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Abstract: Intestinal microbiota play a considerable role in the host’s organism, broadly affecting
its organs and tissues. The kidney can also be the target of the microbiome and its metabolites
(especially short-chain fatty acids), which can influence renal tissue, both by direct action and through
modulation of the immune response. This impact is crucial, especially during kidney injury, because
the modulation of inflammation or reparative processes could affect the severity of the resulting
damage or recovery of kidney function. In this study, we compared the composition of rat gut
microbiota with its outcome, in experimental acute ischemic kidney injury and named the bacterial
taxa that play putatively negative or positive roles in the progression of ischemic kidney injury. We
investigated the link between serum creatinine, urea, and a number of metabolites (acylcarnitines and
amino acids), and the relative abundance of various bacterial taxa in rat feces. Our analysis revealed
an increase in levels of 32 acylcarnitines in serum, after renal ischemia/reperfusion and correlation
with creatinine and urea, while levels of three amino acids (tyrosine, tryptophan, and proline) had
decreased. We detected associations between bacterial abundance and metabolite levels, using a
compositionality-aware approach—Rothia and Staphylococcus levels were positively associated with
creatinine and urea levels, respectively. Our findings indicate that the gut microbial community
contains specific members whose presence might ameliorate or, on the contrary, aggravate ischemic
kidney injury. These bacterial taxa could present perspective targets for therapeutical interventions in
kidney pathologies, including acute kidney injury.

Keywords: acute kidney injury; microbiota; fecal bacteria; 16S rRNA gene sequencing; metabolites;
bacterial balances; creatinine; urea
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1. Introduction

Modern discoveries suggest that the intestinal microbiome (its composition and activity), as well
as the gut barrier that restrict the entry of bacteria and their metabolites into the blood and other body
tissues, can be compromised in pathologies and have a great influence on many organism functions
associated with the immune system [1]. Composition of the microbiome is related with incidence of
obesity, diabetes, certain cancers, diseases of the intestine and cardiovascular system, and kidneys
pathologies [2–8]. It has been also shown that a number of diseases, for example, stroke and chronic
kidney disease, in turn, lead to alterations in the composition of the microbiota, creating a “vicious
circle” [9,10]. Some bacteria can reduce the barrier function of the mucous membrane by producing
special lipopolysaccharides and proteases [11]. Intestinal permeability is a very important factor
modulating the immune response and affecting other organs, apart from the gastrointestinal tract [12].
The penetration of bacteria through the gut wall leads to the increased presence of microorganisms
or their components in the bloodstream, resulting in the activation of the immune system [13]. The
concept of “healthy human blood microbiome” has been recently proposed, however, when the levels
of bacteria or their derivatives in the bloodstream exceeds a certain threshold, this triggers systemic
inflammation and sepsis (SIRS), which negatively affects all organs and tissues [14]. Therefore, it
is believed that targeted modulation on microbiota or gut barriers can reduce the immune system
activation and inflammatory response [15].

Inflammation is a well-known pathogenetic mechanism of renal damage that occurs not only
during infection but also as a response to many damaging factors, such as ischemia [16]. While the
normal inflammatory reaction is a common component of the tissue stress response, its excessive
activation (for example, caused by bacterial intervention) leads to structural and functional disorders
in the renal tissue [17]. Particularly, it has been shown that the use of broad-spectrum antibiotics leads
to significant alleviation of the severity of acute kidney injury (AKI), indicating the impact of the
microbiome on the kidney [18]. Paradoxically, it was found that in germ-free animals, AKI is more
pronounced; such animals had a shift in their blood baseline level of cytokines, with a predominance
of pro-inflammatory interleukins, as well as a smaller number of regulatory T-cells that control the
immune response [19,20]. It was suggested that since the microbiota is necessary for the modulation of
immune cells, especially regulatory T-cells, it plays an important role in regulating kidney inflammatory
response during AKI [21].

In addition to affecting the immune system, gut microbiota can interact with the kidneys through
the production of various compounds, e.g., short-chain fatty acids (SCFAs) [22]. These acids, represented
mainly by acetate, propionate, and butyrate, are the major products of the enzymatic breakdown of
complex polysaccharides by the bacteria in the large intestine [23]. SCFAs were shown to decrease the
inflammatory response, reduce the infiltration of damaged tissue by leukocytes and affect chemotaxis
and cytokine production [24,25].

The aim of this work was to elucidate whether the composition of the gut microbiota could affect
the severity of ischemic kidney injury and to identify specific bacterial taxa that likely play negative or
positive roles in the progression of kidney damage (Figure 1). We investigated the links between rat
intestinal microbiota composition and the AKI caused by ischemia/reperfusion (I/R) of the kidney. The
associations of creatinine, urea, and a number of metabolites (amino acids and acylcarnitines) with an
abundance of various bacterial taxa were analyzed.
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2. Results 
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Since ischemic injury is the most common factor leading to AKI [26], we used kidney 
ischemia/reperfusion (I/R) as a model of AKI. We used a conventional protocol of 40-min unilateral 
warm ischemia of the left kidney, followed by reperfusion [27]. The analysis was performed on 14 
rats subjected to I/R and 6 intact animals. The samples of serum were analyzed for 63 substances. 
Two substances, namely creatinine and urea, were uremic toxins and serve as common markers of 
kidney dysfunction, thus, they were used for the estimation of AKI severity. Among other substances, 
20 were amino acids and 41 were various acylcarnitines. Datasets of all metabolites levels obtained 
from the tandem mass spectrometry and biochemical analysis of the serum was provided in 
Supplementary Table 1. 

After I/R, we detected 34 metabolites in blood serum, whose levels significantly changed (Table 
1)—concentration of 31 acylcarnitines increased, while the content of 3 amino acids (tyrosine, 
tryptophan, and proline) dropped. The most significant changes were observed for malonylcarnitine 
(AC C3DC), which demonstrated a 7-fold increase compared to control, glutarylcarnitine (AC C5DC) 
(5-fold increase), decadienoylсarnitine (AC C10:2) (4-fold increase), hydroxybutyrylcarnitine (AC 
C4OH) (4-fold increase), linoleylcarnitine (AC C18:2) (4-fold increase), and methylmalonylcarnitine 

Figure 1. Experimental design. The composition of microbiota was evaluated in fecal samples collected
immediately before the modeling of acute kidney injury, as soon as the blood samples were taken after
renal ischemia/reperfusion and were analyzed for a number of metabolites (serum creatinine, urea,
acylcarnitines, and amino acids).

2. Results

2.1. AKI and Metabolome

Since ischemic injury is the most common factor leading to AKI [26], we used kidney
ischemia/reperfusion (I/R) as a model of AKI. We used a conventional protocol of 40-min unilateral
warm ischemia of the left kidney, followed by reperfusion [27]. The analysis was performed on 14 rats
subjected to I/R and 6 intact animals. The samples of serum were analyzed for 63 substances. Two
substances, namely creatinine and urea, were uremic toxins and serve as common markers of kidney
dysfunction, thus, they were used for the estimation of AKI severity. Among other substances, 20 were
amino acids and 41 were various acylcarnitines. Datasets of all metabolites levels obtained from the
tandem mass spectrometry and biochemical analysis of the serum was provided in Supplementary
Table S1.

After I/R, we detected 34 metabolites in blood serum, whose levels significantly changed
(Table 1)—concentration of 31 acylcarnitines increased, while the content of 3 amino acids (tyrosine,
tryptophan, and proline) dropped. The most significant changes were observed for malonylcarnitine
(AC C3DC), which demonstrated a 7-fold increase compared to control, glutarylcarnitine (AC C5DC)
(5-fold increase), decadienoylcarnitine (AC C10:2) (4-fold increase), hydroxybutyrylcarnitine (AC
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C4OH) (4-fold increase), linoleylcarnitine (AC C18:2) (4-fold increase), and methylmalonylcarnitine
(AC C4DC) (4-fold increase). Other acylcarnitines showed about a 2-fold increase. The serum levels of
the tyrosine, tryptophan, and proline concentration dropped to 60%–70% of their content.

Table 1. Statistically significant changes in metabolites concentration after acute kidney injury (AKI)
and their Pearson correlation coefficient with the creatinine concentration. The grey gradient indicates
the value of AKI/control metabolite levels ratio, and the blue color gradient indicates the strengths of
the metabolite/creatinine levels correlation.

Metabolite
AKI vs. Control

Correlation with SCr

AKI/Control FDR Adjusted
p-Value

Mean in AKI,
µM

Mean in
Control, µM

Malonylcarnitine (AC C3DC) 6.71 0.00073 0.244 0.036 0.89
Glutarylcarnitine (AC C5DC) 4.55 0.00301 0.253 0.056 0.76
Decadienoylcarnitine (AC C10:2) 4.30 0.00073 0.016 0.004 0.72
3-hydroxybutyrylcarnitine (AC
C4OH) 3.85 0.00432 0.061 0.016 0.63
Linoleylcarnitine (AC C18:2) 3.76 0.00128 0.082 0.022 0.63
Methylmalonylcarnitine (AC C4DC) 3.51 0.00301 0.154 0.044 0.85
Hexanoylcarnitine (AC C6) 3.41 0.00073 0.046 0.014 0.75
Acetylcarnitine (AC C2) 3.15 0.00167 26.116 8.296 0.77
Octanoylcarnitine (AC C8) 3.13 0.00081 0.021 0.007 0.86
Oleoylcarnitine (AC C18:1) 3.08 0.00002 0.123 0.040 0.79
3-hydroxystearylcarnitine (AC
C18OH) 2.75 0.00891 0.023 0.008 0.73
3-hydroxyoleylcarnitine (AC
C18:1OH) 2.70 0.00891 0.020 0.007 0.51
3-hydroxypalmitoylcarnitine (AC
C16OH) 2.44 0.01884 0.021 0.009 0.74
Hydroxyhexanoylcarnitine (AC
C6OH) 2.41 0.00573 0.026 0.011 0.71
Arachidylcarnitine (C20) 2.39 0.00228 0.035 0.015 0.32
Palmitoylcarnitine (AC C16) 2.32 0.00073 0.236 0.102 0.70
Stearoylcarnitine (AC C18) 2.30 0.00073 0.132 0.058 0.66
3-hydroxypalmitoleylcarnitine (AC
C16:1OH) 2.25 0.01022 0.023 0.010 0.54
Tetradecadienoylcarnitine (AC
C14:2) 2.23 0.00108 0.045 0.020 0.72
Tetradecenoylcarnitine (AC C14:1) 2.16 0.00432 0.101 0.047 0.69
Palmitoleylcarnitine (AC C16:1) 2.14 0.00482 0.052 0.024 0.66
3-hydroxyisovalerylcarnitine (AC
C5OH) 2.12 0.00827 0.092 0.043 0.73
Butyrylcarnitine (AC C4) 2.10 0.01656 0.455 0.216 0.57
Octenoylcarnitine (AC C8:1) 2.09 0.00223 0.012 0.006 0.81
Adipylcarnitine (AC C6DC) 2.03 0.00991 0.096 0.047 0.77
Myristylcarnitine (AC C14) 2.00 0.00281 0.095 0.047 0.74
Dodecanoylcarnitine (AC C12) 2.00 0.00159 0.124 0.062 0.61
Decanoylcarnitine (AC C10) 1.96 0.00788 0.033 0.017 0.82
Decenoylcarnitine (AC C10:1) 1.81 0.01221 0.027 0.015 0.65
3-hydroxymyristylcarnitine (AC
C14OH) 1.76 0.03478 0.012 0.007 0.67
Free carnitine (AC C0) 1.72 0.01656 51.941 30.283 0.64
Tyrosine (AA Tyr) 0.73 0.00573 57.410 78.415 -0.54
Tryptophan (AA Trp) 0.66 0.01200 11.244 16.991 -0.61
Proline (AA Pro) 0.60 0.00223 114.723 192.781 -0.70

There was a significant correlation between the concentrations of metabolites, which significantly
changed after the AKI and the creatinine (reflecting the AKI severity) for 21 metabolites, the absolute
Pearson correlation coefficient was higher than 0.7, and for 35 compounds were higher than 0.5 (Table 1).
Acylcarnitines had a positive correlation with creatinine, while 3 amino acids had a strong negative
correlation with creatinine and urea—tyrosine, tryptophan, and proline had correlation coefficients
less than –0.5. The structural formulas of acylcarnitines that, both, showed the most significant
change in AKI and had the strongest correlation with the creatinine concentration are shown in the
Supplementary Figure S1, along with the possible biochemical pathways involved in their increase.
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2.2. AKI and Microbiome

We analyzed gut microbiome of each rat by sequencing the V4 region of the 16S rRNA gene for
the fecal samples collected before induction of kidney ischemia. Thereafter we compared relative
abundance of each bacterial taxon for each rat with the level of serum creatinine. Overall, 1’766’984
reads were obtained during the sequencing (44’492 to 94’776 reads per animal). Generally, the taxonomic
composition on the level of genus was dominated by an unclassified genera from the Clostridiales
order (20%), Lactobacillus (15%) and Allobaculum (10%). The detailed composition profiles are available
as an interactive online report in the Knomics-Biota system at https://biota.knomics.ru/microbiome-
metabolome-sig.

In general, microbiome composition was associated neither with creatinine nor with the urea
levels (dbRDA, Bray-Curtis diversity metric, p > 0.05) (Figure 2). There were no significant correlations
between the uremic markers (creatinine and urea) and the alpha-diversity of the bacterial community
(Shannon diversity index, Spearman correlation, p > 0.05).
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Figure 2. Principal coordinate analysis of bacterial composition on the level of genera. Bray-Curtis
diversity metric was used for the distance matrix calculation. The circles are colored according to the
creatinine value (from low—light blue, to high—violet). The axes notes include the percentage of total
variance explained by the respective principal coordinate.

The associations between bacterial abundance and metabolite levels were examined using
a compositionality-aware approach [28]. According to this approach, the log-ratios of bacterial
abundance (balances) were used as predictors rather than the relative abundance values themselves.
The log-ratio between the presence of the Rothia and Streptococcus genera was found to be the best
predictor of creatinine value (p = 0.0014, adjusted R2 = 0.55). A similar association was observed
at the species level—the best predictor was the ratio between the unclassified species from the two
above-mentioned genera. Moreover, the Rothia abundance was selected as a balance numerator in
>25% iterations of the cross-validation procedure. Taken together, these two observations indicate a
possible positive association between Rothia abundance and creatinine level (Figure 3). In addition
to the discovered balance between Rothia and Streptococcus, which was the best predictor in the
analysis including the full dataset, a few taxa were included in the top 3 most frequent balances
during cross-validation—unclassified species from the Staphylococcus genus as the numerator and
unclassified species from the Erysipelotrichaceae family and the Streptococcus genus as the denominator
(Figure 3).

https://biota.knomics.ru/microbiome-metabolome-sig
https://biota.knomics.ru/microbiome-metabolome-sig
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Figure 3. Bacterial balances associated with blood creatinine and urea values. (a,c) Linear regression
between bacterial balances and metabolite values (a—creatinine, c—urea). The balances that were the
best predictors in the analysis of the entire dataset are shown in the figure. (b,d) The occurrence of taxa
among balance numerators or denominators (b—creatinine, d—urea). The members of 3 balances that
were most frequent during the cross-validation procedure are shown. Designation “_u” denotes the
unclassified species from the corresponding taxa.

The best balance to predict blood urea values was the balance between unclassified species from the
Staphylococcus genus and Prevotella copri (p = 0.0006, adjusted R2 = 0.60). Similarly, on the level of genera,
the best predictor was the log-ratio between Staphylococcus and Prevotella. The Staphylococcus abundance
was selected as the numerator of the balance in >25% of cross-validation iterations (Figure 3). Thus,
this implied a possible positive association between Staphylococcus abundance and urea concentration.
The list of taxa included in the top 3 balances during cross-validation also included Ruminococcus bromii
and unclassified Enterococcaceae as the numerator and Faecalibacterium prausnitzii, Coprococcus eutactus
and unclassified species from the Bacteroides genus as the denominator (Figure 3).

2.3. Metabolome and Microbiome during AKI

In addition to the “microbiome–AKI severity” axis (with creatinine and urea as the markers of the
latter), we evaluated correlations between blood metabolites (excluding uremia-associated creatinine
and urea) and the gut microbial community structure. For dimensionality reduction, the metabolites
were initially clustered into highly correlated groups (n = 15, Spearman correlation coefficient > 0.7);
see Supplementary Table S2. For each cluster, the associations with the microbiota composition were
analyzed using the same method of balances as for the AKI severity. Six metabolite clusters significantly
associated with the microbiome were singleton (i.e., including a single metabolite) (Table 2).
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Table 2. Significant associations between blood metabolites and bacterial abundance.
NUM—numerator, DEN—denominator.

Metabolite Taxon p-Value, adj. R2, adj.
Position in a

Balance
% of Times Included

in a Balance

Hexadecenoylcarnitine
(AC C16:1)

unclassified E6
(Synergistales) 0.00028 0.74793

NUM 50

Prevotella copri DEN 56

Tryptophan
unclassified

Lachnospiraceae 0.00028 0.72956
NUM 37

unclassified
Clostridia DEN 43

Decadienoylcarnitine
(AC C10:2)

unclassified
Desulfobacteraceae 0.00028 0.73393

NUM 33

unclassified
Tissierella/Soehngenia DEN 33

Arachidylcarnitine
(C20)

unclassified
Lactobacillus 0.00045 0.69365

NUM 33

unclassified
Mogibacterium DEN 30

Tyrosine unclassified
Dehalobacteriaceae 0.00135 0.6112 DEN 33

Hydroxyoleoylcarnitine
(AC C18:1OH)

unclassified
Tissierella/Soehngenia 0.00617 0.46336 DEN 26

3. Discussion

Levels of creatinine and urea in the blood are believed to be a “gold standard” for assessment
of kidney function and detection of AKI in clinical practice [29,30]. The blood concentrations of
these compounds (so-called uremic toxins) are directly linked to kidney function impairment [31]. In
our study, we used the level of serum creatinine as a marker of AKI severity. After I/R, creatinine
concentration increased in all animals, varying from 50 to 200–500 µM, indicating that I/R caused
AKI. In our study, we were interested in interpreting the extensive intra-subject variability of post-I/R
creatinine concentration. Although during renal I/R many parameters can affect the severity of AKI,
there are some reasons to consider microbiome as one of the possible factors playing a role in this
issue [32,33]. All our main findings are summarized in Figure 4.

There is growing evidence that microbiota is directly or indirectly involved in the regulation of
a large number of organism functions [34]. In particular, the normal microbiome protects against
pathogenic microorganisms, participates in the synthesis of essential substances, and modulates
endocrine, neural, and immune systems [35–38]. An individual microbiome harbors microbial species
that range in their effects of host health—from beneficial and commensal to opportunistic and possibly
pathogenic. For example, some bacteria (including Gram-negative LPS-containing) can increase
intestinal permeability, thereby leading to penetration of harmful antigens to the bloodstream [39,40].
To date, there were only a few attempts to analyze bacterial taxa that could be considered potentially
nephroprotective or, conversely, causing aggravation of kidney damage [41,42].
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Figure 4. Elevated levels of acylcarnitines and drop of three amino acids concentrations in serum after
renal ischemia/reperfusion and its associations with some bacterial clades (blue arrows indicate positive
correlation, and red arrows indicate negative correlation). The analysis of bacterial balances revealed
that Prevotella copri, Faecalibacterium prausnitzii, and Coprococcus eutactus prevalence was associated with
low creatinine and urea levels, whereas Rothia and Staphylococcus positively correlated with severe
acute kidney injury.

In this study, using a compositionality-aware approach to microbiome data analysis, we discovered
a few associations between microbiome and urea or creatinine levels after kidney I/R. From our results,
it could be concluded that Rothia and Staphylococcus were likely associated with the severity of
kidney damage, i.e., they not only demonstrated a noticeable positive correlation (as a balance
numerator) with the rise of creatinine or urea concentration and, thus, AKI severity, but they could
also be selected as a numerator of the balances in >25% of cross-validation procedure iterations. On
the other hand, the denominators of these balances were not very stable—none of the taxa were
selected as a denominator in >25% of iterations, for creatinine or for urea. However, the majority
of denominator candidates were commensal rat intestinal bacteria—Prevotella copri, Faecalibacterium
prausnitzii, Coprococcus eutactus, unclassified Bacteroides, and Streptococcus. Presumably, while we could
identify the gut microbial taxa-determinants of kidney damage, the concept of "nephroprotectors" was
less specific and encompassed the rat reference gut microbiome that could be driven by a completely
different set of commensal taxa.

From our analysis of microbiome and metabolome, we could propose some ways through which
bacteria affect kidney damage. For instance, it was shown that bacteria play a “nephroprotective” role
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(Prevotella copri [43], Faecalibacterium prausnitzii [44,45], and Coprococcus eutactus [46]), being reversely
associated with the severity of AKI, and are known to produce short-chain fatty acids (SCFAs), mainly
represented by acetate, propionate, and butyrate [47]. Most of these molecules (especially butyrate)
are used by the intestine epithelium as an energy source, however, a fraction of these goes into the
bloodstream, and then transfer to the organs, inhibiting the histone deacetylase activity [48]. SCFAs
regulate cell proliferation and differentiation, hormone secretion, and inflammatory response [24].
These molecules potentially mediate the nephroprotective effects of the mentioned bacteria since the
treatment of I/R animals with such SCFAs has a positive effect through a reduction of the severity
of AKI [13,23]. SCFAs reduce the infiltration of leukocytes into a damaged tissue and also affect
chemotaxis and cytokine production [41]. Thus, elimination of these bacteria can result in a decrease of
SCFAs production and reduce the positive effects on kidney tolerance.

The relationships between disease onset and progression with gut microflora have recently been
reported, with ever-increasing clarity and importance. In humans, decreased levels of Prevotella
copri and Faecalibacterium prausnitzii populations were observed in severe forms of chronic kidney
disease (CKD), which also negatively correlate with the presence of important diagnostic markers,
such as C-reactive protein and cystatin C levels [49–51]. Similarly, Prevotella copri and Faecalibacterium
prausnitzii were significantly depleted in humans with diabetic nephropathy [43,52]. Conversely, the
symptoms of diabetes and inflammation were also shown to be ameliorated upon the administration
of Faecalibacterium prausnitzii to such patients [53], suggesting an important diagnostic and therapeutic
relevance of these microorganisms. Additionally, reduced Faecalibacterium prausnitzii levels in the
gut have also been observed during the prevalence of ulcerative colitis and Crohn’s disease [54–56].
Furthermore, in patients with Parkinson’s disease, the gut levels of Prevotella copri, Faecalibacterium
prausnitzii, and Coprococcus eutactus were also observed to be relatively decreased [57]. Collectively,
such reports demonstrate the significance of gut microflora and the relative associated contribution of
certain species to a disease progression. However, how such findings resonate with the results observed
in our rat model of AKI remains unknown, as the species of Prevotella copri and Faecalibacterium
prausnitzii were observed to be quantitatively reduced. Although the human gut microbiome might
differ significantly from that in rat, due to differences in the relative abundance of many bacterial
clades, a considerable fraction (not limited to major phyla) and many common genera are, however,
extensively shared [58]. Consequently, this allows us a greater scope to extrapolate the findings from
our working rat model towards a human context, with a view to dissect the potential relationship
between the human microbiome and AKI/CKD progression, with proper accuracy and effect.

As the above-mentioned studies revealed that after onset of a pathological condition, the levels
of bacteria with “protective” potential were decreased, we attempted to establish what bacterial
composition prior to the damage might serve as a predictor of severity of pathology. However, it is
likely that the association between pathological conditions and gut microbiome presents a possibility
of a "vicious circle". Bidirectional relationships between the host organism and its intestinal microbiota
have been explored [8]. As the microbiota could affect the disease, the disease could change the
composition of the gut microbiota, indicating the complexity and vulnerability of such interactions [10].

In addition, in the numerators of the balances for urea and creatinine, bacteria that are normally
associated with the microbiota of parts of the organism other than the gut prevail. For example,
Rothia and Staphylococcus are facultative aerobes and typical representatives of the nasopharynx or
skin microbiota, in humans [59], as well as in rats [60]. Conversely, typical representatives of the
intestinal microbiota Faecalibacterium prausnitzii, Prevotella copri (obligate anaerobes), Erysipelotrichaceae,
and Bacteroidales prevailed in the denominators of the observed balances [61]. In this regard, we
could assume that the levels of AKI severity correlate with the intensity of translocation of the bacteria
from the oral cavity to the intestine. The phenomena of translocation of oral microbes were observed,
for example, with a decrease in the acidity of the stomach as a result of taking medications [62] or
alcohol-induced liver cirrhosis [63]. The only exception could be considered for Streptococcus, which is
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negatively associated with AKI severity and, along with being the part of the normal rat intestinal
microbiota [64], it can also dwell in the oral cavity of people and animals [65,66].

Analyzing a metabolomic profile of blood serum after AKI, we found a significant increase in levels
of many acylcarnitines. The conventional explanation is an impaired secretion of these metabolites [67].
Not surprisingly, such an increase was highly correlated with AKI severity—the more that the kidney
function was impaired, the more these compounds accumulated in the blood. The ratio of acylated
carnitines to free carnitine is an important diagnostic parameter for a number of diseases [68].

Nonetheless, the increase of acylcarnitines levels could have different effects on the organism.
Elevated concentrations of long-chain acylcarnitines and their CoA esters are suggested to be
hazardous [69]. In ischemic tissue, long-chain acylcarnitines accumulate at high concentrations and
are thought to inhibit oxidative phosphorylation, induce mitochondrial membrane hyperpolarization,
and increase production of reactive oxygen species [70]. Long-chain acylcarnitines inhibit citrate
lyase and increase the activity of citrate synthase, thereby, resulting in an elevation in cytosolic
citrate concentrations, enhanced acetyl-CoA carboxylase and carnitine palmitoyltransferase activity,
and increased malonyl-CoA concentrations, thus, inhibiting mitochondrial fatty acid oxidation [69].
Moreover, long-chain acylcarnitines have been shown to act as detergents and, therefore, disrupt lipid
membranes [71]. After AKI, elevated concentrations of acylcarnitines in serum are accompanied by
elevated levels of acylcarnitine esters [72], which are shown to increase intracellular calcium [73].

While long-chain acylcarnitines have been linked to poor clinical status, many studies have
observed that short-chain acylcarnitines are associated with positive effects [74,75]. Free carnitine is
believed to have a protective effect by removing long-chain acyl CoAs from cell membranes, thereby,
stabilizing them [68]. L-carnitine, acetyl-carnitine, propionyl-L-carnitine, and other short-chain
acylcarnitines are believed to be beneficial in the treatment of various disorders, including different
kidney diseases, via increased carnitine content in the mitochondria and stimulation of the Krebs
cycle [76–80]. We detected elevated concentrations of free carnitine and short-chain acylcarnitines
in rats’ serum, 48 hours after renal I/R, which potentially could be a protective response of tissue
to the damage. It should be noted that acyl-carnitines are closely related to energy metabolism and
mitochondria function [81]. Creatinine is a product of degradation of creatine phosphate [82], one of
the main energy substrates in mitochondria [83]. Therefore, the correlation between the levels of these
metabolites might reflect the involvement of mitochondria in metabolic changes after AKI, which was
previously indicated for a number of uremic toxins [84].

A revealed drop in the concentrations of 3 amino acids—tyrosine, tryptophan, and proline—seems
to be an interesting finding, indicating certain functional alteration. A tyrosine blood drop has
been earlier observed during CKD and was explained as an impaired synthesis of tyrosine from
phenylalanine, by the kidney [85]. We also observed such a drop in our AKI model, which was
accompanied by an increase in blood phenylalanine concentration, confirming the disruption of tyrosine
synthesis. Indeed, we observed a strong negative correlation between AKI severity and tyrosine
concentration (–0.5) and a similar strong positive correlation between AKI and phenylalanine/tyrosine
ratio (+0.5). We have also found an association of unclassified Dehalobacteriaceae, negatively correlating
with tyrosine concentration. The observed tryptophan concentration decay was also described earlier
in human CKD patients [86]. There was a strong negative correlation (r = –0.6) between tryptophan
concentration and AKI severity. Unclassified Lachnospiraceae were found to be positively correlated
with tryptophan concentration, whereas, unclassified Clostridia were correlated negatively. For the
first time, an association between impaired kidney function and a decrease of serum proline were
detected. Moreover, among all metabolites for which their concentration decreased during AKI, proline
demonstrated the highest shift. One of the explanations for this could be a decreased reabsorption of
proline in kidney, coupled with an elevation concentration of 5-Oxo proline [87].

We also revealed certain other associations of microbiome composition with blood metabolites
(Table 1). Interestingly, several associations included sulfate-reducing bacteria (SRB). In our study, the
relative abundance of SRB (Desulfobacteraceae) was associated positively with metabolites related to AKI
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severity Decadienoylcarnitine. In the gut, members of Desulfobacteraceae utilize H2 to produce hydrogen
sulfide [88]. A number of studies have shown that endogenous hydrogen sulfide is involved in many
important biological processes, in particular, in the regulation of blood pressure, the functioning of the
kidneys, the heart, and the brain [88–90]. It has also been shown that hydrogen sulfide produced by the
members of the intestinal microbiota can cause an effect on the circulatory system in the same way as
endogenous hydrogen sulfide [88]. The role of hydrogen sulfide in chronic and acute kidney disease is
considered to be context-dependent [89,90]. The protective role of the metabolite was shown in models
of ischemia-reperfusion and obstructive kidney injury [90], as well as in kidney impairments caused by
diabetes and renovascular hypertension [91,92]. On the other hand, controversial data were obtained
on the role of H2S, when using nephrotoxic cisplatin [89]. Both the protective anti-inflammatory and
aggravating proinflammatory role of this metabolite has also been demonstrated in many animal
models of pathologies, although it might be a question of concentration of this agent [93].

4. Materials and Methods

4.1. Animals

Experiments were performed on male outbred Wistar rats (3–4-month old, 300–400 g weight). The
analysis included samples from 14 rats subjected to ischemia/reperfusion (I/R) and 6 intact animals.
Animal experiments were evaluated and approved by the animal ethics committee of the Belozersky
Institute—Protocol 3/19 from 18 March 2019. All procedures were in accordance with the Federation of
Laboratory Animal Science Associations (FELASA) guidelines.

4.2. Kidney I/R Protocol

For the I/R, rats were anesthetized with chloral hydrate (300 mg/kg, i.p.) and subjected to 40-min
warm ischemia of the left kidney, as previously described [27]. In brief, the renal vascular bundle was
occluded with a non-traumatic microvascular clip, for 40 min. Circulation was restored by removing
the clip; the lack of blood flow during ischemia and its restoration during reperfusion were assessed
visually. The nephrectomy of the right kidney was performed, simultaneously, with ischemia of the left
one. During surgery, the body temperature of the rats was maintained at 37 ± 0.5 ◦C. Blood samples
were taken 48 h after I/R from the carotid artery to determine SCr, BUN, amino acids, and acylcarnitines
concentrations. Levels of SCr and BUN were analyzed using the AU480 Chemistry System (Beckman
Coulter, Brea, CA, USA).

4.3. Tandem Mass Spectrometry

The analysis of amino acids and acylcarnitines in the rat serum was performed 48 h after
I/R by FIA–MS/MS analysis, using a NeoGram Amino Acids and Acylcarnitines Tandem Mass
Spectrometry Kit (Perkin Elmer Life and Analytical Sciences, Waltham, MA, USA) and a Sciex QTrap
3200 (Sciex, Framingham, MA, USA) quadrupole tandem mass spectrometer, operating with the
positive electrospray ionization technique, coupled with Shimadzu 20LC system (Shimadzu, Japan).

Amino acids and acylcarnitines were extracted from 5 µl plasma, with a methanol/water (75:25)
solution containing stable isotope-labeled internal standards. The samples were diluted in butanolic
HCl, dried at 60 ◦C, and reconstituted with acetonitrile/water (80:20) solution containing acetic acid. A
20 µl aliquot of the sample was directly injected into the MS/MS system.

The analyte concentrations were measured by comparing the instrument responses for each
amino acid and acylcarnitine with the responses for the corresponding stable isotope-labeled internal
standards. The concentrations of amino acids and acylcarnitines were calculated automatically using
the ChemoView software version 2.0.2 (Sciex, Framingham, MA, USA).
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4.4. DNA Extraction and Sequencing

DNA extraction from rat fecal samples and library preparation was performed, as described in [94].
The V4 region of the 16S rRNA gene was amplified using the following modification of 515F–806R
primers: GTGBCAGCMGCCGCGGTAA and GACTACNVGGGTMTCTAATCC. The libraries were
sequenced on an Illumina MiSeq. The reads were deposited in the European Nucleotide Archive
(ENA), under accession number PRJEBxxxx.

4.5. Bioinformatic Analysis

Data analysis was performed in the Knomics-Biota system [95]. Briefly, the reads were denoised
using the DADA2 algorithm [96] with the variable trimming length (from 251 to 253 bp). Then,
the taxonomic classification of the denoised reads was performed with the QIIME2 naive-bayes
classifier [97] and GreenGenes database [98]. For alpha- and beta-diversity analysis, the classified reads
were randomly rarefied to the same number (3000 reads per sample), for each sample. Estimation of
alpha-diversity for each sample was performed using the Shannon diversity metric. Beta-diversity
(pairwise dissimilarity between the gut community structures) was estimated using a Bray-Curtis
dissimilarity metric. Read counts of microbial species, genera, and families were calculated as the sum
of reads assigned to the ASVs (amplicon sequencing variants) belonging to the respective taxon.

Analysis of the association between general microbiome composition and metabolite levels was
performed using dbRDA (adonis R function) [99]. Analysis of correlation between alpha-diversity
and metabolite levels was performed using Spearman correlation. For all metabolites except urea
and creatinine, the multiple comparison adjustment was performed using the Benjamini–Hochberg
method for alpha- and beta-diversity analysis.

The analysis of associations between bacteria abundance and metabolite levels was performed
by applying the compositionality-aware approach—selbal [28]. The approach allows one to find
associations between a factor of interest and bacterial balances—normalized log-ratios of the bacteria
abundances geometric means for two groups of bacteria (numerator and denominator). The algorithm
was applied to non-rarified abundance tables. The algorithm predicted the optimal number of bacteria
in groups, found the best balance to predict the variable of interest, and applied a cross-validation
procedure to assess the stability of numerator and denominator members. We considered the association
to be significant if the p-value from the linear regression analysis between the balance and the factor
was less than 0.05 after the multiple comparison correction (Benjamini–Hochberg) and, at the same
time, the association was relatively stable (the bacteria was selected as a part of the balance in more
than 25% of cross-validation iterations). For the urea and creatinine levels, the adjustment for multiple
comparison was not performed, as these were the variables of dedicated interest.

5. Conclusions

We identified the main members of rat intestinal microbiota whose balances were correlated in
rats, with the severity of renal dysfunction measured by serum creatinine and urea. Correlations
between microbiome composition and bacterial metabolites were observed. The results highlight the
specific taxa that could confer «nephroprotective» or «nephropathogenic» activity in the gut. Further
experiments involving the transfer of fecal microbiota or these specific taxa would allow validation of
these findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/142/s1,
Supplementary Figure S1: Structures and pathological conditions that associate with acylcarnitines. Supplementary
Table S1: The whole dataset of metabolites concentration in rats’ serum. Supplementary Table S2: Whole dataset
of associations between blood metabolites and bacterial abundance.
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