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Abstract

Variation of an inherited trait across a population cannot be explained by additive contribu-

tions of relevant genes, due to epigenetic effects and biochemical interactions (epistasis).

Detecting epistasis in genomic data still represents a significant challenge that requires a

better understanding of epistasis from the mechanistic point of view. Using a standard

Wright-Fisher model of bi-allelic asexual population, we study how compensatory epistasis

affects the process of adaptation. The main result is a universal relationship between four

haplotype frequencies of a single site pair in a genome, which depends only on the epistasis

strength of the pair defined regarding Darwinian fitness. We demonstrate the existence, at

any time point, of a quasi-equilibrium between epistasis and disorder (entropy) caused by

random genetic drift and mutation. We verify the accuracy of these analytic results by

Monte-Carlo simulation over a broad range of parameters, including the topology of the

interacting network. Thus, epistasis assists the evolutionary transit through evolutionary hur-

dles leaving marks at the level of haplotype disequilibrium. The method allows determining

selection coefficient for each site and the epistasis strength of each pair from a sequence

set. The resulting ability to detect clusters of deleterious mutation close to full compensation

is essential for biomedical applications. These findings help to understand the role of epista-

sis in multiple compensatory mutations in viral resistance to antivirals and immune

response.

Author summary

Epistasis is a widespread and ubiquitous genetic property of biological networks that

shape evolutionary trajectories. Detecting epistasis in genomic data still represents a great

challenge that could be met with a better understanding of epistasis from a mechanistic,

evolutionary point of view. Here, using a standard model of population genetics applicable

to viruses and microorganisms, we derive a universal relationship between four haplotype

frequencies of a single pair in a genome, which depends only on the epistatic strength for

the pair, defined regarding Darwinian fitness, but not on other system’s parameters.

Although we do not yet propose a tool for statistical inference of epistasis, we derive an

analytic estimator of its strength from a single time DNA/RNA sequence database. The

method is based on the balance existing between fitness and disorder caused by mutation

and random genetic drift. Our technique can be used to understand the mechanism
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behind the rapid accumulation of mutation clusters that can cross the threshold of genetic

stability and cause rapid adaptation of a virus to a new host, a new antiviral drug, or a new

wave of immune response.

Introduction

Abundant evidence demonstrates that epistasis plays a vital role in the genetic evolution of pop-

ulations and the heritability of complex traits. In a biological system, each protein, DNA or

RNA could serve multiple functions and interact with several partners. The term epistasis [1, 2],

which refers to these biochemical interactions, is a widespread property of biological networks

[2, 3, 4] and a subject of intense studies. The inclusion of epistatic contributions has been

shown to improve phenotype predictions in model organisms including chicken [5, 6], yeast

[7–9], and various plants [10–12]. The literature on human diseases is abundant with reports of

epistatic interaction for thousands of pairs of single nucleotide polymorphisms (SNPs) in

humans [13, 14] pointing at a major role for epistasis in the genetics of human diseases [15–23].

Although the number of proposed epistatic interactions is extensive, few of them are agreed

upon [4, 24]. It appears that epistasis hides among millions of possible SNPs pairs at the genome

level. Quite a few existing search techniques employ statistics and information theory to infer

SNP interactions [25–30]. They range from regression analysis [31, 32] to Bayesian techniques

[33–35] to methods based on linkage disequilibrium (LD) and haplotype statistics [36, 37]. All

of them estimate epistasis based on inter-locus pairwise association frequencies. Despite the

variety of measures, detecting epistasis remains a statistical challenge, and few if any reports of

statistically-defined epistasis are reproducible and experimentally validated [3, 4].

Apart from the statistical problem of data noise, these efforts are impeded by the lack of a

measure of interaction that would define epistasis in a specific biological context and sepa-

rately from other system parameters. All the existing methods use statistical markers [3, 4],

which are designed to infer interacting pairs but not the strength of interaction separate from

other parameters and state variables. A crucial biological scenario that requires a better theo-

retical understanding of the nature of epistatic effects is a viral population evolving through

sudden changes in selection pressure. Evolutionary bottlenecks occur during the viral trans-

mission to a new host, the spread to a different organ or coping with a new therapeutic agent.

Viral populations are characterized by a high genetic diversity due to large mutation rates,

short generation spans, and relatively large population sizes. Viral populations can re-adapt

very quickly to sudden changes in environment. Often, an adapting virus passes through inter-

mediate genetic variants with reduced fitness, termed "fitness valleys" [38, 39, 40, 41]. Com-

pensatory epistatic mutations can rescue replicative fitness while preserving the resistant

phenotype [38, 39, 42–44].

A better understanding of how epistasis affects evolutionary trajectories would help to pre-

dict compensatory epistatic interaction expediting the development of drug resistance [40].

Rather than acting directly, epistatic compensatory mutations may represent allosteric sites

which act indirectly [45], and they cannot be inferred based on structural studies. Experimen-

tal proof of compensatory epistatic interaction rescuing viral fitness has been found [38–40,

42–46]. A recent example is a pair of mutations E138K and M184I conferring cross-resistance

against four FDA-approved drugs in phase 3 clinical trials linked to HIV treatment failure

[46]. The pair 150L and A71V is also associated with drug resistance [47, 48]. The epigenetic

pairs close to full-compensation pre-existing in the viral genomic pool are sorted out and even-

tually develop drug resistance [48]. To accurately predict these critical epistatic pairs, it is
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essential to understand how epistasis affect evolutionary trajectories and to identify its finger-

print at the genetic level.

In the present work, we define a measure of epistasis in Darwinian terms and predict its

genetic signature from mechanistic analysis of epistatic effects on genetic diversity. Specifically,

we model the stochastic evolution of a haploid population in the absence of recombination

within a broad time interval, in the presence of selection, random drift, and mutation. We

focus on the case of positive epistasis in a diverse population evolving after a sudden change of

environment. For the general case of a pair of loci linked to a long genome, we obtain a rela-

tionship between haplotype frequencies that depends only on the strength of epistatic interac-

tion for the given pair. Through theoretical derivation and simulation, we prove that our

measure of epistasis is relatively independent of the underlying topology, the state of the popu-

lation, and model parameters. We also discuss possible caveats and the potential applicability

of our method as a tool to identify the genetic signature of epistatic interaction involved in

drug resistance.

Model

Here, we consider a haploid population of N binary sequences of {Ki}, where each genome site

(nucleotide position) numbered by i = 1, 2, . . ., L is either Ki = 0 or Ki = 1. We assume that the

genome is long, L>> 1. Evolution of the population in discrete time measured in generations

is simulated using a standard Wright-Fisher model, which includes the factors of random

mutation with genomic rate μL, natural selection, and random genetic drift [51–60]. Recombi-

nation is assumed to be absent. Once per generation, all individuals die and are replaced with

their progeny, whose number is random and obeys a multinomial distribution. The total popu-

lation stays constant with the use of the broken-stick algorithm. We included natural selection

as the average progeny number (Darwinian fitness) of sequence {Ki} is set to eW where

W ¼
PL

i¼1
siKi þ

PL
i<jsijKiKj ð1Þ

sij ¼ Eijðjsij þ jsjjÞTij ð2Þ

The first term in Eq 1 stands for the additive contribution of single mutations to fitness with

selection coefficients si. The second term in Eq 1 describes pairwise interactions of sites with

magnitudes sij given by Eq 2. Coefficient Eij represents the relative strength of epistatic interac-

tion between sites i and j, while the binary elements of matrix T = {Tij} indicate interacting

pairs with Tij = 1 and the non-epistatic pairs by 0. Note that if we consider an isolated pair of

two deleterious mutations, by definition, Eij = 1 corresponds to W = 0 in Eq 1, i.e., full mutual

compensation of deleterious mutants at sites i and j.
We note that there are different definitions of the sign of epistasis in the literature. In the

present work, we set the sign of epistasis Eij to be the same as the sign of the interaction term

sij, regardless of the signs of selection coefficients. If interaction increases fitness, we have

E> 0 (positive epistasis), and if it decreases fitness, we have E< 0 (negative epistasis). In the

case when si and sj have opposite signs, according to Eq 2, the resulting interaction term sij of

the epistatic pair is also positive.

Results

Positive epistasis affects the accumulation of deleterious mutations

To understand the general effect of epistasis on the speed of evolution, we simulated a popula-

tion of genomes, initially 100% wild-type: all Ki = 0. In general, the distribution of selection
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coefficient over sites is somewhat complex. We considered four most uncomplicated cases,

where all selection coefficients si in Eq 1 are either negative or positive and their absolute val-

ues are fixed, si = s0, and so is epistatic strength Eij = E. Interacting pairs defined by matrix {Tij}

were chosen randomly, on average, with one interaction per site (1/L)∑ijTij = 1. We considered

two measures of evolution speed, the adaptation rate, A = (1/L)dW/dt, and the substitution

rate, V = df/dt, where f is the mutation frequency per site, and averaged them over a short time

interval before equilibrium. The value of V represents the rate at which mutations are added to

the population, and A is the rate of fitness change ("fitness flux").

Positive epistasis (E> 0) significantly enhances accumulation of deleterious mutations (Fig

1A and 1E). In this case, the adaptation rate changes sign when passing through the point of

full compensation, E = 1. In this interval, coupled pairs of mutations become beneficial for

genome fitness, even though single mutations are deleterious. An example of this case is

observed in Fig 1B and 1F. Positive epistasis increases the adaptation rate of beneficial muta-

tions as well, but its effects on substitution rate V are modest.

Counterintuitively, positive epistasis may decrease substitution rate for positive alleles (Fig

1B). Indeed, the fitness of a genome depends not only on the number of alleles but also on the

proportion of paired interacting alleles. A pair of alleles has a larger fitness gain than two

unpaired alleles have together. Thus, genomes with a smaller number of paired positive alleles

outcompete the ones with a larger number of unpaired alleles (Fig 1A and 1E).

Negative epistasis, for any sign of s0 (Fig 1C, 1G, 1D and 1H), has a relatively weak effect: if

the mutation rate is very large, both substitution and adaptation rates are decreased by absolute

value. Below we focus on the most interesting case of partial compensation (Fig 1A and 1E;

E> 0, s0 < 0). Instead of short-term adaptation, we will consider evolution on long timescales.

Fig 1. Positive epistasis enhances adaptation. Wright-Fisher population of 500 genomes has been simulated for 20 generations, starting from uniformly wild-type

(best-fit at E = 0) population. The adaptation rate A = dW/dt (bottom row) and substitution rate Vs0 = s0 df/dt (upper row) were averaged over 300 runs and are

plotted as a function of the epistatic strength, E. The selection coefficient s0 and E are the same for all sites. Parameters in (a-h): |s0| = 0.2, total site number L = 300,

mutation rate per genome μL is shown (colors). The binary connectivity matrix Tij is random with ~1 interaction per site. Each column corresponds to a different

sign of s0 and E (shown). (a, d, e, h) In the two cases of reciprocal epistasis, the evolution rates demonstrate strong non-linear dependence on the epistatic strength.

https://doi.org/10.1371/journal.pcbi.1006426.g001
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The footprint of epistasis for a single pair in a long genome

The effect of epistasis on the evolution speed merits consideration but does not help to mea-

sure the interaction between genomic sites, which is the aim of our project. Therefore, we

sought a footprint of epistasis E that would work for a single pair of sites and depend weakly

on other sites and other model parameters. In this study, we will only consider the regime of

negative selection, in particular, the case of weakly deleterious mutations, s< 0, |s|<< 1 with

positive epistasis, which here represents antagonistic epistasis, where the combined effect of

two interacting alleles is less deleterious than the sum of their independent effects.

Consider an interacting pair of sites with selection coefficients –s1, −s2 and epistatic

strength E (Eq 1) in a long genome with total log-fitness W (Fig 2, left panel). The population

is assumed to be approaching mutation-selection equilibrium but not there yet. The models of

population genetics demonstrate that the distribution density of fitness W across individual

genomes is narrow for any reasonable population size met in experiments [49–52]. In the con-

text of our work, we can consider it fixed at each given moment of time. The distribution in W
represents a traveling wave which moves slowly towards higher W. Below we do not consider

the wave’s shape explicitly but instead take advantage of the fact that the wave is narrow and

slow.

We classify all individual genomes in the population into 4 groups, according to the haplo-

type sequence of the pair: 00, 01, 10 and 11. The fitness contribution of the pair, Wpair, to the

total genome fitness depends on the haplotype sequence (Fig 2).

W00 ¼ 0

W01 ¼ � s1

W10 ¼ � s2

W11 ¼ � ðs1 þ s2Þð1 � EÞ ð3Þ

We assume that the epistatic pair does not interact with other mutated sites elsewhere in the

genome. In other words, we neglect the existence of mutated clusters larger than two sites. In

the following sections, we will lift this approximation and consider the effect of larger mutated

clusters.

In the course of evolution, random drift and mutation tend to maximize disorder. On the

other hand, the effect of Darwinian selection is to maximize fitness. The standard measure of

disorder is configuration entropy S defined as the logarithm of the number of possible configu-

rations, S = ln Nconf. The compromise between the increase in entropy and the increase in fit-

ness is satisfied when entropy is maximal under the restriction that fitness value W is fixed. As

we mentioned above, different models of asexual evolution predict that the distribution in W
is narrow and changes slowly. Hence, we make the hypothesis that entropy has enough time to

nearly reach its maximum. At each moment of time, the maximum value of S depends on W,

as given by S = S (W). Examples of function S(W) are considered in S1 Table (S1 Appendix).

Again, focus on a pair of sites (Fig 2). Consider all the sequences in the population, which

have the same haplotype at the pair, for example, 10. We remind that the genome part not

including the pair (grey box in Fig 2) is genetically diverse. The probability of appearance of

haplotype, f10, by the definition of probability, is proportional to the number of possible

sequence configurations of the rest of genome (grey box in Fig 2), exp(Srest). Entropy Srest is

restricted by fitness of the rest of genome, which is the difference W−Wpair. Hence, we obtain

that the entropy of each haplotype subset is Srest = S(W−Wpair). Further, since the genome is
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long, we can safely assume that Wpair is much smaller than W, so that the corresponding

change in entropy is small and proportional to Wpair. Hence, we can approximate

SðW � WpairÞ � SðWÞ � bWpair ð4Þ

The frequency of each haplotype is proportional to the corresponding configuration number,

exp[S(W−Wpair)]. Combining Eqs 3 and 4, we can express the haplotype frequencies in terms

Fig 2. A pair of interacting sites in a long genome. (left) Open and filled circles: wild type 0 and mutated allele 1. Red line: existing interaction. Black line:

potential interactions between sites. Dashed line: negligible interaction. Grey box: the rest of genome. (B-E) Derivation of the universal footprint of epistasis

explained in the text. W is total fitness, S(W-Wpair) is entropy of the rest of genome, and fii are the haplotype frequencies. Parameter E represents the relative

strength of epistasis (Eq 1).

https://doi.org/10.1371/journal.pcbi.1006426.g002
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of s1, s2, and E

f10 ¼ f00e
� bs1

f01 ¼ f00e
� bs2

f11 ¼ f00e
� bðs1þs2Þð1� EÞ ð5Þ

After excluding β, s1 and s2 from these expression (Eq 5), we arrive at the relationship between

haplotype frequencies

f11

f00

¼
f10f01

f00

2

� �1� E

ð6Þ

Since haplotype frequencies can be measured, but epistatic strength is usually unknown, Eq 6

represents a "footprint of epistasis." It can be used to estimate the strength of interaction E in a

single data set. Unlike the existing measures of linkage disequilibrium, the measure has direct

biological meaning and a fair degree of universality. Henceforth we will refer to it as Universal

Footprint of Epistasis (UFE).

Free bonus of this method is that the expressions for haplotype frequencies (Fig 2D) can be

used to measure selection coefficients s1 and s2 from a diverse sequence set. Unknown parame-

ter β is the same for all sites and can be found by averaging the frequencies over the genome.

We tested Eq 6 by Monte-Carlo simulation assuming isolated epistatic pairs and fixed E.

The value of E was estimated from Eq 6 and compared with the actual value (Fig 3). Two

parameter regions including the stochastic and quasi-deterministic regimes of evolution,

which occur respectively at (s/μL)log(Ns) < 1 and > 1, have been studied [49, 50]. The simula-

tion shows that UFE estimate is established surprisingly early, after ~ 1/s0 generations, much

earlier than the population arrives at equilibrium (Fig 3). We observed similar results at other

parameter sets including much larger N (S2 Fig). However, after very long time, equilibrium is

well established, and diversity becomes very small, f ~ μ/s. In this range, mutation balances

selection and mixes different haplotypes. In this regime, deviations from UFE occur (S2 Fig).

The long genome of isolated pairs

Above we considered a single pair in a genome. To further verify the validity of Eq 6, we will

now consider the entire genome, for several examples of the interaction network. We start

from the most straightforward "network" comprised of isolated pairs and assume that selection

coefficient and epistatic strength are the same for all sites and pairs, si = -s0, Eij = E0. This topol-

ogy is relevant for genomes with sparse interacting sites. As we mentioned (Methods), the exis-

tence of non-interacting sites can be ignored. Examples of more complex topology will be

considered in the next section.

First, we group mutated clusters by their size and monitored the group numbers: k1 single

mutations and k2 connected mutated pairs (Fig 4, top). The fitness number and entropy can

both be expressed in term of the numbers of singles and doubles (Fig 4A and 4B). In the most

probable state of the system, the values of k1 and k2 are chosen to maximize entropy S under

the restriction that fitness W is fixed. Assuming that mutations are rare in the genome (Fig

4C), we can approximate S by a continuous function of k1 and k2 and find its derivatives in

these variables (Fig 4D). Next, the average frequencies of haplotypes 10 and 00 can be

expressed regarding k1 and k2 (Fig 4D). Finally, from the condition that entropy is maximum

and the condition that fitness number is fixed (Fig 4E), we arrive at a relation between
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haplotype frequencies (Fig 4F). The relationship is identical to UFE, Eq 6, when mutations are

rare, f00� 1. To express f10 and f11 in terms of mutation frequency f, we use the condition that

their sum is equal to f (Fig 4G).

From Eq 6, at half-compensation point E = 0.5, mutated pairs and singles have the same fre-

quency f11 = f10, because they have the same mutation cost (Fig 4A). But slightly off this point,

one group strongly outnumbers another: at E< 0.5, the singles are much more numerous, and

Fig 3. Universal footprint of epistasis (UFE) predicts epistatic strength in a broad time range. Value of E estimated from Eq 6 is plotted as a

function of the actual value of E, where (a-d) correspond to different time points. Each dot represent a single Monte-Carlo run. Initial population is

randomized with f = 0.5. Haplotype frequencies in Eq 6 are averaged over sites and pairs. Blue: known epistatic pairs. Red: the same number of

randomly chosen pairs. Parameters: L = 300, s0 = 0.05, N = 500, μL = 0.5, ~1 interaction per site.

https://doi.org/10.1371/journal.pcbi.1006426.g003
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the doubles dominate at E> 0.5. Thus, the presence of epistasis violates the common sense

that double deleterious mutations are always more rare than single mutations.

We also derive Lewontin’s measure of linkage disequilibrium, correlation coefficients D11 =

f11/f2, D10 = f10/[f(1 − f)]. With the use of Eq 6, we can express them in terms of mutant frequency

f (S2 Table). In turn, mutant frequency f can be expressed in terms of input parameters E and f0.

The results are compared with simulation for initial frequency f0 = 1/10 (Fig 5). The analytic

results for smaller diversity, f0 = 1/100, are shown in Fig 6. As expected, mutant frequency f
diverges near full compensation point E = 1 until reaches the value of 0.5 (Figs 5C and 6C red, S2

Table). This value follows directly from the symmetry between wild-type and mutant alleles exist-

ing at E = 1. Correlation coefficient D11 increases with E, peaks at E = 1/2, and then decreases line-

arly with E to the value of 2 until full compensation (Figs 5A and 6A red). Indeed, at that point we

have f00 = f11 = 1/2 from the symmetry. In contrast, coefficient D10 stays near 1 and declines rap-

idly at E> 1/2 where the doubles outcompete the singles (Figs 5B and 6B red) until hits zero.

Most importantly, UFE relationship is exact in the entire interval of E (Fig 6D red and Fig

3). In what follows, we will consider UFE for more complex networks interaction.

Full compensation and UFE interval

The topology of actual epistatic interactions can be more complex than isolated pairs (Fig 7B–

7E). In the following section, we will study specific examples. However, even before, we can

Fig 4. Long genome of interacting pairs. Top: Linked interacting pairs with different haplotypes and their fitness

values Wij. (a—g) Flow chart of the derivation of the universal footprint of epistasis (see the text or S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1006426.g004
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Fig 5. Epistasis causes strong linkage disequilibrium: Analytics and simulation. (a, b, c) Correlation coefficients D11, D10 and mutation frequency f are shown as a

function of E. D11, D10, are calculated from Eq 6 using simulated values of fij and f averaged over sites and pairs. Color lines correspond to the average over 300 runs, and

the shaded areas show the standard deviation among runs, for epistatic pairs (blue) and the same number of random pairs (red). Dotted black line is the analytic

prediction. Parameters: N = 500, s0 = 0.05, L = 300, μL = 0.5, t = 800, f0ffi 0.1. Initial population is randomized with f = 0.5. Thus, simulation agrees well with analytic

predictions.

https://doi.org/10.1371/journal.pcbi.1006426.g005

Fig 6. UFE is preserved for different topologies at moderate epistasis’ strengths. Here we show the dependences on E for (a, b) correlation

coefficients, (c) mutation frequency f, and (d) UFE on E for the five topologies in Fig 6. UFE is the estimate of E (Eq 6) from haplotype frequencies

f01, f11 derived analytically for each topology (S1 Appendix). Parameters: f0 = 1/100. Thus UFE is exact for the isolated pairs, and overestimates E at

large E for other topologies. Asymptotic expressions are given in S2 Table.

https://doi.org/10.1371/journal.pcbi.1006426.g006
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obtain two general results for any topology based on the general expression for fitness (Meth-
ods, Eq 9). The first observation is that when epistatic strength E exceeds a critical value Ec
given by

Ec ¼ mini½i=ð2biÞ� ð7Þ

where bi is defined as the number of bonds in a cluster of size i, some mutated clusters become

over-compensated. The point Ec represents the threshold of full compensation for a cluster,

which means the loss of genetic stability for the entire population (S2 Table). Above Ec, the

critical clusters will rapidly expand in time until the entire genome has mutated. If mutations

have an unwanted phenotype, such as drug resistance or cancerogenic potential, this is the

Fig 7. Examples of epistatic network. Filled and open circles denote mutated and wild-type genomic sites, respectively. Epistatic interactions between sites are

shown by black and red lines. Red lines show clusters of mutated sites. ki is the number of the cluster with i sites, bi is the bond number per cluster. Different

topologies correspond to a) isolated pairs, b) isolated triple arches, where each site has two epistatic partners, c) double arches, where three sites are involved in

two epistatic associations, d) long connected chain where each site forms two pairs, (a-d) show connection topology but not the actual site order. (e) Binary tree:

possible site order and the equivalent tree structure.

https://doi.org/10.1371/journal.pcbi.1006426.g007
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point where a virus becomes resistant, or a tumor starts to grow (we do not address the

immune system effects).

We remind that, for isolated pairs, the point of full compensation is Ec = 1. In the general

case, the value of compensation point Ec (Eq 7) is either equal or less than 1. The exact value

depends on topology, i.e., on the number of bonds bi (Fig 7). The reason why Ec can be less

than 1, is that each mutation can compensate more than one mutation.

The second general result is that the UFE estimate of E (Eq 6) is predicted to be accurate at

E< EUFE, where

EUFE ¼ mini>2

i � 2

2ðbi � 1Þ

� �

� 1=2 ð8Þ

represents the point where an interacting cluster larger than two sites is as fit as two interacting

sites (S2 Table). Beyond EUFE, the doubles are outnumbered by larger clusters. As a result, the

predicted value of UFE overshoots the value of E in Eq 6 that was derived by taking into

account only isolated pairs (Fig 6D). In other words, the value of EUFE defines the interval

within which UFE in Eq 6 is accurate. As we see from Eqs 7 and 8, topology of network affects

both Ec and EUFE through the number of bonds bi for cluster of each size i.

Effects of network topology

In the previous sections, we ignored the clusters of more than two interacting mutated sites

because we considered isolated interacting pairs (Fig 7A). For more complex network topol-

ogy, triplets and larger clusters may become important. In this section, we consider several

examples (Fig 7B–7E). We follow the general algorithm, as follows. The derivation for each

topology starts from the expressions for entropy, fitness, and haplotype frequencies as the

numbers of mutated interacting clusters of different size (section Methods below). Detailed

derivations are given in S1 Appendix. The starting analytic expressions and analytic results are

listed in S1 and S2 Tables, respectively (S1 Appendix). Here we only discuss final results

qualitatively.

Triple arches. Consider the periodic sequence of three-node graphs connected by three

bonds (Fig 7B). In this network, triple interacting mutations are possible. Now entropy and fit-

ness depend on three variables: number of single mutations, k1, of the doubles, k2, and of the

triplets, k3 (S1 Table). As in the case of isolated pairs we have considered in the previous sec-

tion, we maximize entropy in these three variables while keeping fitness fixed. With this topol-

ogy of interactions, the fitness loss of a triple arch structure, which consists of three deleterious

alleles linked by three epistatic interactions, is fully compensated when E = 0.5. Indeed, the

existence of extra interactions lowers the point of full compensation Ec, which in this case,

decreases from 1 to 1/2 (Fig 6A and 6B; S2 Table). Correlations coefficients D10, D11 vary with

epistasis strength in a different way within three intervals of E, as follows: At E below 1/4, there

are few triplets compared to the doubles, i.e., k3 << k2. In this interval, the universal relation-

ship, Eq 6, is accurate (Fig 6D). For more substantial epistatic strengths, 1/4 < E< 1/3, the

triplets outnumber the doubles, k3 >> k2, and linked pairs of mutations are found mainly in

triplets. As a result, UFE is modified: at E> 1/4, correlations are stronger, and UFE estimate

(Eq 6) predicts a larger value of E than the actual value (Fig 6D), which is also reflected in a

steeper increase of D11 with E than for the case of isolated pairs. At an even higher degree of

compensation, 1/3 < E< 1/2, triplets outnumber even single mutations. Approaching the

point of full compensation E = 1/2, the accumulation of triplets causes divergence of f and a

linear decrease in D11 (Fig 6C and 6D). Thus, extra bonds between interacting sites generate a

positive correction to UFE.
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Double arches. To test this conclusion further, we removed a bond from each triple arch

(Fig 7C). The changes from the previous case are shown in Fig 6, and S2 Table. The intermedi-

ate interval of E, 1/4< E< 1/3 disappears, because the singles, doubles, and triplets have the

same fitness and, hence, similar abundance at the same point, E = 1/2. The single mutations

are most numerous below this point, and the triplets dominate above. Further, the interval of

UFE validity expands from EUFE = 1/4 to EUFE = 1/2, and full compensation occurs at larger E,

Ec = 3/4.

Chain. Next, we consider a long chain of interacting adjacent sites (Fig 7D). In this topol-

ogy, mutated clusters of any size i smaller than a total number of sites L can exist, with bi = i—
1 epistatic bonds. Which size of clusters is the most important? After maximizing entropy at

fixed fitness, we obtain that the frequencies of clusters of different size form a geometric pro-

gression (S1 Appendix). Due to the assumption of small mutant frequency f, we obtain that the

denominator of the progression is very small, unless very close to the full compensation point

Ec < 1/2. Hence, at most values of E, we can neglect clusters larger than i = 2, which again pro-

duces the universal result UFE (Fig 6D, S2 Table). Thus, for the extended chain topology, UFE

formula is valid in the most of the interval of E. Only in a narrow vicinity of compensation

point, large clusters become important causing divergence of f and overestimation of E from

UFE (Fig 6D).

Binary tree. A tree is a graph without loops where any two nodes can be connected by a

single path (Fig 7E). Analysis for the binary tree and the chain is similar. The relationship

between the number of bonds and nodes stays the same, bi = i-1, and so does the critical point

Ec = 1/2. The difference is in entropy: each mutated cluster of size i is now a subtree that has ni

= (2i)!/[i!(i+1)!] possible shapes. Instead of only one as in the previous case, which fact favors

larger clusters (even though their fitness stays the same as in the chain). Consequently, once

larger clusters become essential near Ec, correlation coefficients and UFE increase rather

sharply, and the peak in D11 is taller than for the chain (Fig 6A). UFE dependence applies in

most of the interval until close to the compensation point (Fig 6D). The same qualitative con-

clusions hold true for a tree with any, even random number of branches.

Non-epistatic sites. For our aim, the existence of non-interacting sites in the genome can

be just ignored (S1A Fig), because fitness W and entropy S are additive over epistatic and non-

epistatic part, and the frequencies f11, f10, f, and f0 can be defined for epistatic sites only. Hence,

one can maximize the entropy of the epistatic part given its fitness independently of the non-

epistatic part. For the same reason, a diverse mixture of different graphs can be split into uni-

form segments (S1A Fig). Each segment can be treated separately, as we described above, then,

the total entropy of the combination of segments can be maximized.

Doubles arches with unequal interactions. So far, we considered different topologies

with equal epistatic strengths of interacting pairs. Because in real genomes epistasis strength

varies, here we provide a sensitivity test in the case of "double arches" (Fig 7C). Here we assume

that the left bond of each double arch has epistatic strength E and the right bond has strength

E/2. For a detailed derivation of the correlation coefficients and UFE in various intervals of E,

see S1 Appendix, Section 3.6. The results are summarized in S2 Table. In S3 Fig, we compare

the results for D11, D10, f and UFE relation between the cases of equal and unequal interaction.

In contrast to the case of equal interactions, we obtain three intervals of E instead of two

(see S2 Table). Full compensation occurs later, Ec = 1, as in the case of isolated pairs (see S2

Table). Interestingly, correlation coefficient D10 in the last interval (2/3,1) changes its behavior

qualitatively (see S3 Fig and S2 Table). In the case of equal epistatic strength, it decreased expo-

nentially in the last interval of E. For unequal epistatic strength, it decreases more slowly, as a

power law. The UFE relation now does not overshoot the value of E, but rather slightly under-

estimates it (see S3 Fig), albeit it remains close to E in the whole interval of E. This is because
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UFE represents an intermediate value between the two values of E. Yet, UFE is closer to the

larger of the two.

Discussion

Using analysis and Monte-Carlo simulation of adapting asexual population, we obtained a

relationship between haplotype frequencies of a pair of sites f11, f10, and f00, which can serve to

measure the strength of pairwise interaction E (UFE). At moderate epistatic strengths E, the

relationship of UFE is shown to be independent on the topology of the epistatic network, and

any system parameters other than E. For example, selection coefficients, mutation rate and

population size may be unknown, which fact does not affect the results. For the simplest topol-

ogy of isolated epistatic pairs, this result applies in the entire interval of E. For more complex

networks and stronger interaction; we predict a transition to the case where the haplotype rela-

tionship acquires topology-dependent correction and may overestimate E by a factor less than

2. We showed that the point of full compensation in E and the interval where UFE is accurate

decrease with the number of interactions per interacting site. We can use this information for

a biomedical purpose, such as identifying the clusters of compensatory mutations critical for

the evolution of drug resistance [38, 39, 42–44].

Our results demonstrate the existence at any time point of a quasi-equilibrium between

Darwinian fitness and disorder (entropy) due to random genetic drift and mutation. The rea-

son is a relatively slow rate of asexual adaptation due to clonal interference effects leading to

the formation of a traveling wave with slowly changing parameters [51, 52, 53, 60]. Hence,

UFE has time to form within fitness classes while the wave is slowly traveling.

The present analysis has limitations, as follows:

i. To use UFE as a measure of the strength of epistasis, one needs a population with a suffi-

ciently high initial variation.

ii. On very long times, significant deviations from UFE occur that progressively wipe away the

epistatic footprint at E< 1/2 (S2 Fig). The reason is a mutation which, although helping

genetic drift create disorder, also mixes the haplotypes between sequences, thus smearing

UFE. The last effect becomes strong when the mutation-selection balance is established (S2

Fig).

iii. We averaged haplotype frequencies over epistatic pairs, which fluctuate among pairs and

in time due to the stochastic nature of the system. Our next step will be to include the sta-

tistical inference from real sequence data to the method.

iv. We considered asexual haploid populations. Sufficiently strong recombination can mask

epistasis. For example, if a virus variant can recombine well, and another variant cannot

recombine as much, the comparison of how the UFE model fits the data of each virus

would allow us to measure the effect of recombination on epistasis.

To summarize, we propose an analytic tool to measure epistatic interaction in natural selec-

tion. Detection noise and the generalization of our results to sexual populations will be

addressed elsewhere.

Methods

Fitness for uniform selection parameters s and E

We consider a weakly diverse population near equilibrium and assume that all mutations are

deleterious with equal selection coefficient si = -s0 < 0, and that epistatic strength is fixed as
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well, Eij = E> 0. In this case, we can characterize a genome by the numbers of mutated clusters

of different size. To do so, let ki define the number of clusters with i nodes and bi bonds (Fig

7). Generally, bi can take multiple values for each cluster size i (S2 Fig). For the sake of simplic-

ity, we will consider topologies in which bi assumes a single value for each cluster size i (Fig 7).

Then, from Eq 1, we can express fitness as a sum over clusters of different size

W� � s0f0L ¼ � s0

Pimax
i¼1

kiði � 2EbiÞ ð9Þ

New notation f0 represents the frequency of uncompensated mutations with total fitness W.

The number of bonds bi for cluster size i> 2 depends on the topology (Fig 7), but for single

and double mutations, we always have b1 = 0, b2 = 1. To avoid possible confusion, Fig 7 repre-

sents topologies of the network regardless of the actual location of the sites in the genome.

Quasi-equilibrium state: Entropy

As we demonstrate by simulation, at each moment of time, ki are determined by the condition

that the entropy of the system is maximum given the value of fitness (Eq 9). Entropy S is

defined as the log number of configurations

eS ¼
Qimax

i¼1
Cki

LiðniÞ
ki ð10Þ

where Li is the number of all possible locations for a cluster of size i, and ni is the number of

each cluster’s configurations (shapes). The values of Li and ni depend on network’s topology.

In Eq 10, we neglect the overlap between clusters of different size due to the condition that

mutations are sparse. (The condition does not hold in the vicinity of full compensation, E = Ec,

where f sharply increases). In what follows, we consider maximum entropy concerning the val-

ues of ki with the fitness restriction (Eq 9).

Pairwise mutation frequencies (haplotypes)

Through most of the manuscript, we assume that the one-site frequency of deleterious muta-

tions

f ¼
1

L
P

iiki << 1 ð11Þ

is small. From Eq 9, f(E = 0) = f0 = k0/L which represents the "negative fitness density" per site.

The value of f0 may depend on the state of the population and system parameters. At equilib-

rium, the dependence of f0 on E in steady state is also relatively slow: between E = 0 and 1, only

2-fold [49, 50]. To avoid these complications and focus on strong effects of epistasis, we treat f0
as an input parameter and assume that it changes in time and E slowly. The distribution of

genomes in fitness is narrow in a broad range of parameters and times scales [49], and we

assume f0 to be the same for all genomes in the population. The dependence f(E)/ f0 can be

derived from Eq 9. At positive E, we have f(E) > f0.

To obtain a footprint of epistasis, we need to express haplotype frequencies in terms of

numbers of clusters of various size, ki. We calculate the frequencies of haplotypes 00 and 01

f11 ¼
1

Lpair

X

i

kibi

f10 ¼ f01 ¼ f � f11 ð12Þ

where Lpair = ∑ijTij is the total number of interacting pairs in the genome, and the correlation
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coefficients Dij

D11 ¼
f11

f 2
; D10 ¼

f10

f ð1 � f Þ
; ð13Þ

If two sites are statistically independent, by definition, D11 = D10 = 1.
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