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There are potentially many ways of assessing diabetic peripheral neuropathy (DPN). However, they do not fulfill U.S. Food and 
Drug Administration (FDA) requirements in relation to their capacity to assess therapeutic benefit in clinical trials of DPN. Over 
the past several decades symptoms and signs, quantitative sensory and electrodiagnostic testing have been strongly endorsed, but 
have consistently failed as surrogate end points in clinical trials. Therefore, there is an unmet need for reliable biomarkers to cap-
ture the onset and progression and to facilitate drug discovery in DPN. Corneal confocal microscopy (CCM) is a non-invasive 
ophthalmic imaging modality for in vivo evaluation of sensory C-fibers. An increasing body of evidence from multiple centers 
worldwide suggests that CCM fulfills the FDA criteria as a surrogate endpoint of DPN. 
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INTRODUCTION

The assessment of diabetic peripheral neuropathy (DPN) may 
be simple or complex and will be defined by what we are trying 
to achieve. In a busy clinic it is sufficient to establish whether 
an individual has symptoms, particularly of painful DPN and 
indeed through the use of a monofilament examination, 
whether or not the patient is at high risk of foot ulceration. 
However, for the assessment of early nerve damage and more 
precise phenotyping of somatic and autonomic neuropathy, a 
large number of specialized screening and diagnostic tests are 
available, which can be easily deployed. Clinically however, 
there is a nihilistic attitude towards diagnosing diabetic neu-
ropathy. After all, apart from providing relief of painful neuro-
pathic symptoms, there are no currently approved disease-
modifying therapies. Therein lies another problem in relation 
to the modalities used to evaluate an improvement in diabetic 
neuropathy in clinical trials of new therapies. We have wit-
nessed and will continue to witness spectacular and very costly 

failures of new therapeutics for DPN and indeed other periph-
eral and central neurodegenerative disorders. This review will 
consider the pros and cons of old established and newer meth-
ods for both diagnosing and evaluating DPN.

CLINICAL DIAGNOSIS OF DIABETIC 
PERIPHERAL NEUROPATHY 

Damage to the small sensory nerve fibers is one of the earliest 
manifestations of DPN and may be accompanied by continu-
ous or episodic pain [1]. Evaluation of neuropathic symptoms 
and signs using validated questionnaires and clinical bedside 
testing form the mainstay of DPN diagnosis along with a de-
tailed history to exclude other possible causes [2,3]. In this sec-
tion we summarize the most commonly used clinical diagnos-
tic modalities (Table 1).

Symptoms and signs
The Douleur Neuropathique en 4 (DN4) includes questions 
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for different types of neuropathic pain such as burning, painful 
cold, electrical shocks, tingling, pins and needles, numbness, 
and itching and a physical exam to test for touch and pin hypo-
esthesia and tactile dynamic allodynia and has shown excellent 
sensitivity (83%) and specificity (90%) for neuropathic pain 
[4]. The Leeds Assessment of Neuropathic Symptoms and 
Signs (LANSS) scale is similar, elicits five symptoms and two 
signs of DPN and has a comparable sensitivity and specificity 
[5]. Other screening tests include the Neuropathic Pain Ques-
tionnaire (NPQ) (12 questions) [6], the Neuropathic Pain 
Symptoms Inventory (NPSI) (12 questions) [7,8], the Neuro-
logical Symptom Score (NSS) (17 questions) [9], Diabetic 
Neuropathy Symptom (DNS) score (four questions) [10]. 
These are all interview-based assessments of sensory, motor, 
and autonomic deficits, with moderate sensitivity and specific-
ity. Several screening tests have also been validated to diagnose 
and stratify the severity of DPN. The Toronto Clinical Neurop-
athy Score (TCNS) [11] includes an assessment of symptoms 
(present or absent), sensory loss (normal or abnormal), and 
reflexes (normal, reduced, or absent). Based on the outcome a 
score of 6 to 8 denotes mild neuropathy, 9 to 11 moderate, and 
≥12 severe neuropathy. The Michigan Neuropathy Screening 
Instrument (MNSI) consists of 15 self-administered questions 
adapted from the neuropathy symptom profile [12] and a score 

≥7 is considered abnormal [13]. Similar to other clinical com-
posite tests, the MNSI involves a foot examination, whereby 
each foot with an ulcer or other findings such as dry skin, in-
fections, calluses, fissures, or deformities is scored 1. Other 
components include testing for vibration sensation using a 
128-Hz tuning fork and Achilles reflexes using the Jendrassic 
manoeuver. The neuropathy disability score (NDS) [14] is a 
composite measure of vibration perception with a 128-Hz tun-
ing fork, thermal perception with a metallic rod, pin-prick 
sensation, and Achilles tendon reflexes. The NDS is commonly 
used in research studies to stratify DPN severity as none (0 to 
2), mild (3 to 5), moderate (6 to 8), and severe (9 to 10). The 
Utah Early Neuropathy Scale (UENS) is designed to identify 
signs of a predominantly small fiber neuropathy [15]. It con-
sists of pin sensation, allodynia/hyperesthesia, large fiber and 
deep tendon reflex examinations and motor deficits, with a 
maximum score of 42.

Quantitative sensory testing
Quantitative sensory testing (QST) can be used to quantify 
small and large nerve fiber function. Commercially available 
devices include CASE IV (WR Medical Electronics, Stillwater, 
MN, USA), the thermoaesthesiometer, the biothesiometer, and 
the TSA II Neurosensory Analyzer (Medoc Ltd., Ramat Yishai, 

Table 1. Summary of methods for the diagnosis of diabetic peripheral neuropathy

Examination name Examination type Advantages Disadvantages

Clinical symptoms & 
signs

DN4, LANSS, NPQ, MNSI, DNS, TCNS, 
NDS, UENS

Relevant to the patient, easy to 
use, inexpensive

Limited sensitivity, high variability

Quantitative sensory 
testing

CASE IV (WR Medical Electronics),  
Biothesiometer, Thermoaesthesiometer, 
TSA Neurosensory Analyser (Medoc Ltd.)

Easy to perform, rapid, non- 
invasive, evaluates large and 
small nerve fibers

Variable, subjective, requires  
special equipment

Sudomotor function Neuropad (Skyrocket Phytopharma),  
Sudoscan (Impeto Medical), QSART,  
sympathetic skin response

Fast, objective, easy to perform, 
simple, reproducible

Moderate sensitivity, uncertain  
interpretation

Neurophysiology NCS of motor and sensory nerves Objective, widely available Only assesses large fibers, moderate  
reproducibility, requires special  
equipment

Skin punch biopsy IENFD Objective, gold standard to  
assess small fibers

Costly, time-consuming, risk of  
infections requires specialist equipment 
and personnel to quantify IENFD

Corneal confocal  
microscopy

HRT III RCM Objective, rapid, reproducible, 
assesses small fibers

Costly, requires specialist equipment

DN4, Douleur Neuropathique en 4; LANSS, Leeds Assessment of Neuropathic Symptoms and Signs; NPQ, Neuropathic Pain Questionnaire; 
MNSI, Michigan Neuropathy Screening Instrument; DNS, Diabetic Neuropathy Symptom; TCNS, Toronto Clinical Neuropathy Score; NDS, 
neuropathy disability score; UENS, Utah Early Neuropathy Scale; QSART, Quantitative Sudomotor Axon Reflex Test; NCS, nerve conduction 
studies; IENFD, intra-epidermal nerve fiber density; HRT III RCM, Heidelberg Retina Tomograph III Rostock Corneal Module.
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Israel). These devices create temperature and vibratory stimuli 
and rely on the subject’s response to define sensory thresholds. 
QST is painless and non-invasive, requires minimal training 
and is relatively easy to perform, which make it an attractive 
option to diagnose neuropathy. However, several studies have 
reported variable sensitivity ranging from as low as 36% to 
85% [16,17], due to the impact of patient co-operation, enrol-
ment of cohorts of different neuropathic severity and the use of 
different computers and algorithms to perform QST [18]. Ear-
ly studies reporting poor reproducibility, which improved in 
subsequent studies [19] possibly due to improved algorithms 
and devices and taking into account patient reaction time to an 
external stimulus. The Neuropathy in Diabetes Study group 
has recommended the use of QST to diagnose DPN in combi-
nation with other tests [20], while the American Academy of 
Neurology considers QST to be of limited use in individual pa-
tients but of possible value in longitudinal studies of large co-
horts [18]. Indeed, in a study of 498 patients with type 2 diabe-
tes mellitus (T2DM) and 434 controls a significantly elevated 
warm detection threshold was the most common abnormality, 
followed by an abnormal cold detection threshold and sural 
nerve conduction velocity (NCV), which were related to 
symptoms and glycemic control [21]. However, a detailed 
study of 59 subjects with and without DPN showed that warm 
detection thresholds did not differentiate patients with and 
without symptoms, unlike cold detection threshold and intra-
epidermal nerve fiber density (IENFD) [22]. QST has been 
employed as an outcome measure in clinical trials of neuropa-
thy primarily due to ease of use, but with mixed results [23,24]. 
Indeed, multi-risk factor control in the Steno-2 study [23] 
failed to show an improvement in DPN measured by vibration 
perception. In a phase III trial of human recombinant nerve 
growth factor, QST as a secondary endpoint failed to detect a 
significant treatment benefit [24].

DIABETIC AUTONOMIC NEUROPATHY

Diabetic autonomic neuropathy (DAN) often coexists with di-
abetic somatic neuropathy. DAN may affect a number of dif-
ferent organ systems including the cardiovascular, gastrointes-
tinal, genitourinary and sudomotor systems. Cardiovascular 
autonomic neuropathy (CAN) is clinically the most important 
form of DAN and is associated with abnormalities of heart rate 
control and vascular dynamics. Its prevalence varies from 
16.8% to 34.3%, and clinical manifestations include resting 

tachycardia, exercise intolerance, silent myocardial ischemia, 
and orthostatic hypotension [25]. The most widely used assess-
ments of CAN are based on the time-domain heart rate re-
sponse to deep breathing, Valsalva manoeuver and change in 
posture. Gastrointestinal autonomic neuropathy represents a 
complex disorder that affects gastrointestinal motor and sen-
sory control and leads to esophageal dysmotility, gastroparesis, 
constipation, diarrhea, and fecal incontinence [26]. It can be 
assessed with the Diabetes Bowel Symptom Questionnaire [27] 
and by evaluating gastric emptying using a radionuclide la-
beled meal [28]. Bladder dysfunction has an estimated preva-
lence of 25% to 87% [29] and symptoms may include dysuria, 
nocturia, incomplete bladder emptying, and recurrent urinary 
tract infections [20]. Assessments for bladder dysfunction in-
clude a lower urinary tract symptoms questionnaire, measure-
ment of peak urinary flow rate and post-void residual volume 
[30]. Erectile dysfunction complicates around 52.5% [31] of 
men with diabetes and can be assessed by means of the Inter-
national Index of Erectile Function and the Sexual Encounter 
Profile, nocturnal penile tumescence, penile Doppler ultra-
sound, sacral response, bulbocavernosus reflex, dorsal sensory 
nerve conduction of the penis, amplitude and latency of penile 
sympathetic skin response, and pudendal nerve somatosenso-
ry-evoked potentials [32]. Sudomotor dysfunction may be one 
of the earliest manifestations of DAN resulting in loss of sweat-
ing and can be evaluated via several modalities. Sympathetic 
skin response previously failed to detect DPN in a study of 337 
patients with diabetes [33], but more recently it was shown to 
predict the risk of foot ulceration, comparable to abnormalities 
in NDS and vibration perception [34]. The quantitative sudo-
motor axon reflex test evaluates postganglionic axonal integri-
ty, whilst the sympathetic skin response assesses polysynaptic 
pathways and has previously been shown to be superior for de-
tecting early neuropathy compared to the sympathetic skin re-
sponse in a small series of 31 patients with diabetes [35]. The 
sweat indicator plaster [36] (Neuropad) is a visual test, which 
uses a timed color change to define the integrity of skin sympa-
thetic cholinergic innervation. A prospective study of 109 pa-
tients with diabetes mellitus (DM) [37] reported that abnor-
malities on Neuropad in subjects without DPN were a strong 
predictor for the subsequent development of DPN, within 5 
years. This is an important finding given that abnormal sweat-
ing is associated with small fiber neuropathy [38] commonly 
missed with bedside testing. The thermoregulatory sweat test 
[39] is a method of assessing location specific alterations by 
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delivering a controlled heat stimulus to induce a generalized 
sweat response. The patient’s response is detected by assessing 
a significant color change in cornstarch, sodium carbonate, or 
alizarin red, which are applied uniformly over the body. Final-
ly, the Sudoscan test (Impeto Medical, San Diego, CA, USA) 
assesses electrochemical skin conductance as an indicator of 
sweat gland function and can differentiate patients with and 
without neuropathy and controls with high sensitivity and 
specificity as well as patients with and without CAN [40].

NEUROPHYSIOLOGY

Nerve conduction studies (NCS) are considered to be the gold 
standard for the diagnosis of DPN. The Toronto consensus 
[20] recommended the use of abnormal NCS with a symptom 
or sign to diagnose DPN. The typical electrophysiological find-
ings in DPN are amplitude reduction of the compound muscle 
action potential, slowing of sensory and motor NCV, pro-
longed F-wave latency and an absent Hoffman reflex. Al-
though NCS provide an objective means of quantifying pe-
ripheral large nerve fiber dysfunction it cannot assess small 
sensory fiber damage, the earliest manifestation of DPN. A re-
cent study [22] in DM patients with/without sensory symp-
toms and normal NCS showed that IENFD and thermal 
thresholds were significantly reduced compared to healthy 
controls but also differed between the symptomatic and as-
ymptomatic groups. This finding highlights that small fiber in-
jury occurs early in DPN and cannot be captured by NCS. An-
other major limitation is poor reproducibility and lack of mea-
surement standardization across centers. Dyck et al. [41] found 
poor interobserver repeatability amongst expert neurophysiol-
ogists who independently assessed eight attributes of NCS in 
the same patients with diabetes on consecutive occasions. The 
magnitude of variability was a major point of concern and the 
authors rather than questioning the viability of this test, simply 
recommended that the same examiners should perform all 
NCS assessments in clinical trials of neuropathy. 

Several studies [42-46] have reported NCS abnormalities in 
patients with impaired glucose tolerance (IGT) and DM. Sum-
ner et al. [42] found a reduction in IENFD, sural nerve ampli-
tude and conduction velocity in patients with IGT and DM, 
with more marked abnormalities in patients with DM with a 
predominantly small fiber neuropathy in the IGT group. Gly-
cemic control, DM duration, age, male gender, and height are 
associated with electrodiagnostic abnormalities in patients 

with DM [45]. More recently it has been suggested that quanti-
fication of the Hoffman reflex as a result of anhidrotic stimula-
tion of type 1a sensory fibers may be a sensitive electrophysio-
logical measure of DPN and a marker of spinal disinhibition 
[47]. Indeed, Millan-Guerrero et al. [48] reported that the 
Hoffman reflex was absent in 39.3% of T2DM patients com-
pared to only 9.3% with abnormal NCS. Another recent study 
[49] found that assessment of rate dependent depression, a 
measure of change in amplitude of the Hoffman reflex, is able 
to identify differences in experimental and human DPN in re-
lation to the contribution of spinal inhibitory pathways driving 
neuropathic pain. 

Despite serial failure as an end point, most clinical trials [50-
54] have used NCS as the primary outcome to assess treatment 
efficacy. Kennedy et al. [50] failed to demonstrate any im-
provement in neurophysiological measures of DPN 24 months 
after simultaneous pancreas and kidney (SPK) transplantation 
in 61 type 1 diabetes mellitus (T1DM) patients. The Neurolog-
ical Assessment of Thioctic Acid in Diabetic Neuropathy 1 
(NATHAN-1) study [51], a 4-year multicenter randomized 
controlled trial of alpha lipoic acid demonstrated no benefit in 
neurophysiology, QST and DPN composite scores. However, 
Malik et al. [52] demonstrated an improvement in neurophysi-
ology in normotensive patients with DPN and subsequently 
the Delapril and Manidipine for Nephroprotection in Diabetes 
(DEMAND) study [53] demonstrated a significant reduction 
in the odds ratios for DPN assessed by neurophysiology, QST, 
symptoms and signs, and autonomic dysfunction. A recent 52-
week phase III trial [54] of weekly C-peptide replacement 
compared to placebo in 250 patients with T1DM did not show 
an improvement in electrophysiological variables. A surprising 
finding was that at the end of the trial, NCV improvement in 
the placebo treated group exceeded the gains observed in the 
active treatment group. This long list of failed clinical trials 
makes apparent that currently advocated endpoints of neurop-
athy lack the required sensitivity to capture treatment effects 
early and are in part responsible for the lack of U.S. Food and 
Drug Administration (FDA)-approved treatments for DPN.

SKIN BIOPSY

Skin biopsy allows morphometric quantification of intra-epi-
dermal nerve fibers (IENFs), expressed as the number of 
IENFs per length of section (IENF/mm). This technique has 
good reproducibility and an accurate quantification method 
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has been established for assessing IENF pathology along with 
normative age-matched ranges [55]. There is an age- and sex-
related decline in IENFD, but unlike neurophysiology it is not 
affected by weight and height [56]. The European Federation of 
Neurological Societies have published guidelines on its use in 
the diagnosis of peripheral neuropathies [57]. However, the di-
agnostic yield of skin biopsy depends on the reference and cut-
off values selected and the definition of small fiber neuropathy.

Several studies have shown loss of IENFD in people with 
DM and IGT compared to healthy controls [58]. Therefore, the 
assessment of IENFD is a valid measure of diabetic neuropathy 
and may also be useful in predicting the development of clini-
cal neuropathy [57]. A lower IENFD can identify early DPN 
and may be lower in people with painful as compared to pain-
less DPN [59]. A recent study [60] showed a reduction in 
IENFD in patients with T2DM over 5 years, due to slower 
nerve regeneration in people with diabetes [61]. Narayanaswa-
my et al. [62] examined 29 patients with DPN and found that 
the annual rate of mean IENF loss was 3.76 fibers/mm. A 
1-year diet and exercise intervention in people with IGT im-
proved IENFD [63]. An inverse correlation also exists between 
IENFD and the severity of DPN defined on the basis of neu-
ropathy disability and impairment scores. However, a recent 
study has demonstrated no correlation between IENFD and 
the neuropathy symptom score, but interestingly an inverse 
correlation with the severity of pain [64]. Alam et al. [65] has 
recently shown that IENFD has a diagnostic sensitivity of 0.61 
and specificity of 0.80 for DPN. Because IENFD is considered 
to be the gold standard for the evaluation of small fiber neu-
ropathy it has been advocated as a measure of treatment re-
sponse in clinical trials. However, skin biopsy is an invasive 
technique, which requires experience and expertise to perform 
reliable IENFD staining with protein gene product 9.5 and 
subsequent quantification. The chance of bleeding and infec-
tion in DM patients also reduces its appeal as a diagnostic test 
for DPN and it therefore cannot be recommended in longitu-
dinal and interventional studies. Furthermore, it has not been 
shown to be of value as a measure of therapeutic efficacy in a 
number of clinical trials in diabetic and human immunodefi-
ciency virus (HIV) neuropathy [66].

CORNEAL CONFOCAL MICROSCOPY

Corneal confocal microscopy (CCM) is a non-invasive and re-
iterative ophthalmic imaging technique, which allows in vivo 

examination of the cornea. The primary application of CCM 
was in the diagnosis and management of corneal disease. 
However, in the early 2000s two landmark studies by Rosen-
berg et al. [67] and Malik et al. [68] reported a progressive loss 
of corneal sub-basal nerve fibers in patients with increasing se-
verity of DPN. Subsequently, multiple centers have confirmed 
these findings in different populations and the use of CCM to 
study DPN and neurodegeneration more broadly has grown 
exponentially [69].

Human corneal innervation
The cornea is one of the most densely innervated tissues of the 
human body receiving sensory innervation from the trigemi-
nal ganglion. Myelinated nerve fiber bundles penetrate the pe-
ripheral limbal cornea and run towards the anterior central 
cornea where they terminate at the subbasal nerve plexus 
(SNP), a dense network of unmyelinated axons (19,000 to 
44,000 axons within 90 mm2) equally distributed in the central 
and peripheral-central cornea. Previous studies [70] using 
electron-microscopy and immunohistochemistry have con-
firmed these nerve fibers to be C-fibers. Physiologically, corne-
al innervation plays an important role in the maintenance of a 
healthy ocular surface and in wound healing by regulating epi-
thelial cell growth, proliferation and differentiation via the re-
lease of soluble growth factors, cytokines and neuropeptides 
such as substance P and calcitonin gene related peptide amongst 
others [71]. It is well established that corneal nerve dysfunc-
tion due to herpetic infections [72], trigeminal nerve lesions 
[73], neurosurgical injury [73], or intracranial disease [74] can 
result in neurotrophic keratitis. Indeed, neurotrophic corneal 
ulcers have been described in patients with DM as early as 
1977 [75].

Image acquisition with CCM
The type of CCM used, i.e., white light or laser can significantly 
impact on the image acquisition process and quality. Over the 
last decade, the vast majority of research centers have utilized 
the laser CCM (Heidelberg Retina Tomograph III Rostock 
Corneal Module; Heidelberg Engineering GmbH, Heidelberg, 
Germany) due to its superior image quality and rapid scanning 
time. This CCM offers three modes to capture images namely: 
section, volume, and sequence. There is currently limited con-
sensus on the optimal method to capture and analyze CCM 
images to assess the impact of DPN on corneal nerve mor-
phology. In a healthy cornea the SNP is normally visible at 50 
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to 90 μm with a laser CCM. Section mode allows the examiner 
to capture images by manually focusing the field of view on the 
area of interest and may be more suitable for more experienced 
users. The other two modes, sequence and volume, allow the 
acquisition of sequential confocal images separated by 1 μm 
from a pre-specified area of the tissue. Most studies [76] have 
mostly analyzed five to eight high-quality, non-overlapping 
images from the central and peripheral-central cornea while 
others [77] have proposed that one ‘technically sound’ image 
offers adequate accuracy. A study by Vagenas et al. [78] showed 
that the selection of five to eight images was optimal to quanti-
fy corneal nerve morphology. Schaldemose et al. [79] de-
scribed an objective method of randomly sampling and ana-
lyzing CCM images with the use of software which considers 
only in-focus nerves for quantification. They found small albeit 
significant differences when randomized sampling was used 
compared to human observer selection concluding that with 
the increased use of CCM worldwide a consensus on sampling 
is needed. One limitation of CCM is the small field of view 
(40×40) and some centers [80] have used wide field imaging 
techniques to produce maps of the SNP. Allgeier et al. [81] 
showed that an automated algorithm can create mosaics from 
the SNP within 145 seconds. However, the study population 
consisted of healthy controls and as the technique requires sig-
nificant subject co-operation it poses a question regarding fea-
sibility in morbid subjects. Although wide-field imaging allows 
an enhanced view of corneal nerve morphology it significantly 
prolongs the examination time, and indeed analysis of the 
composite image is highly laborious and has questionable add-
ed benefit. A recent study [82] estimated the nerve densities 
from the same participants using either three representative 
CCM images or wide field composite images and found no 
significant difference. The authors concluded that analysis of 
representative CCM images from a single scan provides ade-
quate accuracy and could be used in clinical studies. Neverthe-
less, wide-field imaging could be more suitable for a research 
setting in order to study and characterize in detail the onset 
and extent of corneal nerve pathology in DPN while sampling 
of five to eight representative images may be the method of 
choice for a clinical setting.

CCM image quantification
The vast majority of studies have reported results from four 
morphological parameters namely corneal nerve fiber density 
(CNFD), corneal nerve branch density (CNBD), corneal nerve 

fiber length (CNFL), the tortuosity coefficient (TC) and more 
recently the inferior whorl length (IWL) [83]. CNFD refers to 
the total number of main nerve fibers in a CCM image (fibers/
mm2), CNBD is defined as the number of branches connecting 
to the main nerve fiber (branches/mm2), CNFL is the sum of 
the length of all nerve fibers and branches in a CCM image 
(mm/mm2), and the TC is a unit-less measurement of the tor-
tuosity of the main nerve fibers in a CCM image, independent 
of the orientation of the nerves. IWL is defined as the length of 
the nerves at the inferior whorl of the SNP, an anatomically 
distinct area where the nerves are arranged in a whorl like pat-
tern. Other reported parameters include nerve fiber beading 
(number/100 μm) [84], corneal nerve connection points and 
average weighted corneal nerve fiber thickness which essen-
tially measures nerve fiber width [85]. Nerve fiber area may be 
optimal for detecting change in clinical trials of new therapeu-
tics [86]. A recent study proposed that the novel parameter of 
corneal nerve fractal dimension analysis, a measurement of 
morphological complexity, could be a useful and highly sensi-
tive parameter to assess neurodegeneration in T1DM [87]. The 
vast majority of studies report results using either CCMetrics 
or ImageJ (https://imagej.nih.gov/ij/download.html). CCMet-
rics is a software capable of manual and fully automated analy-
sis, which has been specifically designed and validated for 
CCM corneal nerve quantification [76]. ImageJ is a more ge-
neric software widely used for image processing and its usabil-
ity for quantifying nerve morphology can be extended with the 
use of purpose-built plugins such as NeuronJ [88]. Recently, 
two novel algorithms for fully automated tracing of corneal 
nerve density [89] and length [90] in wide-field mosaics have 
been described but their performance is yet to be validated in 
larger studies. DPN may also induce clustering of corneal 
nerve fibers compared to the equally distributed nerve fibers in 
the healthy cornea. Spatial pattern analysis of CCM mosaics, 
an advanced computing method which allows the estimation 
of corneal nerve branching points, has been found to improve 
the detection of corneal nerve loss when used in combination 
with conventional measures of nerve morphometry [91].

CCM in diabetic peripheral neuropathy
Reduced corneal sensation in diabetes as a result of polyneu-
ropathy was reported as early as 1974 [92]. Schwartz [92] first 
studied corneal sensitivity in a group of 44 patients with DM 
and found significantly reduced sensation in clinically normal 
corneas which was symmetrical, occurred early and was relat-
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ed to disease duration. Another study [75] reported the occur-
rence of treatment-resistant neurotrophic corneal ulcers in 
young patients with T1DM. Both studies did not report the 
DPN status in the study population. In the early 2000s, Rosen-
berg et al. [67] showed subbasal nerve alterations using CCM 
in patients with clinically confirmed DPN and Malik et al. [68] 
showed that the severity of corneal nerve pathology was relat-
ed to DPN severity. 

We, and others have shown that CCM can be used to detect 
early corneal nerve alterations [80,93] with excellent reproduc-
ibility between examiners, occasions and quantification meth-
ods (Fig. 1) [94-98]. We have established a multinational nor-
mative reference database for corneal nerve morphology [99] 
and shown that healthy individuals exhibit morphometric sta-
bility over time [100]. CNFD significantly correlates with 
IENFD and QST while corneal and IENF length can differen-
tiate patients with and without painful neuropathy [93]. These 
results were not confirmed by an independent study employ-
ing CCM and IENFD, which reported a patchy pattern of loss 
between the cornea and skin, suggesting that the exact tempo-
ral relationship needed further clarification [80]. However, 
studies have demonstrated that CCM has comparable diagnos-
tic performance to IENFD with the advantage that it is rapid 

and non-invasive compared to skin punch biopsy [65]. CNFL 
has a high sensitivity (91%) and specificity (93%) [77] for the 
diagnosis of DPN and cardiac autonomic neuropathy [84,101] 
and a reduced CNFD or CNFL are associated with an odds ra-
tio for DPN of 16.5 and 12.9, respectively [76]. A recent study 
has also shown that reduced corneal innervation is associated 
with erectile dysfunction [102]. IWL reduction is more promi-
nent in patients with painful neuropathy [103] and its evalua-
tion improves the diagnostic performance of CCM compared 
to central CNFL, indicating a dying back neuropathy; whilst its 
distinct morphology could make it an ideal anatomical loca-
tion for reproducible follow-up assessments [103] in longitudi-
nal studies and particularly in clinical trials [83]. Subtle, albeit 
significant alterations have been reported even in normoglyce-
mic subjects with elevated glycosylated hemoglobin (HbA1c) 
indicating the ability of CCM to detect subclinical axonal de-
generation [104]. A shorter CNFL is associated with functional 
deficits in cold detection threshold, laser Doppler image flare, 
and heart rate variability [105] and corneal nerve alterations 
precede overt diabetic retinopathy and microalbuminuria 
[106], which has significant implications for the screening of 
microvascular complications. A recent study shows significant 
corneal nerve fiber changes in pediatric T1DM patients, along 

Fig. 1. Corneal confocal microscopy images 
of the subbasal nerve plexus from a control 
subject (A) and patients with mild (B), mod-
erate (C), and severe (D) diabetic neuropa-
thy demonstrating a progressive reduction 
in corneal nerve fibers (red arrows) and cor-
neal nerve branches (yellow arrows).C

A

D

B
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with thinning of the retinal nerve fiber layer [107]. 
A higher HbA1c and lower high density lipoprotein choles-

terol impact on subbasal nerve morphology [83] and it has 
been shown to improve with treatment of glycaemia, blood 
pressure, and lipids [108] as well as in patients with T1DM on 
continuous subcutaneous insulin [109]. In the most dramatic 
example of curing diabetes with a SPK transplantation, CCM 
was able to detect significant corneal nerve regeneration 12 
months after transplantation without an improvement in 
IENFD, QST, and NCV [110]. Hence CCM can detect early 
nerve fiber repair, missed by currently advocated measures of 
DPN. Indeed, recent phase 2 clinical trials have used CCM as a 
primary co-endpoint to show the efficacy of ARA-290, a novel 
first-in-class peptide [111] in patients with sarcoidosis-related 
neuropathy [112,113] and T2DM [114]. Daily subcutaneous 
administration of ARA-290 over 28 days compared to placebo 
was associated with a significant improvement in CNFD along 
with an improvement in cutaneous temperature sensitivity and 
exercise capacity [112]. In a subsequent phase 2b randomized 
control study, improvement in corneal nerve morphology was 
strongly correlated with the expression of GAP-43+ IENF, indi-
cating neuronal repair, and an improvement in pain intensity 
after 28 days [113]. In a pilot trial of seal oil omega-3 polyun-
saturated fatty acids supplementation in patients with T1DM 
over 12 months showed a 29% increase in CNFL, a primary 
outcome, with no change in the secondary outcomes of NCV 
and sensory function [115]. Interestingly, a recent trial in 
T2DM rats showed that a combination therapy of Menhaden 
oil, alpha lipoic acid, and enalapril for 12-week was most effec-
tive for showing an improvement in the primary outcomes of 
corneal nerve density and sensitivity [116]. The case for inclu-
sion of CCM as an outcome marker for trials of neuropathy is 
compelling.

Results from longitudinal studies suggest that CCM has 
prognostic value. Pritchard et al. [117] reported that the 4-year 
incidence of DPN amongst non-neuropathic patients with 
T1DM was 18% and was associated with a lower baseline 
CNFL, longer diabetes duration, higher triglycerides, worsen-
ing retinopathy and nephropathy, impaired sensation to tem-
perature and vibration and slower peroneal and sural nerve 
conduction velocities. Lovblom et al. [118] reported a 17% in-
cidence of DPN in patients with T1DM followed over approxi-
mately 4 years, and a baseline CNFL of <14.9 mm/mm2 was 
the strongest predictor of new onset DPN. Another prospec-
tive study [58,119] in subjects with IGT showed that lower 

baseline CNFD, CNBD, CNFL and mean dendritic length of 
IENF were the strongest predictors of progression to T2DM. 
Remarkably, those subjects who returned to normoglycaemia 
showed a small but significant improvement in their CCM pa-
rameters while IENFD continued to decline during the same 
period of time. The NIH CCM consortium study is an interna-
tional pooled multi-center analysis to assess the diagnostic va-
lidity and determine diagnostic thresholds for identification of 
DPN by CCM. Early results from 516 participants have shown 
that measurement of CNFL has high sensitivity and specificity 
for the detection of DPN and support the implementation of 
CCM in trials of neuropathy [120]. A recent meta-analysis by 
Jiang et al. [69] of 13 studies in 1,680 subjects, independently 
confirmed CNFD, CNFL, and CNBD to be the best parame-
ters to differentiate patients with and without DPN compared 
to healthy controls.

CCM beyond diabetic neuropathy
While there is strong evidence to support the utility of CCM in 
DPN, multiple studies suggest that CCM could also be used to 
characterize the extent of axonal injury in many other periph-
eral neuropathies and central neurodegenerative disorders. We 
and others have reported corneal nerve alterations in Charcot-
Marie-Tooth disease type 1A [121], HIV sensory neuropathy 
[122], idiopathic small fiber neuropathy [123], Fabry’ disease 
[124], chronic inflammatory demyelinating polyneuropathy 
[125], chemotherapy induced peripheral neuropathy [126], 
chronic migraine [127], Parkinson’s disease [128], amyo-
trophic lateral sclerosis [129], stroke [130], and multiple scle-
rosis [131-133]. Importantly, in most of these studies corneal 
nerve alterations were associated with clinical and neurological 
disability and functional outcomes, suggesting that corneal 
subbasal innervation is a highly sensitive and accessible site to 
assess neurodegeneration.

CONCLUSIONS

DPN is a serious and underdiagnosed complication of diabetes 
of multifactorial etiology. Currently advocated endpoints of 
neuropathy lack sensitivity to capture early abnormalities be-
fore overt neuropathy has developed, are invasive or have re-
peatedly failed as surrogate end-points of therapeutic efficacy 
in clinical trials of DPN. CCM has emerged as a powerful di-
agnostic tool for the detection of small fiber neuropathy, the 
earliest manifestation of DPN, and has shown prognostic utili-
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ty in identifying those who develop clinical DPN as well as 
showing remarkable consistency demonstrating early nerve 
regeneration in a number of clinical trials. Given the rapid and 
non-invasive methodology and automated quantification it al-
lows community level screening of DPN, similar to digital reti-
nal photography for diabetic retinopathy. 
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