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Introduction
Coronaviruses belong to a wide family of viruses associated 
with a range of illnesses, including the common cold and more 
severe conditions like Middle East Respiratory Syndrome 
(MERS) and severe acute respiratory syndrome (SARS).1 The 
zoonotic origin of the novel coronavirus known as severe  
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was 
first detected in December 2019 in Wuhan, China. The novel 
SARS-CoV-2, which originated from animals and crossed 
over to humans, was first identified in December 2019 in 
Wuhan, China.2 COVID-19, an extremely transmissible viral 
illness, is attributed to the virus SARS-CoV-2. Its impact on a 
global scale has been devastating, resulting in over 6.4 million 
deaths worldwide.3,4 Indeed, it has emerged as the most nota-
ble worldwide health emergency since the influenza pandemic 
of 1918. The World Health Organization (WHO) proclaimed 
SARS-CoV-2 a global pandemic on March 11, 2020 as a result 
of its quick global spread following the initial instances of this 
predominantly respiratory viral disease. As of February 27, 
2023, the WHO predicted that there will be over 758 million 
confirmed cases of COVID-19 in more than 228 countries, 

regions, or territories. A strain of RNA viruses known as 
SARS-CoV-2 has never been identified in humans previ-
ously.4,5 The virus may affect people, civets, mice, dogs, cats, 
camels, pigs, chickens, and bats severely due to the wide range 
of hosts it can infect. In both people and animals, SARS-
CoV-2 induces respiratory and gastrointestinal disease.6,7 
Transmission is possible through aerosols, direct/indirect con-
tact, medical procedures, and handling of laboratory specimens. 
The pathogenesis and progression of the difficulties are signifi-
cantly influenced by certain structural proteins that may be 
found on the outermost layer of the virus. Typical medical 
symptoms of this ailment include high fever, chills, coughing, 
and shortness of breath or difficulty breathing.8

Genetic analysis and whole-genome sequencing research 
have unveiled that SARS-CoV-2 is a beta coronavirus family, 
closely resembling bat-originated severe acute respiratory syn-
drome (SARS)-like coronaviruses (with around 88% genomic 
similarity) and SARS-CoV-1 (around 79% similarity). A 
recent proposal suggests that SARS-CoV-2 can be categorized 
into 2 main genotypes: Type I (further divided into Type  
IA and IB) and Type II. Type IA most closely resembles the 
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original SARS-CoV-2 ancestor, while Type IB emerged from 
Type IA through a novel mutation at position 29 063. In con-
trast, Type II, which likely evolved from Type I, prevails in cur-
rent infections.9,10 In the SARS-CoV-2 genome, the viral 
replicase segment is encoded at the 5′ end, while the structural 
proteins are encoded at the 3′ end. The virus possesses 4 major 
structural proteins: spike, membrane, envelope, and nucleo
capsid. Coronaviruses access host cells via the spike protein’s 
interaction with host cell receptors like angiotensin-converting 
enzyme 2 (ACE2) and CD147.11,12 Replicase RdRp manages 
coronavirus replication within host cells, leading to the produc-
tion of diverse and highly mutable coronaviruses. Subsequent 
to initial exposure, immune responses are triggered by cytotoxic 
cells, antibodies, and interferons.13

After the initial SARS-CoV-2 outbreak in China and the 
announcement of the pandemic, experts worldwide have been 
swiftly striving to discover ways to treat and prevent COVID-
19. Mass vaccination is a “checkmate” move to terminate the 
pandemic. Nevertheless, to achieve lasting and extensive pro-
tection, the emphasis has shifted toward crafting vaccines that 
not only offer individual defense but also significantly curtail 
disease transmission. This effort is pivotal for reaching “herd 
immunity”—a point at which the infectious agent can no 
longer circulate due to a considerable level of population 
immunity.14 However, scientists generated numerous possible 
COVID-19 vaccines across the globe. All vaccines are intended 
to instruct the immune system to recognize and combat the 
COVID-19 virus. Vaccine hesitation and skepticism among 
the global population are regarded to constitute a significant 
barrier to the fulfillment of this objective. Hesitancy refers to a 
situation where a notable portion of the global population 
demonstrates reluctance in either accepting or declining vac-
cines, even when vaccination services are readily accessible.15 
COVID-19 vaccine hesitancy is associated with factors such as 
religion, gender, political orientation, and trust in healthcare 
organizations and scientific institutions. These are the prime 
obstacles that health care practitioners, politicians, community 
leaders and governments must overcome to increase the  
vaccinations’ general acceptability.15,16 In addition, vaccination 
equity is a global issue in which high- and upper-middle-
income countries receive more vaccine doses than low-income 
nations. So, despite the invention of the vaccine, not all people 
can get this vaccine now. It is critical to find novel therapeutic 
agents, repurposed present pharmaceuticals or chemicals,  
and broad-spectrum antiviral drugs for the treatment of the 
2019-nCoV outbreak. To achieve the goal of developing an 
appropriate antiviral drug, existing antiviral medicines need  
to be evaluated against SARS-CoV-2. Several medications 
have been chosen as potential candidates for the therapy of 
COVID-19, according to the information obtained to date.12 
The aim of this study is to assess the probable and proposed 
antivirals, antibiotics, and immune modulators, as well as their 
preclinical and clinical findings, efficacy or inefficacy, and ther-
apeutic regimens for the management of COVID-19.

Mechanism of SARS-CoV-2 Infection
ACE2 (Angiotensin-converting enzyme 2) and 
TMPRSS2 (Transmembrane serine protease 2) 
mediated cell entry and infection of SARS-CoV-2

Recent emergence of the new disease-causing SARS-CoV-2 
in China and its rapid country and across border dissemination 
constitutes an international health emergency. SARS-CoV-2 
has 2 main ways of entering cells. It can merge with the outer 
membrane of cells directly, or it can use a process called endo-
somal membrane fusion.17 Intriguingly, coronavirus fusion is 
reliant on proteases enzymes in the virus’s nearest environment, 
indicating the spike (S) proteins of the virus can adjust and 
interact with different signaling proteins.18 The process of cor-
onavirus entering cells relies on the binding of the spike (S) 
glycoprotein, which is present in trimer formations on the cell 
surface, to a specific cellular target. This interaction is followed 
by the activation of the S protein through cellular proteases. 
SARS-CoV-2 recruits angiotensin-converting enzyme 2 
(ACE2) as an entrance receptor in this manner. The strength 
of the bond between the S protein of SARS-CoV-2 and ACE2 
is connected to how quickly the virus replicates and the severity 
of the resulting illness. Additionally, the involvement of trans-
membrane serine protease 2 (TMPRSS2) activity and cathep-
sin B/L activity is necessary for SARS-CoV-2 to enter host 
cells.19 The S protein can be activated proteolytically by 
TMPRSS2 or cathepsins B and L.20 Unlike SARS-CoV, the 
S1/S2 site of SARS-CoV-2 spike protein depicts a multibasic 
cleavage site with a minimal furin recognition motif.21 During 
viral escape, furin has been demonstrated to be responsible for 
cleaving the S1/S2 site. This pathway is required for TMPRSS2 
to activate S at the S2′ site following receptor binding and is 
essential for respiratory tract cell infection.22

When neither exogenous nor enclosed by the membrane 
proteases are not present, coronaviruses can internalize cells 
through endocytosis, either mediated by clathrin or without 
involving clathrin.23 Surprisingly, the precise location where 
SARS-CoV-2’s fusion of viral and cellular membranes takes 
place is still unknown. It is conceivable for fusion to occur at 
the plasma membrane of the cell, which has been suggested as 
the main entrance point for cells. Uncovering the cellular com-
ponents employed by SARS-CoV-2 for entrance could shed 
light on viral propagation and identify potential treatment 
targets.24

Other mechanisms of SARS-CoV-2 entry and infection

In addition to ACE2, numerous other molecules like C-type 
lectins, CD209, or DC-SIGN in dendritic cells and CD209L 
or L-SIGN in liver endothelial cells have been suggested as 
possible receptors for SARS-CoV-2.25 Lectins are important 
for the identification of a wide range of pathogens and in the 
regulation of intercellular adhesion. They connect to a broad 
spectrum of viruses by identifying the glycans on the surface of 
the viral particle, and this typically speeds up viral entry by 
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enabling the virus to connect to the cells that are being tar-
geted.26 Besides, heparan sulfate proteoglycans (HSPG) serves 
as co-receptors for SARS-CoV-2 cell entry. Heparan sulfate, 
found in the cellular glycocalyx, binds directly to the SARS-
CoV-2 spike protein, aiding in the attachment of viral particles 
to cell surfaces and promoting viral entry. This interaction 
facilitates the open conformation of the spike protein required 
for binding to ACE2 receptors, ultimately enhancing the virus’s 
ability to infect cells.27-29 Similarly, T cell immunoglobulin 
mucin domain protein 1 (TIM1) and tyrosine kinase receptor 
AXL have been proposed as alternate SARS-CoV-2 receptors. 
These receptors belong to the TIM and TAM (Tyro3, Axl, and 
MerTK) families of phosphatidylserine receptors, which aid 
the entry of various enveloped viruses by binding to phosphati-
dylserine on the viral membrane.30 However, despite the 
enhancement of viral entry by lectins and phosphatidylserine 
receptors, they lack specificity and cannot efficiently support 
SARS-CoV-2 infection in the absence of ACE2.30,31 Moreover, 
CD147, a ubiquitously expressed transmembrane glycoprotein 
on epithelial and immunological cells, has been postulated as 
an alternative receptor for SARS-CoV-2 infection.32 Another 
host factor for SARS-CoV-2, Neuropilin 1 (NRP1), has been 
identified by 2 research groups. Although NRP1 is found in 
olfactory and respiratory epithelial cells, its presence is limited 
in ciliated cells—the main target of SARS-CoV-2 in the air-
way. On the other hand, its levels are higher in goblet cells, 
which are less prone to SARS-CoV-2 infection.33 NRP1 was 
noted to amplify the TMPRSS2-facilitated entry of the  
original SARS-CoV-2 virus. However, this enhancement was 
absent when examining a mutated virus that lacked the furin-
cleavage site. Furthermore, research has indicated that NRP1 
can attach to the S1 portion via the furin-cleavage site. This 
attachment prompts the liberation of S1, revealing the S2′ site, 
which is then susceptible to interaction with TMPRSS2.34

Potential Therapies for the Treatment of COVID-19
Drugs being repurposed for use in COVID-19 treatment

The worldwide health emergency triggered by the COVID-19 
pandemic has compelled the acceleration of drug discovery and 
the speedy identification of effective medications and treat-
ment options. Despite the ongoing worldwide distribution of 
the COVID-19 vaccine, there remains a requirement to create 
efficient treatments, particularly in countries where vaccine 
acceptance and availability are poor and in the face of the insid-
ious threat posed by mutations leading to vaccine escape. 
There’s potential to repurpose current drugs for addressing 
COVID-19, especially if they are already sanctioned for differ-
ent uses and possess established records of safety. Drug repur-
posing is a known strategy of discovering new therapeutic uses 
of an existing drug other than its original purpose. The strategy 
of repurposing drugs is widely employed to accelerate the 
research process, reduce associated costs, and mitigate risks.35 
Even though repurposed drugs still need to go through clinical 

trials, it’s evident that this method can quickly unveil effective 
treatments, even those that initially failed for their original 
intent. While there are limited approved drugs or vaccines spe-
cifically targeting coronaviruses, numerous theoretical avenues 
exist for combating the disease. These include vaccines, mono-
clonal antibodies, therapeutics based on oligonucleotides, pep-
tides, interferon therapy, and small-molecule medications (as 
outlined in Table 1).35,36 Unfortunately, the identification of 
medications capable of providing a lasting cure a disease per-
manently could take several months to years. On the basis of 
crystallographic findings, several options for controlling or pre-
venting the emergence of SARS-CoV-2 infections have been 
considered. These primarily encompass COVID-19 vaccina-
tion, evaluating the potency, efficacy, and safety of vaccines 
against COVID-19, non-pharmaceutical interventions (NPI), 
COVID-19 contact tracing, and recommendations concerning 
the quarantine of individuals in close proximity to COVID-19 
cases, as well as the isolation of COVID-19 patients.37 Thus, 
numerous researchers are attempting to repurpose current 
medications for MERS and SARS. Although no effective 
medication therapies for COVID-19 have yet been identified, 
several are being explored including medications for cancer, 
HIV, and malaria.38,39 As COVID-19 spreads rapidly over the 
globe, it is imperative to identify new medications, which 
might be accomplished by repurposing the drugs. The drugs 
that are currently being repurposed for the treatment of 
COVID-19 infection are designed to address various phases of 
viral infection. These encompass viral entry, translation, prote-
olysis, replication of viral RNA, assembly of viral proteins, and 
the release of the virus (Figure 1). The fusion of viral spike 
proteins with the host’s cellular ACE2 receptor leads to the 
suppression of ACE2. The expression of ACE2 is increased by 
repurposed drugs such statins, angiotensin-converting enzyme 
inhibitors (ACEIs), and angiotensin receptor blockers (ARBs). 
Consequently, these drugs might hold potential effectiveness 
against SARS-CoV-2 infections. Low endosomal pH lyses 
viral structural proteins after fusion, hence, chloroquine and 
hydroxychloroquine may be antiviral by disrupting this acidic 
environment. The viral primary protease enzyme facilitates 
proteolysis, generating functional RNA-dependent RNA pol-
ymerase (RDRP) proteins. Viral protease inhibitors, including 
lopinavir, ritonavir, and darunavir, show promise in combating 
the virus. RDRP supports virus replication and transcription. 
Remdesivir, favipiravir, ribavirin, and arbidol inhibit viral 
RDRP, consequently may be useful in COVID-19 treatment. 
After translation, proteolysis, and packaging, intact virions are 
exocytosed from the cell. Targeting the growth and propaga-
tion of each phase in the viral life cycle presents a strategy for 
managing its infection.

Antiviral drugs
Remdesivir.  Remdesivir (RDV) is a nucleoside antiviral 

medication that was first employed to combat fatal Ebola, 
Marburg, and Nipah viral infections.99 I It has broad-spectrum 
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anti-coronavirus activity that works against MERS-CoV and 
SARS-CoV-2, among other viruses.100 Remdesivir’s RdRp 
inhibitory effect can prevent the reproduction of several coro-
naviruses in a breathing epithelial cell.101 Remdesivir has been 
proven in preclinical trials to be protective against SARS-CoV 
and MERS-CoV infections by interfering with coronavirus 
viral polymerase. Remdesivir was also proven to effectively 
block viral infection in a human cell line (Huh-7 cells from 
human liver cancer) that is susceptible to 2019-nCoV.100 
The first COVID-19 patient in the United States also saw 
a dramatic recovery after receiving therapy with intravenous 
remdesivir.102 In Korea, the initial patient was administered 
personalized treatment with remdesivir on the sixth day of 
hospitalization, followed by intravenous administration on the 
seventh day, which resulted in no negative responses. Subse-
quently, vancomycin and cefepime were ceased the following 
day. Improvement in clinical and respiratory symptoms was 
observed on the eighth day of hospitalization, accompanied by 
an increase in oxygen saturation to 94%.103

The World Health Organization (WHO) said that rem-
desivir offered substantial potential as a leading contender for 
treating COVID-19 at the time of the COVID-19 pandem-
ic’s outbreak. Multiple in vivo studies discovered that RDV 
(remdesivir) led to a decrease in pathological processes,  
viral load, mild symptoms, and established lung lesions in ani-
mals infected with SARS-CoV-2.104 An intriguing study 
involved 53 severe COVID-19 patients who received remde-
sivir treatment. The results indicated clinical improvement in 
36 out of the 53 patients (68%). A double-blind, randomized, 
placebo-controlled trial found that RDV treatment (200 mg 

on day 1, followed by 100 mg daily for up to 9 days) could 
help hospitalized patients recover faster with fewer side 
effects and mortality than the placebo group, as well as evi-
dence of decreased respiratory tract infection.104 The combi-
nation of baricitinib and remdesivir was demonstrated to 
shorten the duration to recovery within 29 days of beginning 
therapy as compared to patients who got remdesivir plus a 
placebo.105 Notable side effects were observed, including 
acute respiratory failure, reduced kidney filtration rate, low 
levels of lymphocytes, fever, high blood sugar, worsened ane-
mia, higher levels of creatinine, and increased liver enzymes.106 
The National Institutes of Health now recommends the 
combined use of baricitinib and remdesivir only if corticos-
teroids (such as dexamethasone) cannot be utilized. So, larger 
studies should be needed to confirm the results. Presently, 
there are 129 ongoing clinical trials investigating the applica-
tion of remdesivir in COVID-19 patients.42

Ribavirin.  The Food and Drug Administration (FDA) has 
authorized the guanosine analog ribavirin (RBV) as a wide-
spectrum antiviral.107 The hepatitis C virus, enterovirus 71, 
canine distemper virus, chikungunya virus, Semliki Forest 
virus, orthopoxvirus, influenza virus, and flavi- and paramyxo-
viruses have all been demonstrated to be susceptible to this 
medication’s antiviral effects.108,109 The RNA-dependent RNA 
polymerase (RdRp) catalyzes RNA synthesis, transcription, 
and proliferation, as well as virus pathogenesis.110 Ribavirin  
is administered intravenously, and targeting the viral RdRp 
prevents viral RNA formation by stopping viral mRNA 
production.111

Figure 1.  The mechanism of action of potential drugs against SARS-CoV-2. Even though there are no specific drugs for SARS-CoV-2 yet, it has been 

suggested that a number of drugs used to treat viral diseases, bacterial diseases, parasitic infections, monoclonal antibodies, and different protease 

inhibitors could be used to treat COVID-19.
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This study suggests that ribavirin, RDV, and sofosbuvir may 
be helpful in the treatment of SARS-CoV-2. In a trial includ-
ing 115 patients with severe COVID-19 who received intrave-
nous ribavirin, researchers found that ribavirin medication had 
no effect on mortality when compared to the control group.43 
Elfiky recently recommended using a combination antiviral 
medication to treat COVID-19.81 In another trial, RBV was 
administered alongside lopinavir/ritonavir (LPV/RTV) and 
IFN-γ to hospitalized COVID-19 patients. This triple treat-
ment was shown to be more effective than LPV-RTV alone at 
reducing signs and symptoms, reducing viral shedding, and 
shortening hospital stays in patients with mild to moderate 
COVID-19. About 400 mg dosage of RBV was evaluated 
alongside 400 mg/100 mg of LPV/RTV + IFN-γ for 14 days.112 
In one trial, the antiviral medications sofosbuvir/daclatasvir 
and RBV were compared for the treatment of COVID-19 
patients. Sofosbuvir/daclatasvir were more effective than RBV 
at binding to RdRp and could therefore be utilized to treat 
COVID-19.112,113 However, these medications may bind to the 
COVID-19 RdRp by restricting the protein’s activity, resulting 
in the eventual eradication of the virus. In vivo effects and their 
safety profile required additional examination. There are now 
18 registered clinical studies examining the use of ribavirin in 
COVID-19 patients.45

Molnupiravir.  Beta-D-N4-hydroxycytidine (NHC), a rib-
onucleoside that combats RNA viruses in a variety of ways, is 
available orally under the name molnupiravir. NHC is taken up 
by viral RNA-dependent RNA polymerases, which results in 
virus mutations and deadly recombination.114,115 Molnupiravir 
was originally developed for the treatment of influenza at 
Emory University, USA.116 The Food and Drug Administra-
tion (FDA) granted an Emergency Use Authorization (EUA) 
for molnupiravir on December 23, 2021. This authorization 
allows the use of molnupiravir to treat adults with mild to 
moderate COVID-19 symptoms within 5 days of onset, if they 
are at a heightened risk of developing severe illness and if other 
antiviral treatments are not available or suitable from a clinical 
perspective. A broad-spectrum, orally active antiviral drug 
called molnupiravir works on the RdRp enzyme by contending 
with uridine and cytidine triphosphate substrates. This causes 
A and G to be incorporated into stable complexes in the active 
RdRp center, which causes mutation and proofreading to be 
evaded. Molnupiravir’s 2-step mutagenesis strategy and “error 
catastrophe” processes attempt to halt viral reproduction. In 
other words, it causes the virus to self-destruct.115 Molnupira-
vir has shown promise in increasing the frequency of viral 
RNA mutations and inhibiting SARS-CoV-2 replication in 
both animal models and humans.115 Virus mutants might 
quickly escape not only the immune response within an indi-
vidual patient but also the antibody repertoire raised in a vac-
cinated population.117 However, it also carries the possible risk 
of inducing mutagenesis in patient DNA, potentially leading to 
cancer or embryonic damage in pregnant women.118,119 Due to  

this risk, pregnant women are not eligible for molnupiravir 
treatment, and a negative pregnancy test is required before 
administering the drug.120

Several researchers have studied the inhibition of COVID-
19 replication by molnupiravir in animal models. In the study 
conducted by Wahl et  al,121 mice were used to explore the 
effects of molnupiravir (EIDD-2801) on lung infection. To 
evaluate the preventative effects, molnupiravir was adminis-
tered 12 hours prior to infection. The results demonstrated that 
molnupiravir is more effective at preventing COVID-19 infec-
tion if it is administered sooner. Abdelnabi et al122 studied the 
impact of EIDD-2801 on the transmission of COVID-19 in 
ferrets. In this trial, EIDD-2801 was administered 2 times a 
day (BID)—12 and 36 hours—following oral gavage infection. 
The impact of molnupiravir on preventing transmission 
through close contact was also investigated in both the control 
and treatment groups. The findings indicated that it effectively 
hinders virus transmission within 24 hours of administration. 
Another examination of the inhibitory effects of EIDD-2801 
on COVID-19 replication in lung epithelial cells of Syrian 
hamsters exhibited a significant reduction in viral replication, 
as reported in a separate investigation. In a research effort con-
ducted by Abdelnabi et al,122 the administration of molnupira-
vir led to a dose-dependent reduction in viral titer and viral 
RNA load compared to the control group. Furthermore, this 
study highlights that delaying the therapy might not com-
pletely stop viral replication; however, it could potentially delay 
the progression of the infection within the hamsters’ lungs.

Galidesivir.  The antiviral compound galidesivir functions  
as an analog of adenosine and operates by preventing the func-
tion of viral RNA polymerase.48 It has shown effective against a 
variety of viruses, including as Zika, Marburg, yellow fever, and 
Ebola. In vitro assessments have showcased its broad-spectrum 
efficacy against more than 20 RNA viruses spanning 9 distinct 
families, encompassing coronaviruses, filoviruses, picornavi-
ruses, togaviruses, bunyaviruses, arenaviruses, orthomyxoviruses, 
paramyxoviruses, and flaviviruses.123 BioCryst Pharmaceuticals 
has initiated a randomized, double-blind, placebo-controlled 
clinical trial involving individuals with COVID-19 to evaluate 
the safety, pharmacokinetics (PK), clinical outcomes, and anti-
viral impacts of galidesivir. Additionally, Brazil is commencing 
trials with galidesivir in human participants. Consequently, 
galidesivir presents itself as a promising therapeutic contender 
for treating severe symptoms of COVID-19 caused by the 
SARS-CoV-2 virus. Currently, a single clinical study, dedicated 
to investigating the utilization of galidesivir in COVID-19 
patients, has been officially registered.50

Paxlovid.  Paxlovid, an oral antiviral therapeutic for 
COVID-19, issued on December 22, 2021, is a combination 
antiviral drug created by the pharmaceutical company Pfizer. 
The therapy involves a recently created antiviral medication 
called nirmatrelvir along with ritonavir, a potent inhibitor of 
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the enzyme cytochrome P450-3A4 (CYP3A4), which is 
responsible for processing various types of medications.124 
Ritonavir inhibits the breakdown of nirmatrelvir, raising drug 
concentrations and delaying elimination. Within 5 days of the 
beginning of symptoms and as soon as possible after the 
COVID-19 diagnosis, it should be started. Paxlovid exhibited 
significant potential in clinical trials, demonstrating an 88% 
reduction in the risk of hospitalization or death from COVID-
19 when administered within 5 days of symptom onset, com-
pared to a placebo.125 Paxlovid is authorized for managing mild 
to moderate cases of COVID-19 in individuals aged 12 years 
and above, weighing a minimum of 40 kg, who have received a 
positive SARS-CoV-2 test result. This approval is intended for 
those who face an elevated risk of progressing to severe 
COVID-19, which could lead to hospitalization or even fatal 
outcomes. The FDA amended the initial Emergency Use 
Authorization (EUA) for Paxlovid on April 14, 2022, to permit 
the presentation of an additional dose pack with the proper 
dosing for patients with moderate renal impairment within the 
parameters of the EUA. The U.S. Food and Drug Administra-
tion (FDA) authorized paxlovid for emergency use in Decem-
ber 2021, and the government obtained enough of the antiviral 
medication to treat 20 million people in 2022.125 Paxlovid is 
not sanctioned for the prevention of COVID-19 before or 
after exposure, nor is it approved as an initial treatment for 
patients who are hospitalized due to severe or life-threatening 
cases of COVID-19 infection.51 Paxlovid was finally received 
full approval by the FDA in May 2023 for the treatment of 
mild to moderate COVID infection in adults at high risk for 
severe disease, including hospitalization and death.

By inhibiting a protease needed for viral replication, pax-
lovid exerts antiviral efficacy. Coronavirus proteases cleave 
many locations in the viral polyprotein where flexible glu-
tamine replaces pyrrolidone. Due to the coronavirus epidemic, 
dehydration rates are extremely high. While nirmatrelvir was 
meant to particularly target SARS-CoV-2 Mpro, in vitro test-
ing revealed that it also inhibited the infectivity of SARS-
CoV-1, SARS-CoV-2, MERS, and 229e coronaviruses.126 
When given orally, it also provided protection against SARS-
CoV-2 in mice. Pfizer had previously concluded a phase 1 
clinical trial involving healthy volunteers and had initiated a 
phase two-thirds trial for COVID-19 named Evaluation of 
Protease Inhibition for COVID-19 in High-Risk Patients 
(EPIC-HR) at the time these findings were disclosed. The 
phase 1 study explored nirmatrelvir in isolation and in con-
junction with ritonavir. Pfizer adopted the combination 
approach after recognizing that medication levels remained 
higher for an extended period when used in conjunction, as 
seen in EPIC-HR, a trial that involved 2246 participants. 
Among these participants, 1120 received 300 mg of nirmatrel-
vir and 100 mg of ritonavir, while 1126 received a placebo 
twice daily for 5 days.126

Pfizer disclosed an interim analysis on November 5, 2021, 
involving 774 patients treated within 3 days of showing 

symptoms. Among the individuals who received Paxlovid, only 
3 out of 389 patients (0.77%) had been admitted to the hospital 
by the 28th day. In contrast, among the 385 patients who were 
administered a placebo, 20 had been hospitalized by that time, 
and an additional 7 had passed away. These 27 individuals con-
stituted 7% of the placebo-administered group. Pfizer eventu-
ally released the final data on December 14, 2021, and the 
findings were subsequently published in the New England 
Journal of Medicine on February 16.127 Once more, the main 
research was restricted to patients who had received Paxlovid 
within 3 days of the commencement of symptoms. On day 28, 
5 of 697 (0.72%) Paxlovid patients were admitted to the hospi-
tal. In the placebo group, 35 out of 682 patients had been hos-
pitalized over this period, and 9 had died; these 44 patients 
represented 6.45% of the placebo group. Upon widening the 
scope of the analysis to encompass individuals who were 
administered Paxlovid within 5 days from symptom initiation, 
the results indicated that out of 1039 patients in the Paxlovid 
group, eight (0.77%) had been hospitalized due to COVID-19 
or had succumbed to any cause by the 28th day. In contrast, 
among the 1046 patients in the placebo group, 66 (6.31%) had 
been hospitalized or had passed away within the same time-
frame. Unlike molnupiravir, where the comprehensive study 
findings turned out to be worse than initially stated in a press 
release by its developers, the interim and final analyses for 
Paxlovid showcased consistent results.124

Paxlovid was approved to treat COVID-19 as it inhibits 
SARS-CoV-2 3-chymotrypsin-like cysteine protease (3CLpro) 
also known as main protease (Mpro). The manifestation of 
SARS-CoV-2 variants with mutations in Mpro further raised 
the alarm of potential drug resistance. Numerous studies have 
identified mutations in the Mpro which confer resistance  
to nirmatrelvir, emphasizing the importance of monitoring 
their prevalence among circulating strains. Analyzing over 
13 million SARS-CoV-2 sequences, approximately 0.5% 
showed mutations associated with nirmatrelvir resistance,  
with no significant rise post-Paxlovid approval. The mutations 
G15S (2070 per million) and T21I (1386 per million) were the 
most common, and they held dominance in specific lineages of 
SARS-CoV-2. Other mutations like E166V and S144E, which 
have been demonstrated to significantly impact nirmatrelvir’s 
ability to inhibit viral replication or protease activity by over 
100-fold, were detected in fewer than 1 per million sequences.128 
Another study identified 100 naturally occurring mutations in 
SARS-CoV-2 Mpro, located at the nirmatrelvir binding site of 
the Mpro, which could exert resistance to nirmatrelvir and, 
hence, could impact the effectiveness of Paxlovid. Continued 
use of Paxlovid may potentially elevate the occurrence of these 
pre-existing drug-resistant mutants.129

Lopinavir/ritonavir (LPV/r).  LPV/r is a combined antiviral 
medication utilized to treat the infection of HIV by blocking 
the viral protease and acting as a booster for ritonavir.130 Based 
on its demonstrated efficacy against SARS-CoV, lopinavir/
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ritonavir (LPV/r) is a prospective treatment option for 
COVID-19 infections.131 The majority of in vitro investiga-
tions have demonstrated that SARS-CoV-2 can be suppressed 
by lopinavir and that its EC50 is acceptable. In Vero E6 cells, 
lopinavir exhibited an antiviral activity against SARS-CoV-2 
virus with an estimated EC50 of 26.63 μM.131 The recom-
mended dosage of Lopinavir/Ritonavir is 200 mg/50 mg per 
capsule, taken twice day by mouth.132,133

In a trial conducted in Hong Kong, patients treated with 
lopinavir/ritonavir plus ribavirin fared better than those treated 
with ribavirin alone. At 21 days after the onset of symptoms, 
lopinavir/ritonavir plus ribavirin reduced the probability of 
acute respiratory distress syndrome (ARDS) or death.134 
Moreover, lopinavir/ritonavir is thought to be a COVID-19 
therapeutic option based on clinical research with COVID-19 
patients.133 In alternate research involving 47 COVID-19 
patients, the combined therapy of LPV/r alongside the stand-
ard of care (SOC) (utilized for 42 patients) exhibited that indi-
viduals in the experimental group experienced a quicker return 
to normal body temperature (4.8 ± 1.94 days) compared to 
those in the control group (7.3 ± 1.53 days). This is in contrast 
to the SOC group, which comprised 5 patients treated with 
arbidol and an IFNα inhaler. According to these findings, 
patients who received LPV/r and pneumonia-related adjuvant 
medications had a higher chance of recovering their normal 
body temperature. Patients in the test group were able to get 
negative more quickly (7.8 ± 3.09 vs 12.0 ± 0.82 days for the 
control group).135 Although lopinavir/ritonavir is suggested as 
prospective treatment for COVID-19, neither lopinavir nor 
ritonavir acts as an inhibitor of Mpro.136,137

In a randomized study involving 199 severe COVID-19 
patients, the inclusion of LPV/r (administered at a dose of 
400/100 mg twice a day for 14 days) to the standard treatment 
regimen did not result in a significant reduction in the duration 
required for clinical improvement when compared to the sole 
utilization of standard care. In addition, LPV-RTV treatment 
was related to a lower mortality rate, a shorter length of stay in 
the intensive care unit, and fewer gastrointestinal side effects. 
Due to unfavorable effects, the therapy of 13 patients with 
lopinavir–ritonavir was discontinued early.138 In another study, 
patients with COVID-19 who were given LPV-RTV had a 
higher risk of bradycardia, which is when the heart rate drops 
to less than 60 beats per minute for more than 24 hours. 
Because of this, the amount of LPV-RTV was cut back or 
stopped. As a result, the patients’ bradycardia went away.139 At 
the moment, 92 clinical trials have been signed up to look into 
how LPV/RTV works in COVID-19 patients.55

Favipiravir.  A novel RNA-dependent RNA polymerase 
(RdRp) inhibitor called favipiravir (FPV) has been utilized to 
treat influenza virus.140 It also stopped the spread of many 
RNA viruses, like the Arena, Bunya, Flavi, and Ebola 
viruses.140,141 The RdRp gene of the 2019-nCoV, a single-
stranded RNA beta-coronavirus, is nearly identical to those of 
SARS-CoV and MERS-CoV. This was found by sequencing 

the virus’s genome.100,142 Favipiravir is going through a  
lot of clinical trials and in vitro tests right now to help treat 
COVID-19 patients.110 The administration of the treatment is 
through oral intake, with the initial effective dose being 500 mg 
on the first day. This is followed by 2 subsequent doses of 
600 mg each day for the next 13 days. Additionally, the treat-
ment regimen includes the use of interferon-alpha, which is 
inhaled through an aerosol. This inhalation is performed twice 
a day, with each inhalation consisting of 5 million units of 
interferon-alpha.110,142

Patients with SARS-CoV-2 who take high doses of favip-
iravir have strong antiviral effects. In a Japanese study, FPV 
was also used to stop COVID-19 patients’ inflammatory 
mediators and pneumonia from getting worse. FPV is also 
used to improve lung histology in severe or critical COVID-
19 patients.143 In an open-label controlled investigation 
involving 80 patients, the participants were divided into 2 
groups. The first group, known as the FPV group, received oral 
FPV treatment, which consisted of 1600 mg twice daily on the 
first day, followed by 600 mg twice daily from days 2 to 14. 
Additionally, this group received IFN-γ via aerosol inhalation, 
with each inhalation containing 5 million international units 
and performed twice daily. The second group, referred to as 
the control group, was administered LPV/RTV treatment, 
which involved 400 mg of LPV and 100 mg of RTV taken 
twice daily from days 1 to 14. Similar to the FPV group, the 
control group also received IFN-γ through aerosol inhalation, 
with each inhalation containing 5 million international units 
and performed twice daily. Their results showed that the FPV 
group responded better to COVID-19 treatment in terms  
of disease progression, improvement in chest imaging, and 
removal of the virus.144 In another study, however, favipiravir 
did not seem to stop the SARS-CoV-2 virus in the lab at con-
centrations below 100 μM.38

In a randomized clinical trial, 120 people who got favipira-
vir and 120 people who got arbidol were compared. Among 
individuals diagnosed with mild to moderate COVID-19,  
the percentage of clinical recovery after a span of 7 days was 
observed to be 55.86% in the arbidol-treated group and 71.43% 
in the favipiravir-treated group. Even though favipiravir didn’t 
make a big difference in the clinical recovery rate at Day 7, it 
did make a big difference in how long it took for fever and 
cough to go away compared to arbidol142 Antiviral therapy, 
specifically favipiravir combination with lowered immunosup-
pression and anti-IL6 receptor antibody, is associated with 
positive outcomes.145 Nonetheless, these first clinical data pro-
vide valuable information regarding the use of FPV to treat 
COVID-19 infection. As of now, there are 65 registered clini-
cal trials focused on exploring the utilization of favipiravir in 
patients diagnosed with COVID-19.58,145

Griff ithsin.  Griffithsin is an antiviral lectin produced from 
Griff ithsia sp.146 It was developed to provide broad-spectrum 
antibacterial activity as a microbicide. By attaching to the viral 
surface glycoproteins such as HIV glycoprotein 120, it can 
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limit human immunodeficiency virus (HIV) infection.146-148 
The phase I clinical trial using griffithsin as an anti-HIV 
microbicide to prevent sexual transmission of HIV in healthy 
populations confirmed its human safety.147 The antiviral activ-
ity of griffithsin is likely attributable to the presence of numer-
ous sugar-binding sites that give a vast number of attachment 
sites for complex carbohydrate molecules present on viral enve-
lopes.148 Griffithsin blocks viral entrance by binding specifi-
cally to the SARS-CoV or MERS-CoV spike glycoprotein.147 
Considering the substantial similarity between the spike  
proteins of SARS-CoV and the newly identified SARS-
CoV-2, it becomes crucial to evaluate the potential effective-
ness of griffithsin as a promising antiviral agent for treating 
patients with COVID-19.149

Umifenovir (arbidol).  Umifenovir (UFV), commonly 
known as Arbidol (ARB), is a Russian antiviral medication 
used to treat influenza and hepatitis C. It is widely used in Rus-
sia and China, and to a lesser extent in other nations, but not in 
the United States.150,151 ARB works by preventing the virus’s 
communication with its host cells. This is achieved by obstruct-
ing the fusion of the viral capsid with the target cell membrane, 
thereby impeding the virus’s ability to enter the target cell. 
Within the concentration range of 10 to 30 M, ARB has dem-
onstrated the capability to effectively prevent COVID-19 
infection.151 It is administered orally to adults in doses of 
200 mg 3 times a day for up to 10 days.142 According to one 
trial, ARB monotherapy may be preferable than lopinavir/rito-
navir in the treatment of COVID-19 patients.142 Another 
open-label randomized controlled trial found that ARB, when 
compared to lopinavir/ritonavir, significantly improves clinical 
and laboratory outcomes, such as peripheral oxygen saturation, 
ICU admissions, hospitalization duration, chest computed 
tomography (CT) involvements, white blood cell count 
(WBC), and erythrocyte sedimentation rate (ESR).152

Patients with COVID-19 who were administered UFV 
alongside LPV/RTV exhibited more favorable results com-
pared to those who solely received LPV/RTV treatment.153 
The administration of umifenovir was considered safe and was 
associated with a heightened rate of negative PCR test results 
by the 14th day in adults who were confirmed to have COVID-
19 through laboratory assessments. However, it was not able to 
significantly reduce the duration required for nucleic acid neg-
ative conversion or the length of hospital stay (LOS). It also 
couldn’t improve symptoms or lower the risk of the disease get-
ting worse. There is no evidence that using umifenovir will 
improve patient-important outcomes in COVID-19 patients.61 
At the moment, 15 clinical trials have been signed up to look 
into how COVID-19 patients can use umifenovir.63

Thapsigargin.  Researchers have identified an antiviral medi-
cation derived from plants.154 The research was conducted at 
Nottingham University in the United Kingdom. The study 
shows that thapsigargin is an effective broad-spectrum  

host-centered antiviral innate immune response against 3 res-
piratory viruses, including Covid-19 virus (SARS-CoV-2), res-
piratory syncytial virus (RSV), and influenza A virus, and may 
have significant implications for how future pandemics are 
mitigated. Through cell and animal investigations, it was deter-
mined that thapsigargin exhibits efficacy against viral infections 
when administered both before and during active disease. Addi-
tionally, it has the capability to hinder the production of new 
virus copies within cells for a minimum of 48 hours following a 
single 30-minute exposure.155 Recent studies have shown that 
thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic 
reticulum (ER) Ca2+ ATPase pump, at levels that do not cause 
cell toxicity, triggers a robust innate immune antiviral response 
within the host. The respiratory syncytial virus (RSV), the com-
mon cold coronavirus OC43, the SARS-CoV-2 virus that 
causes COVID-19, and the influenza A virus are all successfully 
prevented from replicating by this response.155 Thapsigargin 
demonstrated superior antiviral activity compared to remdesivir 
and ribavirin in inhibiting OC43 and RSV, respectively.  
The hypothesis posits that thapsigargin, or its derivatives, holds 
significant potential as a broad-spectrum inhibitor against 
SARS-CoV-2, OC43, RSV, and the influenza virus. This is 
grounded in its ability to effectively impede these distinct 
viruses both prior to and during active infection, alongside its 
demonstrated antiviral effectiveness that extends for at least 
48 hours post-exposure.155

Protease inhibitors
SARS-CoV-2 Mpro and PLpro inhibitors.  The SARS-CoV-2 

produces 2 polyproteins pp1a and pp1ab that are cleaved by the 
viral main protease (Mpro) and papain-like protease (PLpro) 
to produce the non-structural proteins (nsp)1 to 16. PLpro 
cleaves nsp1-3 at its LXGG recognition sites while Mpro 
cleaves the remaining downstream non-structural proteins 
(nsp4-16).156 Due to the involvement of viral Mpro and PLpro 
in regulating viral genomic RNA replication, viral polyprotein 
processing, disrupting the host immune system by interact-
ing with and modifying host proteins, and being common to 
most coronaviruses—including SARS-CoV, MERS-CoV, and 
SARS-CoV-2, Mpro and PLpro stand as crucial therapeutic 
targets for the development of medications against SARS-
CoV-2.157-161

In an attempt to develop Mpro and PLpro based drugs 
against SARS-CoV-2, an in vitro screening was performed 
using the 2560 compounds from the Microsource Spectrum 
library. This study identified several compounds as potent 
inhibitors—2 compounds for Mpro and 8 compounds for 
PLpro. Among these compounds, the quaternary ammonium 
compound cetylpyridinium chloride showed inhibitory activity 
against both enzymes (IC50 = 2.72 ± 0.09 μM for PLpro and 
IC50 = 7.25 ± 0.15 μM for Mpro). A second inhibitor of PLpro 
was the selective estrogen receptor modulator raloxifene which 
also showed dual activity (IC50 = 3.28 ± 0.29 μM for PLpro 
and IC50 = 42.8 ± 6.7 μM for Mpro). Moreover, several kinase 
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inhibitors were also tested and, consequently, olmutinib 
(IC50 = 0.54 ± 0.04 μM), bosutinib (IC50 = 4.23 ± 0.28 μM), 
crizotinib (IC50 = 3.81 ± 0.04 μM), and dacominitinib 
(IC50 = IC50 3.33 ± 0.06 μM) were identified as PLpro inhibi-
tors. This study suggests that other known kinase inhibitors 
could be repurposed as potential PLpro inhibitors, hence,  
could facilitates the COVID-19 treatment opportunities.162 
Recently Hersi et al performed a phenotypic screening using 
an in-house pilot compounds collection possessing a diverse 
skeleta against SARS-CoV-2 PLpro. The researchers found 
SIMR3030 serves as a potent inhibitor of SARS-CoV-2 by 
exhibiting deubiquitinating activity and inhibition of SARS-
CoV-2 specific gene expression (ORF1b and Spike) in infected 
host cells and possessing virucidal activity. Moreover, the in 
vitro absorption, distribution, metabolism, and excretion 
(ADME) assessment of the drug-likeness properties of 
SIMR3030 demonstrated good microsomal stability in liver 
microsomes.163 A synthetic noncovalent PLpro inhibitor 
Jun12682 inhibited SARS-CoV-2 and its variants, including 
nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 µM 
in vivo. Oral treatment with Jun12682 in a SARS-CoV-2 
infected mouse model improved survival and reduced viral 
loads and lesions in lung, suggesting that Jun12682 PLpro 
inhibitor could be a promising oral antiviral candidate for the 
treatment of SARS-CoV-2 infection.164 Using a FRET-based 
enzymatic assay, several molecules including boceprevir, 
GC-376, calpain inhibitor II and calpain inhibitor XII were 
identified to exert potent inhibitory activity against of SARS-
CoV-2 Mpro with single-digit to submicromolar IC50 values. 
Moreover, these 4 compounds (boceprevir, GC-376, calpain 
inhibitors II and XII) were also found to exhibit antiviral  
activity against SARS-CoV-2 through inhibiting viral repli-
cation in cell culture with EC50 values ranging from 0.49 to 
3.37 µM.136 In a study, numerous inhibitors were initially tar-
geted for SARS-CoV-1 PLpro but have shown efficacy against 
SARS-CoV-2 PLpro, with GRL0617 being a notable exam-
ple. GRL0617 inhibits SARS-CoV-2 PLpro as a reversible 
competitive inhibitor. Various other compounds, including 
repurposed drugs and peptide-based molecules, have been 
investigated, with many drawing inspirations from GRL0617’s 
structure.165,166 In another study, several naphthalene-based 
compounds were synthesized and tested for their potential 
inhibitory action against SARS-CoV-2 PLpro. One of these 
compounds (GRL0617) was identified previously as a specific 
SARS-CoV PLpro inhibitor, and showed good potency and 
low cytotoxicity in SARS-CoV-infected Vero E6 cells. In this 
study, 7 compounds were tested through biochemical, whole 
cell, and high-resolution crystallographic studies which suggest 
that all the 7 compounds can hinder SARS-CoV-2 PLpro pro-
tease activity. The compounds are designated as follows: 1 is 
5-amino-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benza-
mide (GRL0617), 2 is 5-carbamylurea-2-methyl-N-[(1R)-1- 
naphthalen-1-ylethyl]benzamide, 3 is 5-acrylamide-2-methyl-
N-[(1R)-1-naphthalen-1-ylethyl]benzamide, 4 is 3-amino 

-N-(naphthalene-1-yl)-5-trifluoromethyl)benzamide, 5 is 
5-(butylcarbamoylamino)-2-methyl-N-[(1R)-1-naphthalen-1- 
ylethyl]benzamide, 6 is 5-(((4-nitrophenoxy)carbonyl)amino)-
2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide, and  
7 is 5-pentanoylamino-2-methyl-N-[(1R)-1-naphthalen-
1-ylethyl]benzamide.167 Therefore, the above-mentioned 
inhibitors of SARS-CoV-2 Mpro and PLpro could serve as 
the foundation for developing new drugs to combat the 
COVID-19 pandemic and may pave the way for the develop-
ment of novel therapeutics for a possible future outbreak of 
new SARS-CoV-2 variants or other coronavirus species.

Darunavir.  An antiretroviral protease inhibitor is darunavir 
(DRV). It is employed for the treatment and prevention of 
acquired immunodeficiency syndrome (AIDS) and human 
immunodeficiency virus (HIV) infections.168,169 Darunavir 
(300 μM), according to in vitro tests, inhibits viral replica-
tion.170 The third-generation antiviral medicine darunavir, 
which is used to suppress the viral protease, is advised by inter-
national guidelines for the treatment of HIV/AIDS. It may be 
supplemented with ritonavir or cobicistat. In the treatment of 
HIV/AIDS, it is more effective and tolerable than lopinavir/
ritonavir. Based on in vitro evidence showcasing its potential to 
combat the disease, darunavir is currently under investigation 
as a potential treatment for SARS-CoV-2. Ritonavir or cobi-
cistat should be used as a boosting agent when administering 
DRV because earlier studies of un-boosted DRV showed sub-
therapeutic drug levels and a higher rate of side events.168  
In vitro tests show that darunavir has potential antiviral  
action against SARS-CoV-2. At clinically meaningful doses,  
DRV has minimal antiviral efficacy against SARS-CoV-2 
(EC50 > 100 μM).171 Darunavir with cobicistat (DRV/c) failed 
a single-center, open-label, randomized, controlled trial at the 
Shanghai Public Health Clinical Center (SPHCC) treating  
30 COVID-19 patients.171 Due to an increase in dispensation 
during the COVID-19 epidemic, a growing insufficiency  
of lopinavir/ritonavir was observed in Italy; thus, the use of 
darunavir/ritonavir 800/100 mg once daily (OD) or darunavir/
cobicistat 800/150 mg once daily (OD) was suggested as an 
alternative treatment in case of lopinavir/ritonavir shortage.172 
Presently, there are 10 registered clinical trials focused on 
exploring the utilization of darunavir in patients diagnosed 
with COVID-19.68

Disulfiram.  Disulfiram (DSF) is a supportive medicine used 
to treat chronic alcoholism by inhibiting acetaldehyde dehydro-
genase and is being studied as a potential treatment for cancer 
and HIV infection.173 According to a study from 2018, it was 
observed that the substance could hinder the PLpro activity of 
both MERS-CoV and SARS-CoV. It works as a competitive (or 
mixed) inhibitor for SARS-CoV PLpro while working as an 
allosteric inhibitor for MERS-CoV PLpro.174 Disulfiram, an 
FDA-approved medication utilized for the treatment of alcohol-
ism, has shown promise as a therapeutic option for COVID-19. 
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It suppresses viral replication by impeding Mpro protease and 
zinc release and exerts anti-inflammatory effects on SARS-
CoV-2 by diminishing cytokine production induced by NF-kB 
and Nod-like receptor family pyrin domain-containing 3 
(NLRP3) inflammasome.71 Another study stated that disulfiram 
is a non-specific Mpro or PLpro inhibitor and its antiviral activity 
might not involve inhibiting viral proteases in the presence  
of reducing reagent 1,4-dithiothreitol (DTT) as judged by 
FRET-based enzymatic assay, thermal shift assay, native mass 
spectrometry, cellular antiviral assays, and molecular dynamics 
simulations.175 According to one study, using disulfiram may 
help to minimize the occurrence and severity of COVID-19.176 
Although symptoms consistent with COVID-19 were signifi-
cantly decreased in the disulfiram group, a different study on 
1297 patients revealed no significant difference in laboratory-
confirmed COVID-19, associated hospitalization, or pneumo-
nia.177 If disulfiram is successful in clinical studies, it could be a 
good contender as a generic anti-COVID-19 therapy for global 
distribution, including to low-income communities. At present, 
2 ongoing clinical trials have been initiated to assess the utiliza-
tion of disulfiram in patients with COVID-19.71

Monoclonal antibody

Tocilizumab.  Tocilizumab is a genetically engineered human-
ized monoclonal antibody belonging to the Immunoglobulin 
G1 class. It has the capacity to attach to both the soluble  
form of the interleukin-6 receptor (sIL-6R) and the receptor 
present on cell membranes (mIL-6R), effectively inhibiting 
both conventional and trans-signals.178 Interleukin-6 (IL-6) is 
a cytokine with involvement in numerous diverse biological 
functions, including the activation of T-cells, tissue fibrosis, 
and lipid metabolism. Most immune cells and stromal cells, 
such as B lymphocytes, T lymphocytes, macrophages, mono-
cytes, nerve fiber cells, mast cells, etc., release IL-6.179 Also, 
high levels of IL-6 can cause cytokine release syndrome 
(CRS).180 This is because IL-6 is involved in the pathogenesis 
of several anti-inflammatory processes. A complex is created 
when IL-6 and IL-6R bind to one another. Later on, it inter-
acts to glycoprotein 130 (gp-130) to initiate signaling and gene 
expression. In the classical signal transduction pathway, IL-6 
binds to mIL-6R and then binds to gp-130 to start reactions 
like anti-inflammatory effects. In the trans-signaling pathway, 
IL-6 binds to sIL-6R and then to gp-130, which starts signal 
transduction inside the cell.181 In the next steps, 2 different 
signaling pathways were used to make acute reactive protein. 
The JAK/STAT pathway is one way that IL-6 sends signals, 
and the Ras/mitogen-activated protein kinase (MAPK)/
NF-κB-IL-6 pathway is another.182 Cytokine storm is a key 
reason why COVID-19 is spreading so quickly. So, treating a 
cytokine storm is a very important part of saving the lives of 
very sick people. There isn’t a particular medication available 
right now to treat SARS-CoV-2 or the COVID-19-induced 
cytokine storm. Tocilizumab, a medication that hinders the 

IL-6 receptor, leading to the suppression of the signaling cas-
cade in the downward direction (as shown in Figure 2), has 
gained approval from the US FDA for the treatment of 
cytokine release syndrome (CRS).182

In a pilot study in China, patients with COVID-19 were 
given a single dose of tocilizumab 400 mg/iv. If the patients 
didn’t respond well, a second dose could be given. After treat-
ment with tocilizumab, 21 patients in this study showed a sig-
nificant improvement in their lung function and fever, and 
their IL-6 level went down.183 In one study, 3924 people with 
severe COVID-19 were given tocilizumab early on. Patients 
who got tocilizumab in the first 2 days were less likely to die 
(29%) than those who didn’t get it (41%).184,185 In another 
study with 243 hospitalized people who had moderate 
COVID-19, tocilizumab did not work to keep people from 
needing a breathing tube (intubation) or dying. On day 28 of 
this study, 11% of the people who got tocilizumab had died, 
while 13% of the people who didn’t get the drug had died. No 
meaningful statistical distinction was found between the 2 
groups.184,185 A number of FDA phase III clinical trials involv-
ing tocilizumab for COVID-19 patients are still in progress. 
Additionally, a recent study by Xu et al186 has been published, 
demonstrating the noteworthy improvement of clinical symp-
toms and a deceleration in disease deterioration among severe 
COVID-19 patients due to tocilizumab treatment. This sug-
gests that tocilizumab holds effectiveness in treating individu-
als severely affected by COVID-19. Currently, there are 96 
registered clinical trials investigating the application of tocili-
zumab in COVID-19 patients.75

AZD7442 (Tixagevimab and cilgavimab).  AZD7442 is com-
posed of 2 entirely human monoclonal antibodies, tixagevimab 
and cilgavimab, both of which possess the ability to neutralize 
SARS-CoV-2. These antibodies were derived from B cells that 
were exposed to SARS-CoV-2 infection.187 These antibodies 
feature the L234F/L235E/P331S (TM) alteration, which 
decreases Fc receptor and complement component C1q  
binding, and the half-life-extending M252Y/S254T/T256E 
(YTE) modification.188 To efficiently eliminate the virus, ixa-
gevimab and cilgavimab bind to distinct, nonoverlapping 
epitopes of the SARS-CoV-2 spike-protein receptor-binding 
domain. In addition to having positive preventative and thera-
peutic effects in nonhuman primates, AZD7442 has been 
shown in vitro to be effective at neutralizing SARS-CoV-2 and 
its problematic variants.189

Within the ongoing phase 3 trial led by Levin et al,187 adults 
aged 18 years and above, who were at a heightened risk of an 
insufficient response to COVID-19 vaccination, an elevated 
risk of encountering SARS-CoV-2 exposure, or both, were 
enrolled. They were then randomly divided into 2 groups at a 
ratio of 2:1. One group received a solitary dose of AZD7442 
(consisting of 2 consecutive intramuscular injections, each  
containing tixagevimab and cilgavimab) at a dosage of  
300 mg, while the other group received a saline placebo. Over a 
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period of up to 183 days, these participants were observed. 
The development of symptomatic COVID-19 (SARS-CoV-2 
infection verified by reverse-transcriptase-polymerase chain 
reaction test) following the treatment of either AZD7442 or a 
placebo served as the key indicator of efficacy, and this was 
tracked up to day 183.187 Moreover, COVID-19 symptoms 
were reported by 8 of the 3441 people in the AZD7442 group 
(0.2%) and 17 of the 1731 people in the placebo group (1.0%). 
The relative risk goes down by 76.7% because of this effect. 
Within the placebo-administered group, there were instances 
of severe or critical COVID-19 observed, totaling 5 cases. 
Furthermore, 2 fatalities attributed to COVID-19 were 
recorded in this group.187

Sotrovimab.  Several sarbecoviruses, notably SARS-CoV-1, the 
cause of the SARS pandemic 20 years ago, are neutralized by 
the human monoclonal antibody sotrovimab, formerly known 
as VIR-7831.190 In actuality, a SARS-CoV-1 patient provided 
the parental form of sotrovimab, S309.

The unapproved chemical sotrovimab may be used in an 
emergency after receiving approval from the US Food and 
Drug Administration (FDA) through an Emergency Use 
Authorization (EUA). This approval is for the treatment of 
mild-to-moderate COVID-19 cases in adult and pediatric 
patients (12 years of age and older, weighing at least  
40 kg), who have tested positive for the SARS-CoV-2 virus 
directly and are at a high risk of progressing to severe  

COVID-19, which includes the potential for hospitalization or 
fatal outcomes.191 It exhibits a strong binding affinity, with a 
dissociation constant (Kd) of 0.21 nM, to a remarkably con-
served site on the receptor binding domain (RBD) of the spike 
(S) protein in SARS-CoV-2. Notably, it doesn’t hinder the 
binding of the human angiotensin-converting enzyme 2 recep-
tor. The Fc domain of sotrovimab features amino acid substitu-
tions M428L and N434S (referred to as the LS modification), 
enhancing the antibody’s half-life without influencing the 
wild-type Fc-mediated effector functions in cell culture.37

In a study on sotrovimab, 41 patients were hospitalized 
(18.6%) after receiving sotrovimab, while 179 patients were not 
hospitalized (81.4%).91 This finding is consistent with the 
findings of Gupta et al.78 It contained 583 COVID-19 patients 
who had been treated (sotrovimab, 291; placebo, 292). 
Compared to the placebo group, which saw 21 (7%) patients 
advance to the main outcome end-point, COVID-19 progres-
sion was decreased by 85% (97.24% interval of confidence), 
with just 3 (1%) patients in the sotrovimab group. One of the 5 
patients brought to the ICU who received a placebo died on 
the 29th day.78 his aligns with a study carried out by Verderese 
et al,192 wherein 707 individuals confirmed to have COVID-19 
were administered NmAb. Participants who received the mon-
oclonal antibody infusion exhibited notable advantages such  
as a substantially reduced hospitalization rate (5.8% compared 
to 11.4%), a shorter average length of hospital stay (5.2 days  
vs 7.4 days), and fewer visits to the emergency department 

Figure 2.  The mechanism of action of monoclonal antibodies against SARS-CoV-2: (a) suppression of SARS-CoV-2 induced cytokine storm by 

Tocilizumab. It exhibits a strong attraction to the IL-6 receptor, impeding the binding of IL-6 to the receptor and rendering IL-6 ineffective in inducing 

immune-related harm to target cells. This action subsequently mitigates inflammatory reactions and (b) neutralizing monoclonal antibodies thwart the 

engagement of SARS-CoV-2 with its target cells. These antibodies impede the virus from adhering to and entering human cells, effectively neutralizing it 

through their binding to a conserved segment on the spike protein of SARS-CoV-2.
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within the 30 days after the index event (8.1% vs 12.3%) when 
compared to the control group.This study examined how 
patients’ symptoms changed after taking sotrovimab, finding 
that shortness of breath (SOB) worsened in 43 patients (19.5%) 
and improved in 177 patients (80.5%). Cough symptoms wors-
ened in 43 individuals (19.5%) while improving in 177 patients 
(80.5%). The radiological progression of patients, as observed 
through chest X-rays, displayed a deterioration in 43 individu-
als (19.5%) and an improvement in 177 individuals (80.5%).192

According to Hurt and Wheatley, the efficiency of mAbs 
in persons with COVID-19 who are hospitalized varies, 
highlighting the problem of antiviral drugs in subjects who 
progressed to severe disease. Conversely, initial observa-
tions suggest a promising potential for monoclonal anti-
bodies (mAbs) in providing effective prevention against 
COVID-19.193 Chen et  al conducted a study aimed at 
assessing the effectiveness of mAbs in mitigating COVID-
19 symptoms. The investigation analyzed the alterations in 
the baseline symptoms score between the groups treated 
with LY-CoV-555 and the placebo. The symptoms score 
ranges from 0 to 24, encompassing 8 domains rated from 0 
(absence of symptoms) to 3 (severe symptoms).194

Bamlanivimab and etesevimab.  Bamlanivimab is a genetically 
engineered neutralizing monoclonal antibody (mAb) that spe-
cifically targets the spike protein of SARS-CoV-2. Its purpose 
is to hinder the virus from attaching to and entering human 
cells, ultimately leading to viral neutralization and the potential 
for treating COVID-19 (Figure 2). A monoclonal antibody 
called etesevimab eliminates the SARS-CoV-2 surface spike 
protein. Lilly and AbCellera developed the bamlanivimab anti-
body, which is used to prevent and cure COVID-19. Bam-
lanivimab was given an Emergency Use Authorization (EUA) 
by the FDA on November 9, 2020, allowing it to be used to 
treat mild to moderate COVID-19 instances in people 12 years 
of age and older who are at an increased risk of hospitaliza-
tion.80 In a study of 577 patients, bamlanivimab lowered viral 
load, symptoms, and hospitalization rates when compared to 
placebo.81 The FDA approved EUA on February 9, 2021 for 
the combination of bamlanivimab and etesevimab to be used 
together for mild or moderate COVID-19 in high-risk 
patients. Another trial found that, compared to placebo, the 
combination of bamlanivimab (2800 mg) and etesevimab 
(2800 mg) significantly decreased SARS-CoV-2 viral load at 
day 11 and also decreased hospitalization and mortality rates 
at day 29.81

Anti-parasitic drugs

Chloroquine (CQ) and hydroxychloroquine (HCQ).  Chloroquine 
(CQ) and hydroxychloroquine (HCQ) are aminoquinolines 
that have been utilized for over 50 years to treat malaria and 
autoimmune illnesses. In addition, these 2 medicines have 
immunomodulatory properties that allow them to be utilized 

to treat autoimmune illnesses such as rheumatoid arthritis and 
systemic lupus erythematosus.195,196 In addition, this medica-
tion is antiviral against SARS-CoV. By increasing the endoso-
mal pH required for virus/cell fusion and obstructing the 
glycosylation of SARS-CoV cellular receptors, chloroquine has 
the potential to prevent infection with the virus. The pH of 
lysosomes is also changed by chloroquine, and it is likely that 
this suppresses the cathepsins necessary for the formation  
of the autophagosome that breaks the SARS-CoV-2 spike 
protein.100,107 In addition, chloroquine, by inhibiting MAP-
kinase, conflicts with SARS-CoV-2 molecular crosstalk, affect-
ing the assembly of virion, sprouting, and proteolytic processing 
of the membrane protein (M-Protein) concurrently. SARS-
CoV-2 employs surface receptor angiotensin-converting 
enzyme 2 (ACE2), and chloroquine can also inhibit ACE2 
receptor glycosylation, hence preventing SARS-CoV-2 adhe-
sion to targeted cells.100,197

Recently, a team of Chinese scientists that examined the 
impact of chloroquine in vitro (using a Vero E6 cell line con-
taminated with SARS-CoV-2) discovered that chloroquine is 
particularly effective at reducing viral replication and hospital 
stays. In this trial, 500 mg of chloroquine was administered 
twice daily to individuals with mild, moderate, and severe 
COVID-19 pneumonia.100,198 According to reports, HCQ 
eliminates SARS-CoV-2 in vitro better than CQ. It is effective 
against viruses both before and after the onset of illness. In fact, 
HCQ might prevent the glycosylation of ACE2. As a result, 
ACE2 on host cells would have a harder time binding to the 
SARS-CoV-2 spike protein. Additionally, HCQ may stop the 
virus from connecting with the host cell by preventing pro-
teases from cleaving coronavirus surface spike proteins.198,199 
Gautret et al200 did a clinical trial study with people who had 
COVID-19 infections and took 600 mg of hydroxychloroquine 
every day. Researchers found that hydroxychloroquine helped 
to reduce the number of viruses in these COVID-19 people. 
Most patients felt much better after taking azithromycin and 
hydroxychloroquine together for 3 to 6 days.200 Recent in vitro 
studies have demonstrated that CQ and HCQ may success-
fully prevent SARS-CoV-2 infections in Vero E6 cells (EC50 
values of 2.71 and 4.51 mM, respectively).201 Even in the early 
stages of COVID-19, low doses of HCQ help patients live 
longer.202 Zhou et al198 made it clear that HCQ may be a better 
treatment for SARS-CoV-2 infection than chloroquine. By 
lowering the expression of T cells, HCQ is anticipated to 
decrease the rapid advancement of COVID-19 toward cytokine 
storm.198 Currently, 287 and 94 clinical studies, respectively, 
have been filed to examine the use of CQ and HCQ in 
COVID-19 patients.84

Nitazoxanide.  The antiparasitic drug nitazoxanide has received 
FDA approval and has been shown to be effective against a 
number of viruses, including coronaviruses, influenza, hepatitis 
C, respiratory syncytial virus, parainfluenza, rotavirus, norovi-
rus, and hepatitis B virus.203 It has not yet been tested on 
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COVID-19 patients; however, it has previously demonstrated 
a low in vitro effective concentration (EC50) against the coro-
naviruses MERS and SARS. Nitazoxanide was consequently 
considered an attractive candidate for suppressing SARS-
CoV-2. To evaluate inhibitory potential, researchers compared 
the highest serum concentration (Cmax) of nitazoxanide with 
the in vitro EC50 for nitazoxanide in the course of therapy of 
SARS-CoV-2. With matching EC50 values of 2.12 and 0.80 M, 
nitazoxanide has considerable in vitro activity against SARS 
CoV-2 and MERS CoV in Vero E6 cells. This broad antiviral 
effectiveness is believed to be a result of the mode of action, 
which involves the inhibition of overall viral replication path-
ways as opposed to infection-specific processes.204 In contrast 
to other proposed medicines, nitazoxanide demonstrated an 
elevated ratio of maximum plasma concentration (Cmax) to 
the concentration needed to block 50% of SARS-CoV-2 repli-
cation (EC50) (Cmax: EC50 roughly comparable to 14:1) after 
1 day of administration of 500 mg twice a day.204 Administra-
tion of nitazoxanide may be useful against SARS-CoV-2 to 
prevent complications, hence lowering the institutional and 
societal transmission of the virus and mortality. It has been 
observed that the combination of nitazoxanide with other 
medications such as azithromycin and hydroxychloroquine 
could be effective. Moreover, nitazoxanide is known to increase 
the synthesis of IFN-α and IFN-β that have been demon-
strated to possess anti-MERS-CoV and anti-coronavirus 
action in vitro. Furthermore, when 600 mg of nitazoxanide was 
administered twice daily for 5 days to patients with acute, 
uncomplicated influenza, it was shown to minimize the dura-
tion of symptoms with few adverse effects.205 There are cur-
rently 31 registered clinical studies examining the use of 
nitazoxanide in COVID-19 patients.87

Ivermectin.  Ivermectin is an oral medicine utilized for treating 
parasitic infections that has FDA approval.206 It was found to 
impede the replication of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) in vitro.207 Regarding the repli-
cation of HIV-1, ivermectin is a strong inhibitor of the 
importin-α/β-assisted transportation of viral proteins into the 
cell nucleus. Research has demonstrated that ivermectin 
impedes the replication of diverse RNA viruses, including 
HIV, chikungunya virus, and yellow fever virus, by influencing 
the importin-α/β-driven movement of viral proteins within 
the nucleus.199,206 One study revealed ivermectin to be an effi-
cient inhibitor of the SARS-CoV-2 in vitro, with a single dose 
of 5 M to Vero-hSLAM cells 2 hours after SARS-CoV-2 
infection causing a 5000-fold reduction in viral RNA after 
48 hours compared to the vehicle DMSO.206 Another small 
study with 280 patients who received ivermectin in Florida 
between March and May 2020 revealed a lower death rate 
compared to standard care (13% vs 25%).208 In a controlled 
clinical study that followed randomized, double-blind, and 
placebo-controlled protocols, a total of 72 patients who were 
hospitalized in Dhaka, Bangladesh, were separated into 3 

distinct groups. The first group received only oral ivermectin 
(12 mg per day) for a span of 5 days. The second group was 
administered a combination of ivermectin (12 mg) and doxycy-
cline (200 mg) on the initial day, followed by 100 mg of doxy-
cycline every 12 hours for the subsequent 4 days. The third 
group was given a placebo as a control. In the ivermectin treat-
ment arm, virological clearance occurred earlier than in the 
placebo group, but not in the ivermectin plus doxycycline treat-
ment arm. And it was safe and effective for treating COVID-
19 in adults with moderate disease.207 The FDA suggested in 
March 2021 that ivermectin should not be applied to treat 
COVID-19. However, additional in vitro, in vivo, and clinical 
experiments are required to determine its relevance and effi-
cacy in COVID-19 treatment. Currently, 90 clinical trials 
investigating the use of ivermectin in COVID-19 patients have 
been registered.90,207

Antibacterial drugs

Teicoplanin.  Teicoplanin is a glycopeptide drug that is approved 
by the FDA and is often used to treat bacterial infections. It has 
been shown to stop the first stage of the MERS-CoV virus’s 
life cycle in human cells.91 Teicoplanin has been added to the 
list of potential substances that might be used to treat COVID-
19 since it was effective in vitro against SARS-CoV.153 Numer-
ous viruses, including the flu virus, Ebola virus, hepatitis C 
virus, flavivirus, human immunodeficiency virus (HIV), and 
coronaviruses including MERS-CoV and SARS-CoV, have 
been successfully treated with this antibiotic in the past.  
Currently, it is utilized to treat bacterial infections caused by 
Gram-positive organisms, mainly staphylococcal infections.209 
In a particular research study, it was found that teicoplanin has 
the capability to hinder the low-pH cleavage activity of cath-
epsin L on the viral spike protein within late endosomes. This 
interference effectively prevents the discharge of genomic viral 
RNA, halting the progression of the virus replication process in 
the early phases of the MERS-CoV coronavirus’s life cycle.210

Recent research has indicated that the IC50 concentration of 
teicoplanin in a laboratory setting is 1.66 μM. However, the 
recommended teicoplanin concentration in the bloodstream 
for clinical purposes, to effectively counter Gram-positive bac-
teria, is 15 mg/l, which corresponds to 8.78 μM. It’s worth not-
ing that the typical daily dosage of teicoplanin in practical 
medical use is 400 mg.211 Zhou et al209 have revealed that teico-
planin acts at the beginning of their life cycles of coronaviruses, 
such as SARS-CoV2. Given the mechanism of action, Zhang 
et al concluded that employing teicoplanin during the initial 
phases of COVID-19 infection could be a viable approach.211 
Their research involved contrasting the medical progress of 
COVID-19 patients admitted to the hospital who were admin-
istered teicoplanin with a similar group of patients who were 
not given the teicoplanin treatment. One trial had 55 patients 
with severe COVID-19 who were hospitalized in intensive 
care units (ICUs). Of these, 34 patients (the Tei-COVID 
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group) got teicoplanin, while the other 21 did not (control 
group). Although lacking statistical significance (P = .654), the 
unadjusted 30-day mortality rate among individuals in the Tei-
COVID group (35.2%) was slightly lower than that of the con-
trol group (42.8%). By the 14th day after hospital admission, 
viral clearance was observed in 64.7% of Tei-COVID patients 
and 57.1% of the control group, with no noteworthy statistical 
distinction. In contrast to the control group, the Tei-COVID 
group exhibited a notable reduction in the serum C-reactive 
protein level. Teicoplanin usage has no negative side effects. 
This early finding suggests that the 2019-nCoV virus infection 
may be treated using the possible antiviral activity of teicopla-
nin. Therefore, additional clinical research is necessary to con-
firm the precise function of teicoplanin.

Azithromycin.  A semisynthetic macrolide antibiotic called 
azithromycin (AZM) is frequently utilized to treat bacterial 
infections like bronchitis and pneumonia.212 Additionally, it is 
applied in the prevention of flu, zika, dengue, and Ebola 
viruses.213 For SARS-CoV-2 viral elimination, azithromycin 
combined with hydroxychloroquine was noticeably more 
effective. In one study, COVID-19 infection in France was 
treated with hydroxychloroquine (200 mg × 3 daily for a 
course of 10 days) and azithromycin (500 mg on day one,  
followed by 250 mg daily for 5 days), the researchers hypo
thesized that using HCQ and AZM together would help 
COVID-19 patients survive better.214 An analysis including 
80 patients revealed that COVID-19 patients treated with a 
combination of azithromycin and HCQ had a significantly 
lower viral load.215 According to a retrospective research con-
ducted in the United States, the mortality rate was lower in 
the group getting HCQ and azithromycin together than it was 
in the group receiving only HCQ.216 After 8 days of treatment 
with azithromycin and hydroxychloroquine, 93% of patients 
with COVID-19 were free of the virus. In a separate research, 
the combination of AZM and HCQ was more successful in 
treating SARS-CoV-2 infection during pregnancy and was 
linked with a lower fatality rate.217 In a controlled study, indi-
viduals with mild to moderate COVID-19 who received treat-
ment with HCQ alone or in conjunction with azithromycin 
did not exhibit any enhancement in their clinical condition 
when contrasted with the control group.218 In another trial 
with 1061 patients in France who got HCQ and azithromycin, 
no COVID-19-related problems occurred, indicating that the 
patients were safe.218,219 Nonetheless, according to certain 
research, the usage of AZM to treat COVID-19 patients had 
no therapeutic effect. At present, there are 136 registered clin-
ical trials exploring the utilization of azithromycin in patients 
with COVID-19.95

Neuraminidase inhibitors (NAIs)

Oseltamivir.  Oseltamivir (marketed as Tamiflu) is an antiviral 
medication that inhibits the neuraminidase enzyme of 

influenza A and B virus.220 It prevents the discharge of viral 
fragments from host cells, hence limiting their transmission to 
the respiratory system. Moreover, oseltamivir was utilized in 
clinical studies to manage COVID-19 individuals during the 
outbreak in China. It was used with various key treatment can-
didates, including corticosteroids, antibiotics, chloroquine, and 
FPV.221 According to the severity of their illness, 124 COVID-
19 patients got varied doses of oseltamivir and methylpredni-
solone in one of these clinical studies, however there were no 
appreciable positive effects.221 Another study found that 
oseltamivir isn’t a good choice for treating COVID-19 in vitro 
study, and clinical use of oseltamivir (75 mg twice daily for 
5 days) did not slow the progression of the disease or improve 
the signs and symptoms of the patients.222 There are currently 
21 registered clinical studies looking at the use of oseltamivir in 
COVID-19 patients.98

Zanamivir.  Zanamivir serves as the active component in the 
antiviral medication Relenza. This medication inhibits the 
reproduction of the influenza virus and can shorten the dura-
tion of symptoms if administered promptly after the onset of 
the infection.223 The mechanism of action of this medication 
involves attaching to the active site of the neuraminidase pro-
tein. This protein must be activated for the influenza virus to 
escape the host cell prior to its death and infect a new host cell. 
The antiviral activity of zanamivir obstructs the neuraminidase 
protein and hinders the virus’s ability to infect additional cells. 
As a result of this impact, zanamivir is able to arrest the pro-
gression of the infection. These are administered to ventilated 
individuals who are resistant to oseltamivir. According to the 
most recent studies, zanamivir is ineffective against nCoV-
2019 and should not be used to treat patients.224

Other Potential Treatment Options for COVID-19
Nanobodies for COVID-19 therapeutics

Nanobodies (Nbs) or Variable Heavy-Chain Domains of 
Heavy-Chain Antibodies (VHHs) are compact, singular anti-
gen-binding fragments obtained from the subgroup of heavy 
chain-only camelid immunoglobulins. They offer an alterna-
tive to traditional antibodies and come with numerous benefits 
such as minimal toxicity, strong affinity, sensitivity, water solu-
bility, simple production, extended shelf life, among others. 
Nbs can be introduced through intravenous, intramuscular, or 
subcutaneous routes, although inhalation delivery stands out as 
the most promising choice for addressing COVID-19.225

Huo et al226 discovered 3 variants, H11 Nb and 2 enhanced 
versions of H11 (H11-D4 and H11-H4), which effectively 
prevented the binding of the RBD and spike (S) protein to 
ACE2 in vitro. RBD binding of H11-H4 and H11-D4 had 
KD’s of 5 and 10 nM, respectively, by surface plasmon reso-
nance (SPR) and 12 and 39 nM, respectively, by isothermal 
titration calorimetry (ITC).226 H11-H4-Fc (IC50 = 61 nM), 
H11-D4-Fc (IC50 = 161 nM), and VHH72-Fc (IC50 = 262 nM) 
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inhibited RBD binding in vitro. H11-H4-Fc (IC50 = 34 nM), 
H11-D4-Fc (IC50 = 28 nM), and VHH72-Fc (IC50 = 33 nM) 
also found to prevent ACE2 binding in vitro. They were also 
demonstrated to be able to neutralize live virus, but H11-
H4-Fc had higher potency.226 Nbs can also be fused with 
human IgG Fc domains.227 Dong et al generated a variety of 
Nbs, including 3F, 1B, and 2A, aimed at obstructing the inter-
action between SARS-CoV-2 and ACE2. By combining 2 of 
these Nbs, they observed a synergistic effect in blocking this 
interaction.227 Importantly, the bi-specific Nb-fc displayed 
notable improvements at concentrations relevant for therapy. It 
exhibited enhanced binding to the S protein and effectively 
blocked the S-ACE2 interaction (with KD = 0.25 nM, IC100 
∼36.7 nM, IC95 ∼12.2 nM, IC50 ∼1 nM), surpassing the per-
formance of monoclonal Nb-Fc.227 The Ty1 Nb showed both 
direct prevention of RBD-ACE2 binding by binding specifi-
cally with RBD with high-affinity (KD 5-10 nM). It also  
demonstrated neutralization of pseudotyped viruses (Ty1: 
IC50 = 0.77 µg/mL; Ty1-Fc: IC50 of ~12 ng/mL).228 Gai et al 
generated 6 Nbs that displayed strong binding affinity to the 
spike protein’s receptor binding domain (S-RBD), alongside 8 
mutations (Q321L, V341I, N354D, V367F, K378R, V483A, 
H519P, and Y508H). These Nbs effectively hindered the inter-
action between the modified RBD mutants and ACE2, with 
inhibition constants (KD) ranging from 21.6 to 106 nM.229 
Nb887 (16.2%), Nb1358 (50.4%), and Nb1159 (98.9%) all 
exhibited varying degrees of RBD-ACE2 blocking activity. All 
Nbs had EC50 and IC50 values less than 0.2 and 1 μg/mL, 
respectively, for half maximal neutralization.229

Pymm et al discovered a group of powerful Nbs with high 
affinity, including WNb 2, WNb 7, WNb 15, and WNb 36 
(with KD values ranging from 0.14 to 19.49 nM), can interfere 
with the interaction between the receptor binding domain 
(RBD) and ACE2. These Nbs not only effectively blocked the 
virus-host interaction but also demonstrated virus-neutralizing 
properties.230 The Nb-Fc fusion constructs exhibited binding 
to various antigenic sites on the RBD, leading to ACE2-RBD 
interaction inhibition. Furthermore, they showed affinity for a 
broad range of RBD variants (with EC50 values spanning 0.7-
14 nM). Although the binding of Nb-Fc (WNb 2, 7, 15, and 
36) to the E484K or N501Y variants of RBD was reduced, 
their binding to the wild-type RBD remained strong (with 
EC50 values between 0.97 and 2.65 nM).230

Cell-based therapy

Various cellular therapy strategies, such as mesenchymal stem 
cells (MSCs), natural killer (NK) cells, dendritic cells (DCs), 
engineered lymphocytes, novel cell-based vaccine platforms, 
and extracellular vesicles, are presently undergoing clinical trials 
as potential authorized treatments for COVID-19.231 Shortly 
following the emergence of COVID-19, scientists specializing 
in stem cells suggested utilizing MSCs as a promising therapeu-
tic option for treating severe cases of the disease. Subsequently, 

clinical trials were promptly initiated. Wang et al conducted a 
comprehensive meta-analysis to evaluate the effectiveness and 
safety of MSC therapy in COVID-19 patients.232 The results 
revealed a notable decrease in adverse events and mortality 
through the utilization of MSC therapy, exhibiting a statisti-
cally significant distinction in comparison to the control group. 
No noteworthy unfavorable effects were linked to MSC ther-
apy. Positive changes were observed in pulmonary function, 
radiographic evaluations, and biomarkers related to inflamma-
tion and immunity. The researchers concluded that MSC ther-
apy represents a feasible and secure approach for addressing 
COVID-19-associated pneumonia.232 However, it’s important 
to note that there exists limited data to gage the role of MSCs 
in COVID-19 treatment, and no MSC-based treatments have 
gained approval from the FDA for this purpose.

Novocellbio, based in Incheon, South Korea, has recently 
disclosed encouraging outcomes derived from the utilization 
of their autologous NK cell treatment called NOVO-NK. 
These promising results were observed in both laboratory set-
tings (in vitro) and live organisms (in vivo). In light of these 
findings, the company is taking the lead in pursuing further 
preclinical investigations to delve into the mechanisms under-
lying the effectiveness of NOVO-NK therapy against SARS-
CoV-2.233 In recent times, several clinical trials have been 
undertaken to examine the safety and immunogenicity of 
intravenously infusing NK cells sourced from healthy donor 
peripheral blood mononuclear cells (PBMCs) into patients 
infected with SARS-CoV-2.

Combination therapy

Combination therapies play a pivotal role in antiviral treat-
ment by enhancing the efficacy of individual drugs and 
impeding the swift emergence of drug resistance. However, 
it’s important to acknowledge that combining therapies can 
bring about challenges related to clinical and regulatory 
development, despite their potential benefits. Recently, com-
bined therapy for COVID-19 patients has demonstrated 
some promise.234 According to certain research findings,  
the implementation of combination therapy or the use of 
multiple drugs for COVID-19 outpatients could potentially 
lead to a reduction in hospitalizations and mortality rates by 
up to 85%. In numerous cases, the combination therapy 
approach has demonstrated remarkable effectiveness in the 
treatment of individuals with COVID-19. As highlighted by 
McCullough et  al,235 the use of combination or multidrug 
therapy is seen as a crucial necessity for managing COVID-
19 patients with severe conditions. For instance, on November 
19, 2020, the FDA approved the first Emergency Use 
Authorization (EUA) for the dual combination of remdesivir 
and baricitinib for the treatment of hospitalized adults and 
children with COVID-19.235

As previously highlighted, a randomized clinical trial 
involving hospitalized COVID-19 patients revealed that the 
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combined administration of baricitinib and remdesivir exhib-
ited higher effectiveness compared to the use of remdesivir 
alone.236 Another clinical trial involved the treatment of 1694 
COVID-19 patients with 2 medications (remdesivir and dexa-
methasone) alongside standard care. The results suggest a 
reduction in 30-day mortality rates.236 Likewise, an additional 
randomized clinical trial was carried out, assessing the effec-
tiveness of the combined treatment of etesevimab and bam-
lanivimab for patients with COVID-19. Patients who received 
bamlanivimab and etesevimab did not experience any death, 
while 10 deaths occurred in the placebo group (9 of which were 
attributed to COVID-19).80 From March to September 2020, 
Procter et al236 assessed the effects of the combined therapy on 
922 outpatients. Antiviral compounds such as ivermectin, 
hydroxychloroquine, and zinc were utilized in the investigation. 
Three antibiotics were also utilized, including doxycycline, 
azithromycin, and ceftriaxone. The study’s findings indicated 
that utilizing multidrug or combination therapy is a more via-
ble and secure approach for individuals experiencing early 
symptoms, especially when managed at home or in non-hospi-
tal settings.236

Intravenous immunoglobulin therapy

Intravenous immunoglobulin (IVIG) is a pooled antibody 
that is isolated from the plasma of thousands of healthy 
donors and contains the naturally therapeutic immunoglobu-
lin G (IgG). It is an immunotherapy approach utilized to 
treat a range of inflammatory and autoimmune illnesses. 
Recent data suggest that high-dose IVIG treatment started 
early may help severely sick COVID-19 patients recover.237 
Cheng et al238 claimed that SARS-CoV-2 differs from other 
SARS family coronaviruses by encoding a superantigen-like 
motif near to its S1/S2 cleavage site. The authors get to the 
conclusion that this pattern could be what allows SARS-
CoV-2 to trigger the cytokine storm seen in COVID-19. 
IVIG may inhibit T cell activation and cytokine release 
caused by super-antigens because it includes antibodies that 
respond to SARS-CoV-2 antigens.238

A recent meta-analysis was carried out to evaluate the effec-
tiveness of intravenous immunoglobulin (IVIG) therapy in 
individuals with COVID-19.239 This analysis compiled data 
from 4 clinical trials and 3 cohort studies, which encompassed 
a total of 825 patients who were hospitalized due to COVID-
19. Their findings revealed that the severity of COVID-19 is 
related to the effectiveness of IVIG. When compared to the 
control group, IVIG could reduce mortality in patients with 
critical conditions. Alternatively, due to its wide-ranging anti-
inflammatory characteristics, IVIG could potentially be used 
in conjunction with immunotherapies focused on IL-1 and 
IL-6, both of which exhibit encouraging outcomes. This com-
bination approach could be explored to assess the potential 
therapeutic benefits of an additive or synergistic treatment 
strategy.240,241

COVID-19 convalescent plasma therapy

Convalescent plasma (CP) therapy involves transferring 
plasma components containing antibodies from an individual 
who has recuperated from COVID-19 (a convalescent 
COVID-19 patient) into a patient who is currently infected.168 
In March 2020, the FDA released an Emergency Investigational 
New Drug (eIND) authorization for the therapy of COVID-
19 patients using convalescent plasma. Within convalescent 
plasma treatment, passive immunization takes place, whereby 
the therapeutic effects of CP antibodies manifest through 
various mechanisms like virus neutralization, antibody-
dependent cellular cytotoxicity (ADCC), and initiation of the 
complement system.242 Antibody neutralizes the viral infec-
tion by attaching directly to the virus’s epitope. This virus 
includes a domain of receptor binding (RBD) that functions 
as both an antibody epitope and a binding site for the ACE-2 
(angiotensin-converting enzyme-2) receptor, a key entry 
receptor for COVID-19 pathogenicity. he antibody against 
SARS-CoV-2 obtained from the plasma of individuals who 
have recuperated from COVID-19 possesses the ability to vie 
with ACE-2 receptors in attaching to the receptor-binding 
domain (RBD) of the virus. This competition thwarts or neu-
tralizes viral infection by obstructing the RBD (Figure 3).242,243 
In addition to their neutralizing impact, the non-neutralizing 
antibodies IgG and IgM contained in COVID-19 CP boosted 
the patient’s recovery via other antibody-dependent path-
ways.244 In August 2020, the FDA granted an emergency use 
authorization (EUA) for the utilization of convalescent plasma 
in the treatment of COVID-19 patients who were hospital-
ized. The first application of CP therapy was against SARS-
CoV-2 in China and Italy, and the rapid deployment of CP in 
numerous countries.149,245 Duan et al described a series of 10 
COVID-19 patients who were all administered a single dose 
of 200 mL convalescent plasma (CP) carrying neutralizing 
antibody titers greater than 1:640 a median of 16.5 days after 
the onset of sickness. The key outcome measure was the safety 
of CP transfusion, and no significant adverse effects were seen. 
The secondary objectives aimed to enhance clinical symptoms 
and laboratory indicators within a 3-day period post convales-
cent plasma (CP) transfusion. Subsequent to the CP transfu-
sion, there were noted increases in levels of neutralizing 
antibodies, oxyhemoglobin saturation, and lymphocyte counts, 
along with decreases in C-reactive protein (CRP), viral load, 
and lung lesions as evident in chest radiographs.149 Another 
trial encompassed 5000 individuals in the United States (US) 
who were grappling with severe or life-threatening COVID-
19. These participants received convalescent plasma during 
the initial stages of symptom manifestation. This study con-
cluded that convalescent plasma therapy for hospitalized 
COVID-19 patients was reasonably secure.246 Several investi-
gations demonstrated the efficacy of CP therapy, whereas cer-
tain clinical studies suggested that the utilization of CP did 
not lead to reduced hospitalization duration, severity of illness, 



20	 Clinical Pathology ﻿

or mortality rates in comparison to the control groups.149,247 A 
multicenter, randomized, open-label clinical trial involving 
103 severe or life-threatening COVID-19 patients in China 
found no statistically significant difference in the improve-
ment of clinical symptoms between CP-treated patients and 
those receiving standard treatment alone within 28 days.248 
Another multicenter study of 78 patients from Poland who 
received convalescent plasma found that 68 (87%) patients 
recovered from COVID-19 and 10 (13%) patients died within 
30 days after CP transfusion, and concluded that convalescent 
plasma can be applied as a supportive medication for COVID-
19 patients because of its accessibility and low incidence of 
side effects.249 There are now 201 clinical studies registered 
looking at the use of convalescent plasma in COVID-19 
patients.250

Corticosteroid therapy

Corticosteroids, such as dexamethasone, have been utilized for 
many years to treat a variety of medical ailments, including 
autoimmune disorders and allergic reactions. As per findings 
from the Randomized Evaluation of Covid-19 Therapy 
(RECOVERY) trial, the administration of a reduced dosage of 
dexamethasone diminishes the mortality rate among hospital-
ized COVID-19 patients who require respiratory support.251 
According to the RECOVERY study, the results of 2104 
patients who received dexamethasone (at a low dose of 6 mg 
once day) orally or intravenously for up to 10 days were com-
pared to those of 4321 patients who received either conven-
tional treatment or no dexamethasone at all. Within 28 days of 

the randomization, 482 patients (22.9%) in the dexamethasone 
group and 1110 patients (25.7%) in the usual care group passed 
away (P = .001). In the dexamethasone group, the mortality  
rate for patients receiving invasive mechanical ventilation and 
oxygen without invasive mechanical ventilation reduced (29.3% 
vs 41.4%) and oxygen alone (23.2% vs 26.2%), however it did 
not decrease for patients receiving no respiratory assistance  
at randomization (17.8% vs 14%).252,253 The World Health 
Organization (WHO) recommends using dexamethasone 
(6 mg intravenous or orally) or hydrocortisone (50 mg intrave-
nous every 8 hours) for 7 to 10 days in the most severely ill 
individuals, but not in those with less severe conditions.254 If 
dexamethasone is unavailable, other corticosteroids such as 
prednisone, acetaminophen, methylprednisolone, or hydrocor-
tisone may be utilized. Acetaminophen is used to treat fevers, 
and methylprednisolone is an acceptable medication for 
patients experiencing rapid illness progression.254,255 All corti-
costeroids may be harmful if administered for COVID-19 
infections of lesser severity. In some instances, tocilizumab  
or baricitinib may be administered with dexamethasone to 
mechanically ventilated or oxygen-dependent hospitalized 
patients. In hospitalized patients who require more oxygen or 
are on mechanical ventilation, remdesivir is usually used with 
dexamethasone. When there is uncontrolled viral replication 
but a low amount of inflammation, only high dosages of corti-
costeroids should be used as a treatment. However, cortico
steroids decrease the immune system, and there are worries 
regarding COVID-19 patients using these medications.256 
Another study found no significant link between patients 
receiving corticosteroids and the control group in terms of 

Figure 3.  Schematic representation of the convalescent plasma therapy. In 14 days, a person who has recovered from COVID-19 infection produces 

enough specific antibodies. Plasma with neutralizing antibodies can be delivered to infected individuals to produce prompt immunity. Antibodies against 

SARS-CoV-2 bind to particular locations on the virus and neutralize it.
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recovery in 11 out of 31 COVID-19 patients who got corticos-
teroid therapy.257 However, because of the immunosuppression 
and side effects associated with these medications, proper care 
must be followed during therapy, and they should not be used 
to treat 2019-nCoV-induced lung damage or shock outside of 
a clinical trial.258 About 101 clinical studies examining the use 
of dexamethasone in COVID-19 patients have been registered 
so far.259

Vitamin supplements for COVID-19 therapeutics

A variety of adjunctive therapies has recently been utilized in 
the prevention and management of SARS-CoV-2 infection 
and associated complications. Due to their immunomodula-
tory properties, vitamins C and D have drawn more attention 
in the fight against COVID-19. It is thought that these sup-
plements may support infected patients and strengthen their 
immune systems.260 A pilot trial of COVID-19 patients who 
received large doses of vitamin C demonstrated statistically 
significant increases in oxygenation from baseline to day 7 in 
the treatment group compared to the control group.261 In a 
controlled and randomized clinical study, it was demonstrated 
that providing mild to moderate COVID-19 patients who  
had insufficient vitamin D levels with a 2-week regimen of 
5000 IU vitamin D3 supplementation resulted in a shortened 
duration for recovery from cough and loss of gustatory sensory 
perception.262

Natural compounds for COVID-19 therapeutics

Several natural compounds and their derivatives have  
reportedly shown promise in combating SARS-CoV-2 infec-
tion.263,264 Emodin, derived from the Polygonaceae plant fam-
ily, has exhibited the ability to hinder the interaction between 
the viral S protein and the host ACE2 receptor.265,266 Myricetin 
and scutellarein, which are naturally existing flavonoids, have 
been confirmed to have the potential to hinder the NSP13 
helicase of SARS-CoV-2.267 Moreover, Rhizoma Cibotii, des-
iccated Cibotium barometz and Dioscoreae rhizoma rhizomes, 
along with Doscorea batatas tubers, as well as the flavonoids 
herbacetin, rhoifolin, and pectolinarin, have also been identi-
fied in this context,267,268 and betulinic acid and savinin triter-
penes all significantly reduce SARS-CoV 3CL protease 
activity.268,269 Due to its significant involvement in the genomic 
RNA replication of SARS-CoV-2, the papain-like cysteine 
protease (PLpro) stands as a crucial therapeutic target for the 
creation of medications against SARS-CoV-2.157 Tanshinones 
and hirsutenone, 2 bioactive compounds derived from  
Salvia miltiorrhizia and Alnus japonica, respectively, have been 
shown to inhibit PLpro activity.270,271 Moreover, extracts  
from Ganoderma lucidum have demonstrated effectiveness 
against COVID-19 through their interaction with the RNA-
dependent RNA polymerase of SARS-CoV-2, a pivotal 
enzyme in the synthesis of viral RNA.272

Vinegar for COVID-19 therapeutics

Vinegar is readily available, affordable, non-toxic, and has a low 
toxicity level in compared to other cleaning products.273 
Amruta et  al274 demonstrated that acetic acid, the primary 
component of vinegar, is effective at inactivating SARS-CoV-2. 
The median tissue culture infectious dose TCID50 assay 
revealed that 15 minutes of exposure to 6% acetic acid com-
pletely and permanently inhibited viral replication. Exposing 
SARS-CoV-2 to a solution of 6% acetic acid led to noteworthy 
alterations in its morphology, characterized by distorted for-
mations, a reduction in the quantity of viral particles, and a 
disrupted arrangement of the virion structure. Moreover, 
ELISA results demonstrated that 6% acetic acid significantly 
inhibited the binding of SARS-CoV-2 spike RBD to human 
ACE2. At 30-minute timepoint, 6% acetic acid showed the 
greatest inhibition.274

Vaccines

Vaccine represents one of the most dependable and economic 
measures in public health history, responsible for annually sav-
ing numerous lives. Immunization stands as the most efficient 
strategy for averting SARS-CoV-2 infection. The COVID-19 
Treatment Guidelines Panel strongly advises prompt COVID-
19 vaccination for all those meeting eligibility criteria as 
defined by the CDC’s Advisory Committee on Immunization 
Practices.97 After the decipherment of the genetic sequence of 
SARS-CoV-2 in March 2020, the WHO proclaimed COVID-
19 a pandemic, and since then, scientists and pharmaceutical 
corporations have been racing against time to develop vac-
cines.275 As of March 4, 2022, data from the Coronavirus 
Vaccine Tracker database reveals that there have been 50 
authorized vaccines for complete utilization. Globally, 92 vac-
cines are undergoing phase 3 clinical trials, 72 vaccines are in 
phase 2 clinical trials, 66 vaccines are in phase 1 clinical trials, 
and 12 vaccine candidates have been discontinued.276 In clini-
cal trials, there are 4 different kinds of vaccines such as mRNA, 
DNA, protein subunit and viral vector vaccines where mRNA 
vaccines: BNT-162b2 (Pfizer, BioNTech), mRNA-1273 
(Moderna); DNA vaccines: INO-4800 (Inovio); viral vector 
vaccines: AZD-1222 Ad5-CoV (AstraZeneca; Oxford 
University), Ad26.COV2.S ( Johnson & Johnson) and protein 
subunit vaccines: NVX-CoV2373 (Novavax). Among these, 
Pfizer-BioNTech’s (BNT162b2), Moderna (mRNA-1273), 
and Johnson and Johnson (Ad26.COV2.S) vaccines have 
gained emergency usage authorization in the United States.276 
Notably, the United Kingdom took the lead in approving the 
mRNA vaccines produced by Pfizer-BioNTech, making this 
decision in December 2020.277 In a multinational, placebo-
controlled, pivotal efficacy trial of 43 548 patients, 21 720 
patients received BNT162b2 (Pfizer-BioNTech’s) mRNA vac-
cine and 21 728 patients received a placebo. The result showed 
that BNT162b2 was 95% effective in preventing COVID-19 
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patients compared to placebo control. Moderna (mRNA-1273) 
vaccine has a 94% efficacy, and the data has been sent to regula-
tors around the world. The ChAdOx1 (AstraZeneca; Oxford 
University) vaccine showed the efficacy of up to 90% and has 
been approved for emergency use by the European Medicines 
Agency and national regulator boards of UK, Argentina, India, 
Mexico, and Brazil.277 Moderna and Pfizer vaccines were safe 
in phase 1, 2, and 3 studies, with no serious side effects recorded. 
RNA vaccines are the most effective in general, followed by 
viral vector vaccines and inactivated virus vaccines. Inactivated 
vaccinations exhibit the lowest rate of adverse events, and com-
parisons of safety between mRNA vaccines and viral vectors 
remain controversial.278,279 On November 22, 2022, the CDC 
released information regarding the effectiveness of the BA.4 
and BA.5 mRNA vaccines in averting symptomatic infection 
within a two-month period after the administration of the 
booster dose. The bivalent booster dose added 28 to 31% pro-
tection to monovalent vaccine recipients 2 to 3 months earlier. 
About 43% to 56% more protection was given to those who 
had received a monovalent vaccine more than 8 months ear-
lier.280 Past research indicates that this modest rise in defense 
against mild illness is likely to be of a limited duration. By 
November 15, 2022, only 10% of those recommended the biva-
lent vaccine had received it.280 As of December 2022, the BA.4 
variant had ceased its circulation, and BA.5 represented less 
than a quarter of all SARS-CoV-2 strains. The current safety 
profile of COVID-19 vaccines is sufficient for widespread 
immunization, but continuous monitoring of vaccine safety 
over the long term is necessary, particularly in the context of 
older individuals with preexisting health conditions. The main 
barriers to receiving SARS-CoV-2 vaccinations predominantly 
include vaccine reluctance and skepticism. The majority of 
people are skeptical of vaccine safety, which poses a significant 
obstacle. In the United States, a sense of skepticism has been 
evident, with 50% of Americans showing willingness to receive 
the vaccine, 30% expressing uncertainty, and 20% outright 
refusing the vaccine.281 In a separate survey targeting adult 
Americans, 58% indicated their intention to get vaccinated, 
32% remained uncertain, and 11% had no intention of getting 
vaccinated.282

Remarks and Future Directions
In the current situation, rapid transmission of SARS-CoV-2 
across multiple nations has been related to severe sickness, pos-
ing a grave threat to public health. Officially documented 
effective therapy for the treatment and prophylaxis of COVID-
19 patients does not exist at this time, despite the existence of 
numerous controversies based on extensive studies. The long-
term goal is to conduct more clinical trials in order to deter-
mine the most effective, safe, affordable, and tolerant therapies, 
antiviral medicines, and vaccines for COVID-19 infection. 
Finally, in order to put an end to the COVID-19 epidemic,  
the development of widely available functional vaccinations is 
critical. There is a need for different types of medications or 

vaccines for diverse populations, such as infants and children, 
pregnant women, and immunocompromised people, because 
the bulk of vaccines under development are aimed at the 
healthy population, that is, adults aged 18 to 55. A safe regula-
tory framework must also be established for these vaccines to 
be used for different populations other than adults. The emer-
gence of new variants of COVID-19 has made it a far more 
dangerous virus. In order to halt the mutation and prevent  
the emergence of variants that can entirely escape the immune 
surveillance system, rapid herd immunity by vaccination is 
required. However, in terms of regaining faith in “life returning 
to normal,” it is hardly possible to effectively immunize the vast 
majority of the world’s population within a short period of 
time. Therefore, accelerated attention for the development of 
innovative COVID-19 therapies must be required in order to 
eliminate the pandemic.

Limitations of the Study
Urgent clinical and therapeutic measures are imperative to 
effectively combat the swift proliferation of SARS-CoV-2 
infection and human-to-human transmission. Unfortunately, 
most current SARS-CoV-2 treatments primarily revolve around 
supportive care, and the development of targeted antiviral  
medications continues to present a significant challenge in the 
clinical realm. In order to identify successful pharmacological 
therapies, one of the difficulties to overcome is the dearth of 
evaluation methods and acceptable animal models utilized for 
assessing drug activity in laboratories around the world.283 In 
particular, no one has ever explained why human coronavirus 
(HCoV) illnesses can’t be reproduced in nonhuman primate 
(NHP) models, which makes the results less useful and less reli-
able in real life. Suitable models established under stringent 
laboratory settings and with improved technology are likewise 
problematic. Limited alternative treatments that have been 
administered to COVID-19 patients lack substantial in vivo 
evidence demonstrating their benefits, and analyses that con-
solidate various treatments have not succeeded in identifying 
effective therapeutic choices. In particular, the present experi-
mental CoV research platforms are not sufficient to facilitate 
the development of new antiviral drugs. Furthermore, CoV rep-
lication frequently generates offspring viruses with a variety of 
genomic variants. Recombination across viral genomes is also 
common, and gene-level modifications can lead to treatment 
resistance if the mutations modify the agents’ target domains. 
Moreover, a crucial approach in devising treatment protocols 
involves combining established medications with proven safety 
records and wide-ranging antiviral capabilities. While certain of 
these drugs have displayed anti-coronavirus effects in laboratory 
settings, their suitability in terms of pharmacokinetics, pharma-
codynamics, and potential side effects might not align with in 
vivo demands. Additionally, viral and patient-related factors 
could present challenges in the clinical exploration of COVID-
19.284 Finally, one of the current review’s shortcomings is its 
dependence on previously published findings.
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Conclusion
The emergence, rapid spread over countries and severity of 
SARS-CoV-2 led the mankind into hapless which unveiled our 
lack of research initiatives against viral pandemic. Since the 
emergence, researchers have tried to develop effective drugs and 
vaccines against SARS-CoV-2. Among these options, both 
mRNA vaccines and viral vector vaccines have demonstrated 
significant efficacy in preventing disease progression, leading to 
their approval for emergency usage in numerous countries. The 
volume and severity of the COVID-19 pandemic, as well as the 
absence of specialized treatments for COVID-19, necessitated 
the off-label study of repurposed approved medications in order 
to seize the morbidity, mortality and spread of this new disease. 
Despite the attention put in this strategy, it has produced a  
limited success in preventing the spread of COVID-19. These 
failures highlighted the need for new, more specialized drugs. 
Although the authorized antivirals have saved millions of lives 
in the past few decades, the current challenge is to find effective 
and well-tolerated drugs for treating COVID-19 and limiting 
the spread of SARS-CoV-2. Numerous antiviral medications, 
including remdesivir, favipiravir, paxlovid, molnupiravir, lopina-
vir/ritonavir (LPV/RTV) in combination with ribavirin, as well 
as combinations like azithromycin plus hydroxychloroquine, 
nitazoxanide plus azithromycin and hydroxychloroquine, tocili-
zumab, bamlanivimab, and etesevimab, have the potential to 
ameliorate respiratory symptoms. As a result, they can lead to a 
reduction in the duration of viral shedding and hospitalization 
period. But using antivirals like oseltamivir, umifenovir, disulfi-
ram, teicoplanin and ivermectin hasn’t helped much. Patients 
with COVID-19 may also be benefited from intravenous 
immunoglobulin therapy, convalescent plasma therapy, corticos-
teroid therapy, cell-based therapy, and other therapies like nano-
bodies, vitamins, natural compounds and vinegar. Overall, this 
research would be useful as an updated compendium of drugs 
being investigated and repurposed for the treatment and pre-
vention of SARS-CoV-2 infection. Importantly, the stated 
mechanisms of action of these drugs may serve as a crucial 
benchmark for future studies examining different COVID-19 
therapy strategies and treatments.
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