

correlated in a given cancer type were filtered for visualization purposes (i.e. set to “0”). The 

complete correlation tables are available in the supplementary tables. To identify sdRNAs 

associated with CD8+ T cell abundance or tumor vascularization, we utilized the xCell 

algorithm 70 (http://xcell.ucsf.edu/) and the computed abundances of multiple cell types 

within TCGA samples. Each sdRNA was then compared to the “CD8+ T-cells” or 

“Endothelial cells” entry (“EndothelialScore”) in the xCell output matrix. The same 

statistical procedures were used as above for PD-L1 and GZMA expression.

Survival analysis

For survival analysis, only primary tumor samples were considered such that each patient 

had exactly one sample for consideration. Within each cancer type, the median expression 

value for each sdRNA (taking the aggregate abundance of constituent sdRNAs per parental 

snoRNA) was used as the threshold to define “low” or “high” expression. Any sdRNAs for 

which either group had less than 4 samples were subsequently excluded. To assess survival 

differences between patient groups stratified by sdRNA expression, we used the log-rank 

test. Associated p-values were adjusted for multiple comparisons by the Benjamini-

Hochberg approach, adjusting within each cancer type. An adjusted p < 0.05 was considered 

significant. For the heat map visualization, sdRNAs with significant survival associations 

were colored by their associated log2 hazard ratio, as determined by a Cox hazards model. 

Positive log2 hazard ratios indicate increased mortality, while negative log2 hazard ratios 

indicate decreased mortality.
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Copy number variation in snoRNAs

For identification of snoRNAs subject to significant copy number variation, we utilized the 

GISTIC 2.0 output files (specifically *amp_genes.conf_99.txt and *del_genes.conf_99.txt). 

As these tables report the precise genomic coordinates in which the amplification or deletion 

was identified, we utilized a q < 0.05 threshold and subsequently intersected the coordinates 

with the snoRNA annotations 40. Amplification and deletion calls for individual snoRNAs 

were then compiled into separate tables. For heat map visualization, the associated GISTIC 

q-values for a given snoRNA in each cancer type were −log10 transformed.

Differential expression analysis

For differential expression analysis comparing metastases to primary tumors, we utilized 

limma 71. For multiple hypothesis correction, we used the Benjamini Hochberg method. An 

adjusted p < 0.05 was used a threshold for significance.

Intersection of significant snoRNA lists

For pan-cancer analysis, we considered all sdRNAs that were found to be significant in at 

least one cancer type across the following 5 analyses: CD274 correlation, GMZA 
correlation, CD8+ T cell abundance, copy number variation, and survival. For intersection of 

these five analyses, the directionality of the association was not considered (i.e. an sdRNA 

would be included regardless of whether it was positively or negatively correlated with 

CD274). The pan-cancer 5-way intersection was visualized using the web tool available at 

http://bioinformatics.psb.ugent.be/webtools/Venn/.

For cancer type-specific analysis, we iterated through each parental snoRNA and tabulated 

whether it was significant in the 5 aforementioned categories, in addition to tumor 

vascularization. This information was recorded through a 6 character custom coding scheme 

(i.e. NNSNSN for snoRNA “X” in cancer type “Y”). “N” denotes “not significant”, “S” 

denotes “significant”, and “o” signifies that data was not available. Each position 

corresponds to a specific significant list. Position1: CD274; Position2: GZMA; Position3: 

Survival; Position4: CD8+ T cells; Position5: CNV; Position 6: EndothelialScore. Thus, for 

the example above (NNSNSN), sdRNAs from snoRNA X were found to be significantly 

associated with survival and significant for CNV in cancer type Y. The complete table of 

codes is available in Table S12. For focused analysis of immune signatures and patient 

survival, we developed an ImmuneSurv score based on the above coding schema. In this 

score, the first four letters are considered (corresponding to CD274 correlation, GZMA 
correlation, survival association, and CD8+ T cell correlation). For a given snoRNA in a 

specific cancer type, each “S” adds 1 to the ImmuneSurv score, up to a total of 4.

Resource availability

All relevant resources, data and codes will be available to the academic community upon 

reasonable requests. Please refer to the supplementary tables for the results of the various 

analyses presented in the study.
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Blinding statement and general methods

Investigators were not blinded for sample collection, processing or analysis. No specific 

methods were used to predetermine sample sizes. No data were excluded.

Regulatory approval

Study involving use of controlled access TCGA patient data has been approved by TCGA 

DAC and NIH for General Research Use in project titled #15034: “Role of noncoding RNAs 

in cancer-immune interactions”, with DAR #: 57036–1 at Yale University.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A pan-cancer landscape of the sdRNA transcriptome
a. Schematic of datasets and analytic flowchart for integrative analysis of the pan-cancer 

sdRNAome.

b. Schematic depicting the structural features of different snoRNAs. 5 select snoRNA types 

are illustrated here.

c. Schematic describing the three types of C/D snoRNA read distributions identified in the 

smRNA-seq datasets. These read distributions correspond to three different types of sdRNAs 

produced from the parental snoRNAs.
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d. Average profile and heat map of SNORD30 read distributions in 32 cancer types. The 

smRNA-seq reads that mapped to SNORD30 were consistently concentrated on the 5’ end, 

suggesting that SNORD30 is processed into 5’ sdRNAs.

e. Average profile and heat map of SNORD104 read distributions in 32 cancer types. The 

smRNA-seq reads that mapped to SNORD104 were consistently concentrated on the 3’ end, 

suggesting that SNORD30 is processed into 3’ sdRNAs.

f. Average profile and heat map of SNORD27 read distributions in 32 cancer types. The 

smRNA-seq reads that mapped to SNORD27 were concentrated on either the 5’ or 3’ end, 

suggesting that SNORD30 is processed into 5’ or 3’ sdRNAs.

g. Average profiles and heat maps of the mapped read distributions from all expressed C/D 

snoRNAs in kidney chromophobe cancers (KICH, left), low-grade glioma (LGG, center), 

and ovarian adenocarcinoma (OV, right). The read distributions clustered into three groups 

by k-means clustering (k1, k2, k3) corresponding to the types depicted in c. Values shown 

are normalized to maximum read depth for each snoRNA.

h. Average profiles and heat maps of the mapped read distributions from all expressed 

H/ACA snoRNAs in adrenocortical carcinoma (ACC, left), breast adenocarcinoma (BRCA, 

center), and uterine carcinosarcoma (UCS, right). The read distributions clustered into three 

groups by k-means clustering (k1, k2, k3). Values shown are normalized to maximum read 

depth for each snoRNA.

TSS, transcription start site. TES, transcription end site.
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Figure 2: sdRNA expression patterns differ among cancer types and are not adequately 
explained by host gene transcription
a. Heat map of relative sdRNA expression aggregated by parental snoRNA across cancer 

types, filtered for sdRNAs exhibiting non-zero variance in median values. Values shown are 

z-score transformations of the median log2 tpm, normalized by individual sdRNAs. These 

data demonstrate that while some sdRNAs are relatively evenly expressed among all cancer 

types, there are clusters of sdRNAs with highly tissue-specific expression patterns.
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b. Violin plot comparing the aggregated abundance of sdRNAs from each snoRNA with its 

host gene (n = 736 snoRNA – host gene pairs) across all cancers. The top schematic 

illustrates an intronic snoRNA and the associated sdRNA. The Spearman correlation across 

all pairs was 0.089 ± 0.004 (mean ± s.e.m.), indicating that sdRNA abundance cannot be 

adequately explained by host gene transcription.

c. Empirical cumulative density function of the Spearman correlation distribution in b. The 

dotted lines indicate what cumulative proportion of total snoRNA – host gene pairs (y-axis) 

have a correlation coefficient up to the indicated point (x-axis).

d. Violin plot comparing the aggregated sdRNA abundance of each snoRNA with its host 

gene (n = 736 sdRNA – host gene pairs) in each individual cancer type.

e. Bar plot detailing the number of significantly correlated sdRNA-host gene pairs in each 

cancer type (adjusted p < 0.05).

f. Bar plot detailing the percentage of cancer types in which each sdRNA-host gene pair was 

found to be significantly correlated (adjusted p < 0.05). Inset, top sdRNA-host gene pairs 

and the number of cancer types that the pair was found to be significantly correlated.
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Figure 3: High dimensional pan-cancer patient clustering based on sdRNA expression signatures
a. t-SNE plot of sdRNA expression in tumors from 32 different cancer types (n = 10,262), 

aggregated by parental snoRNA. Samples are colored by cancer type.

b. t-SNE plot of gastrointestinal, kidney, lung, and melanocyte derived cancers, colored by 

tissue of origin.

c. t-SNE plot of all normal kidney and kidney tumor samples.

d. t-SNE plot of all normal lung and lung tumor samples.
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Figure 4: sdRNAs are correlated with PD-L1 expression in human cancers
a. Bar plot depicting the number of significant sdRNAs in each cancer type, aggregated by 

parental snoRNA, in relation to PD-L1 expression. Red, positive correlation; blue, negative 

correlation.

b. Heat map of sdRNAs positively correlated with PD-L1 (CD274) expression (adjusted p < 

0.05, adjusted within each cancer type). For visibility, only sdRNAs that were positively 

correlated in three or more cancer types are shown. Boxes are colored according to the 

Spearman correlation with PD-L1. Parental snoRNAs without annotated names are instead 
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labeled by their host gene in parentheses. SnoRNA classifications are annotated on top based 

on a color legend on the right panel.

c. Scatter plot depicting the correlation between PD-L1 and SNORA44 sdRNA expression in 

lower grade gliomas (LGG, n = 453). Spearman correlation R = 0.399, p < 2.20 * 10-16.

d. Scatter plot depicting the correlation between PD-L1 and SNORA44 sdRNA expression 

in thymomas (THYM, n = 111). R = 0.530, p = 3.60 * 10-9.

e. Heat map of snoRNAs negatively correlated with PD-L1 (CD274) expression (adjusted p 
< 0.05, adjusted within each cancer type). For visibility, only sdRNAs that were positively 

correlated in three or more cancer types are shown. Boxes are colored according to the 

Spearman correlation with PD-L1. Parental snoRNAs without annotated names are instead 

labeled by their host gene in parentheses. SnoRNA classifications are annotated on top based 

on a color legend on the right panel.

f. Scatter plot depicting the correlation between PD-L1 and SNORA31 sdRNA expression in 

pheochromoytomas and paragangliomas (PCPG, n = 157). R = −0.437, p = 1.46 * 10-8.

g. Scatter plot depicting the correlation between PD-L1 and SNORA7B sdRNA expression 

in prostate adenocarcinoma (PRAD, n = 435). R = −0.307, p = 7.66 * 10-11.

c, d, f, g - Data are shown as tpm, normalized separately for mRNA-seq and smRNA-seq 

datasets.
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Figure 5: sdRNAs are correlated with CD8+ T cell infiltration in diverse cancers
a. Bar plot depicting the number of significant sdRNAs in each cancer type, aggregated by 

parental snoRNA, in relation to CD8+ T cell abundance. Red, positive correlation; blue, 

negative correlation.

b. Heat map of sdRNAs positively correlated with CD8+ T cell abundance (adjusted p < 

0.05, adjusted within each cancer type). For visibility, only sdRNAs that were positively 

correlated in two or more cancer types are shown. Boxes are colored according to the 

Spearman correlation with CD8+ T cell abundance. Parental snoRNAs without annotated 
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names are instead labeled by their host gene in parentheses. SnoRNA classifications are 

annotated on top based on a color legend on the right panel.

c. Scatter plot depicting the correlation between CD8+ T cell abundance and SNORD95 
sdRNA expression in lung adenocarcinoma (LUAD, n = 454). R = 0.264, p = 1.11 * 10-8.

d. Scatter plot depicting the correlation between CD8+ T cell abundance and SNORD95 
sdRNA expression in testicular germ cell tumors (TGCT, n = 135). R = 0.339, p = 5.88 * 

10-5.

e. Heat map of sdRNAs negatively correlated with CD8+ T cell abundance (adjusted p < 

0.05, adjusted within each cancer type). For visibility, only sdRNAs that were positively 

correlated in four or more cancer types are shown. Boxes are colored according to the 

Spearman correlation with CD8+ T cell abundance. Parental snoRNAs without annotated 

names are instead labeled by their host gene in parentheses. SnoRNA classifications are 

annotated on top based on a color legend on the right panel.

f. Scatter plot depicting the correlation between CD8+ T cell abundance and SNORD83A 
sdRNA expression in head and neck squamous cell carcinoma (HNSC, n = 435). R = 

−0.218, p = 4.36 * 10-6.

g. Scatter plot depicting the correlation between CD8+ T cell abundance and SNORD83A 
sdRNA expression in pheochromocytomas and paragangliomas (PCPG, n = 157). R = 

−0.286, p = 2.86 * 10-4.

c, d, f, g - Data are shown as tpm for smRNA-seq datasets.

Chow and Chen Page 28

Oncogene. Author manuscript; available in PMC 2019 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: sdRNAs are correlated with cytolytic T cell activity across multiple cancer types
a. Bar plot depicting the number of significant sdRNAs in each cancer type, aggregated by 

parental snoRNA, in relation to GZMA expression. Red, positive correlation; blue, negative 

correlation.

b. Heat map of sdRNAs positively correlated with GZMA expression (adjusted p < 0.05, 

adjusted within each cancer type), a marker of cytolytic T cell activity. For visibility, only 

sdRNAs that were positively correlated in three or more cancer types are shown. Boxes are 

colored according to the Spearman correlation with GZMA. Parental snoRNAs without 
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annotated names are instead labeled by their host gene in parentheses. SnoRNA 

classifications are annotated on top based on a color legend on the right panel.

c. Scatter plot depicting the correlation between GZMA and SCARNA5 sdRNA expression 

in skin cutaneous melanoma (SKCM, n = 89). Spearman correlation R = 0.401, p = 1.11 * 

10-4.

d. Scatter plot depicting the correlation between GZMA and SCARNA5 sdRNA expression 

in testicular germ cell tumors (TGCT, n = 135). R = 0.403, p = 1.56 * 10-6.

e. Heat map of sdRNAs negatively correlated with GZMA expression (adjusted p < 0.05, 

adjusted within each cancer type). For visibility, only sdRNAs that were positively 

correlated in three or more cancer types are shown. Boxes are colored according to the 

Spearman correlation with GZMA. Parental snoRNAs without annotated names are instead 

labeled by their host gene in parentheses. SnoRNA classifications are annotated on top based 

on a color legend on the right panel.

f. Scatter plot depicting the correlation between GZMA and SCARNA4 sdRNA expression 

in bladder carcinomas (BLCA, n = 362). R = −0.267, p = 2.60 * 10-7.

g. Scatter plot depicting the correlation between GZMA and SCARNA4 sdRNA expression 

in cervical squamous cell carcinoma (CESC, n = 265). R = −0.315, p = 1.98 * 10-7.

c, d, f, g - Data are shown as tpm, normalized separately for mRNA-seq and smRNA-seq 

datasets.
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Figure 7: sdRNAs are associated with patient survival across multiple cancer types
a. Heat map of sdRNAs associated with patient survival, aggregated by parental snoRNA 

(adjusted p < 0.05 by log-rank test, adjusted within each cancer type). For visibility, only 

sdRNAs that were significantly associated with survival in two or more cancer types are 

shown. Boxes are colored according to log2 hazard ratios, where positive values indicate 

increased mortality risk and negative values denote decreased mortality risk. Parental 

snoRNAs without annotated names are labeled by their host gene in parentheses. SnoRNA 

classifications are annotated on top based on a color legend on the right panel.
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b. Kaplan-Meier survival curves in lower grade glioma (LGG, n = 498; left), liver 

hepatocellular carcinoma (LIHC, n = 369; middle), and uterine corpus endometrial 

carcinoma (UCEC, n = 528; right), stratified by SNORA116 sdRNA expression. High 

SNORA116 sdRNA expression was concordantly associated with poorer survival in all three 

cohorts (p = 0.0036, p = 0.0048, p = 0.0003).

c. Kaplan-Meier survival curves in clear cell kidney carcinoma (KIRC, n = 511; left), 

sarcoma (SARC, n = 257; middle), and uterine corpus endometrial carcinoma (UCEC, n = 

528; right), stratified by SNORD145 sdRNA expression. High SNORD145 sdRNA 

expression was consistently associated with poorer survival in all three cohorts (p < 0.0001, 

p < 0.0001, p = 0.00018).

d. Kaplan-Meier survival curves in clear cell kidney carcinoma (KIRC, n = 511; left), 

papillary renal cell carcinoma (KIRP, n = 288; middle), and hepatocellular carcinoma 

(LIHC, n = 369; right), stratified by SNORA77 sdRNA expression. High SNORA77 sdRNA 

expression was associated with poorer survival in KIRC, but with better survival in KIRP 

and LIHC (p = 0.013, p = 0.00031, p = 0.00036).
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Figure 8: Multidimensional analysis of sdRNAs at the interface of tumor immunity and survival
a. Schematic of the ImmuneSurv score. In a cancer type-specific manner, each sdRNA is 

assessed for whether it is significantly associated with PD-L1 expression, CD8+ T cell 

abundance, GZMA expression, and patient survival. Each significant association adds 1 

point to the ImmuneSurv score.

b. Left: bar plot of sdRNAs aggregated by parental snoRNA with ImmuneSurv scores ≥ 2 in 

at least one cancer type. Right: bar plot of the 25 parental snoRNAs with ImmuneSurv 
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scores ≥ 2 in at least 4 cancer types. Strikingly, SCARNA4 was found to have ImmuneSurv 

scores ≥ 2 in 9 independent cancer types.

c. Heat map of ImmuneSurv scores for the 25 parental snoRNAs in b. Individual cells are 

colored based on ImmuneSurv score for the indicated snoRNA in each cancer type.

d. Venn diagram of sdRNAs significantly associated with PD-L1, CD8+ T cells, and/or 

GZMA in pancreatic adenocarcinoma (PAAD).

e. Venn diagram of sdRNAs significantly associated with PD-L1, CD8+ T cells, GZMA, 

and/or survival in lower grade glioma (LGG).

f. Venn diagram of sdRNAs significant for PD-L1 correlation, CD8+ T cell abundance, 

GZMA correlation, patient survival, and/or copy number variation in any cancer type 

(PANCAN32).

Chow and Chen Page 34

Oncogene. Author manuscript; available in PMC 2019 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	A comprehensive map of the sdRNA transcriptome across multiple human cancer types
	SdRNA transcriptome stratifies distinct groups of patients from various cancer types
	SdRNA transcriptome informs molecular and cellular features of tumor immunity
	SdRNA expression associates with angiogenesis in the tumor microenvironment
	SdRNA expression predicts patient survival across diverse human cancers
	Integrative analysis of sdRNAome and pan-cancer tumor immunity

	Discussion
	Materials and methods
	Data acquisition and pre-processing
	Characterization of snoRNA expression profiles
	Correlation analysis between sdRNAs and host genes
	Correlation analysis between sdRNAs and other transcriptomic variables
	Survival analysis
	Copy number variation in snoRNAs
	Differential expression analysis
	Intersection of significant snoRNA lists
	Resource availability
	Blinding statement and general methods
	Regulatory approval

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:

