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Abstract: High mobility group AT-hook 2 (HMGA2) has been associated with increased cell
proliferation and cell cycle dysregulation, leading to the ontogeny of varied tumor types and
their metastatic potentials, a frequently used index of disease prognosis. In this review, we deepen
our understanding of HMGA2 pathogenicity by exploring the mechanisms by which HMGA2
misexpression and ectopic expression induces mesenchymal and epithelial tumorigenesis respectively
and distinguish the pathogenesis of benign from malignant mesenchymal tumors. Importantly,
we highlight the regulatory role of let-7 microRNA family of tumor suppressors in determining
HMGA2 misexpression events leading to tumor pathogenesis and focused on possible mechanisms
by which HMGA2 could propagate lymphangioleiomyomatosis (LAM), benign mesenchymal tumors
of the lungs. Lastly, we discuss potential therapeutic strategies for epithelial and mesenchymal
tumorigenesis based on targeting the HMGA2 signaling pathway.
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1. Introduction

High mobility group AT-hook 2 (HMGA2) belongs to the HMGA family of small, non-histone
chromatin-associated proteins [1]. This protein is encoded by the HMGA2 gene localized to human
chromosome 12 at band q14.3 [2], comprising five exons dispersed over a genomic region of ≥140 kb.
Each of the first three exons contain conserved DNA binding domains called AT-hook motifs separated
from an acidic C-terminal tail in the fifth exon by a spacer domain encoded by the fourth exon [1].
This structural feature determines HMGA2’s binding preference for AT-rich regions in the minor
groove of DNA that causes ordered architectural changes which influence the conformation of bound
DNA substrates, functional interactions between transcription factors, changes in chromatin structure,
DNA replication, and gene transcription [3]. These physiological changes play fundamental roles
in mammalian growth and development such that homozygous Hmga2−/− mice exhibit complete
histological composition but yield a pygmy phenotype displaying dramatic reduction in adipose
tissue accumulation and birth weight, and impairment of skeletal muscle development and myoblast
proliferation [4,5]. Organ systems affected by HMGA2 mutations thus highlight its potential role in
fate specification of mammalian tissues to a mesenchymal lineage during embryonic development.
This tissue lineage specificity for Hmga2 during development is further supported by evidence
describing mesodermal differentiation, self-renewal and proliferation of human embryonic stem cells
(hESCs) induced by HMGA2 expression [6].
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Indeed, Hmga2 is ubiquitously expressed in undifferentiated tissues at early mammalian
embryogenetic stages, beginning at 9.5 days post-coitum (dpc) in the mouse embryo and with time,
expression becomes increasingly restricted to mostly undifferentiated tissue regions of mesenchymal
origin, and some parts of the central nervous system [7]. Between developmental stages 14.5 – 17.5 dpc,
the pattern of Hmga2 expression declines and is observed to be akin to the distribution of connective
tissues in the mouse tissue mesenchyme, and further restricted to proliferative tissue regions [7].
As tissue differentiation progresses in the maturing human fetus, HMGA2 expression is also restricted to
specific regions of the lungs, kidneys, and synovia [7,8], and associated with the activation and renewal
of endogenous tissue-resident stem cells in adult stages [5,9]. These HMGA2-positive adult stem cells are
possible undifferentiated tissue remnants of ontogenetic development, although more characterization
studies of tissue-specific stem cell populations still need to be performed. Given that HMGA2
expression dynamics are functionally superimposable to mammalian embryogenic differentiation
paradigms, genetic anomalies at the HMGA2 locus during this tissue maturation period could account
for anomalous cell fate specification, which could lead to multi-systemic neoplasms, determining
tissues that would become tumorigenic, and the timing of tumor ontogeny.

The HMGA family of proteins was first isolated from cancerous HeLa S3 cells in 1983 [10]. However,
the correlation between HMGA2 and neoplastic transformation was not established until two years
later, when HMGA nuclear phosphoproteins were detected in a rat thyroid cell line (FRTL5) after viral
transformation [11]. The isolated HMGA proteins were associated with a highly malignant phenotype
irrespective of whether transformed cells were chemically, virally or spontaneously derived [12].
More direct evidence for the oncogenic role of HMGA proteins was reported when rat and human cell
lines with ectopic expression of HMGA1 transcript variant (HMGA1a) and HMGA2 formed tumors and
led to distant metastases when injected in athymic nude mice [13]. Since then, numerous postulates
have been put forward and experiments conducted to explain the causative biological mechanisms
employed by HMGA proteins to induce both benign and malignant neoplasms. These mechanisms of
neoplastic transformation have been found to be tumor-type specific and to differ between epithelial
and mesenchymal tumors. These mechanisms are discussed in subsequent sections of this review.
The lack of HMGA2 expression in proliferating fibroblasts of some pulmonary interstitial diseases
further suggests that the gene’s misexpression defines neoplastic transformation of a normal cell rather
than a hyper-proliferative index [14].

Summarily, ectopic HMGA2 expression drives epithelial tumor metastasis and multiplicity
in cell culture and in in vivo mouse models mainly by the activation of the TGFβ pathway and
epithelial–mesenchymal transitions (EMT) [15,16]. In contrast, the misexpression of full length,
chimeric or truncated HMGA2 mRNA transcripts in differentiated benign mesenchymal tumors
derived from abnormal chromosomal breaks governs mesenchymal tumorigenesis irrespective of
the nature of the HMGA2 gene product [17,18]. In this review, we will explore these mechanisms by
which HMGA2 induces epithelial and mesenchymal tumorigenesis, and discuss the gene’s role in
lymphangioleiomyomatosis, a rare pulmonary mesenchymal neoplasm of unknown etiology that is
often a clinical manifestation of tuberous sclerosis. Lastly, we identify potential therapeutic strategies
for epithelial and mesenchymal tumorigenesis based on targeting the HMGA2 signaling pathway.

2. Mechanisms of HMGA2-Induced Mesenchymal Tumorigenicity

From our review of cytogenetic studies (see Supplementary Table S1), causative mechanisms of
HMGA2-induced mesenchymal tumorigenesis results from HMGA2 misexpression in well differentiated
mesenchymal tissues contrary to its canonical expression in undifferentiated mesenchyme [7,8].
These genetic changes enhance or repress genes and transcription factors that play crucial roles in
cell proliferation [19], cell cycle regulation [20,21], DNA damage response [22–24], apoptosis [25] and
cellular senescence [26,27], all causatively leading to tumor phenotypes in mesenchymal tissues [28].
In this section, we explore evidence for HMGA2-induced pathogenesis in benign and malignant
mesenchymal neoplasms.
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2.1. HMGA2 Misexpression

HMGA2 is canonically expressed in the undifferentiated mesenchyme and is undetectable
in the differentiated tissue forms [8]. However, in several types of differentiated mesenchymal
tumor, including lipomas [29,30], leiomyomata [8,31–33], pulmonary chondroid hamartomas [34,35],
endometrial polyps [36], and soft tissue chondromas [37], certain genetic mechanisms enable its
untimely re-expression, biologically termed HMGA2 misexpression. A variety of HMGA2 transcripts
have been isolated from these tumors and believed to cause mesenchymal tumorigenesis through
a re-expression of the HMGA2 gene in differentiated tissues. Some of these transcripts derive from
chromosomal translocations at 12q13–15 which truncates the human HMGA2 open reading frame
(ORF) resulting in loss of its C-terminus and/or fusion to partner ectopic sequences [38,39], while in
other mesenchymal tumors, intact ORF have been resolved but with truncated 3’ untranslated
region (UTR) which encodes binding sites for let-7, a negative regulator of HMGA2 expression [40,41].
These chromosomal translocations have been reported as the genetic mechanisms necessitating HMGA2
misexpression in mesenchymal tumors [17,42,43]. Similar translocations involving the chromosomal
locus 6p21–23 corresponding to HMGA1 (HMGI-Y) have also been described in benign mesenchymal
tumors, implicating the HMGI family of DNA-binding proteins [44,45].

Chromosomal abnormalities are a hallmark of cancers, and their causes, although poorly
understood, are commonly attributed to environmental and occupational exposures and certain
therapies [46,47]. Chromosomal abnormalities can occur in the form of balanced chromosomal
rearrangements such as reciprocal translocations or inversions that result in the formation of chimeric
fusion genes, predicted to be early initiating events in tumorigenesis [47]. With non-balanced
chromosomal rearrangements, some genetic material is lost or gained by deletions or duplications
resulting in reduction or enhancement of genetic activity respectively [47]. We reviewed cytogenetic
analyses of mesenchymal tumors and found that most chromosomal abnormalities occurred by
balanced chromosomal rearrangements involving HMGA2 locus 12q13–15 [48,49]. A listing of these
chromosomal rearrangements involving HMGA2 in human mesenchymal tumors is catalogued in
Supplementary Table S1. Our data compilation reveals that the most common translocation partners of
HMGA2 in mesenchymal tumors are chromosomes 1–3, with a preponderance of intragenic chromosome
12 aberrations. In addition, certain tumor types were synonymous with HMGA2 gene translocations
involving specific chromosomes, as observed with chromosome 14 in uterine leiomyomata and
pulmonary chondroid harmatomas (Supplementary Table S1).

The nature of the chromosomal rearrangements and resulting mRNA HMGA2 transcript also
differ by mesenchymal tumor type [50]. In most lipomas and pulmonary chondroid harmatomas,
chromosomal translocations have breakpoints that preferentially cluster in the third intron of the HMGA2
gene to yield either oncogenic truncated forms of HMGA2 mRNA transcripts containing exons 1–3 and
lacking the 3’ untranslated region (3’ UTR), and/or chimeric fusion transcripts co-joining truncated
HMGA2 DNA binding domains to up- or downstream transcriptional regulatory sequences [51,52].
Common HMGA2 fusion partners are tumor suppressors whose functions are typically lost following
these gene rearrangements [53,54]. On the other hand, in most uterine leiomyomata, these chromosomal
breakpoints mostly occur 10–100 kilobases upstream of the HMGA2 coding region such that full-length
gene transcripts are expressed in these tumor types with or without chimeric forms [41,50,55,56].

Overall, these chromosomal translocations lead to the misexpression of three main types of
HMGA2 transcript: 1) full-length HMGA2 transcripts with no apparent disruption of the coding
sequence; 2) truncated HMGA2 transcripts lacking the 3’-UTR; and 3) chimeric HMGA2 transcripts
fused to other ectopic sequences. Some mesenchymal tumor types were found to express only truncated,
chimeric or full-length HMGA2 transcripts, while in other mesenchymal tumors, multiple HMGA2
transcript types could be found, indicating that the nature of HMGA2 disruption in these tumors did
not affect the gene’s transformative capability [17].
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2.1.1. Full Length HMGA2 Transcript with No Apparent Disruption of the Coding Sequence

Despite previous studies showing that truncation and/or addition of ectopic sequences after the
third AT-hook were necessary for neoplastic transformation of murine fibroblasts [57], many human
uterine leiomyomata, mammary fibroadenomas, and salivary gland adenomas were found to harbor
full-length HMGA2 coding regions [8,40,41,58]. Full length HMGA2 transcripts can form in these tumor
types when chromosomal rearrangements occur in an extragenic location usually upstream of the
HMGA2 coding region [17,43,59]. In human uterine fibroids, such chromosomal rearrangements often
involved the HMGA2 gene and chromosome 14, and balanced intragenic chromosome 12 aberrations
were rare [41]. These findings suggest that full-length HMGA2 has oncogenic properties, and that
disruptions in regulatory elements proximal to the HMGA2 coding region could lead to HMGA2
misexpression, inducing mesenchymal tumorigenesis [41]. Consistently, misexpression of full-length
Hmga2 induces benign mesenchymal tumors in mice [17].

Another mesenchymal tumorigenic mechanism allowing for the expression of full length HMGA2
transcripts has been described in well differentiated liposarcomas (WDLPS) and atypical lipomas
(ALP) [29,60]. In these mesenchymal tumors, supernumerary rings and giant rod marker chromosomes
comprised various amplified subregions of different chromosomes associated with 12q14–15 [29,60].
In addition to ectopic expression of HMGA2, other genes co-amplified as a result of these supernumerary
structures include MDM2, CDK4 and TSPAN31. However, supernumerary ring chromosomes are
a rare find in ordinary lipomas [60].

2.1.2. Truncated HMGA2 Transcript Lacking the 3’-UTR

The HMGA2 3’ UTR has considerable potential for posttranscriptional regulation by RNA-binding
proteins and miRNA-induced silencing complexes (miRISCs) [61,62]. Chromosomal rearrangements
and intragenic chromosomal breakpoints within the region 12q14~15 leading to the formation of
truncated HMGA2 transcripts lacking the 3’ untranslated region (UTR) of HMGA2 mRNA have been
observed in many benign mesenchymal tumors, including some uterine leiomyomata and pulmonary
chondroid hamartomas [62,63]. Human HMGA2 3’ UTR is 2.9kb long and harbors up to 35 discrete
positive and negative cis-regulatory elements that act independently, or less commonly in synergy,
altogether functioning to repress HMGA2 expression post-transcriptionally [64]. Although most
regulatory elements in the HMGA2 3’ UTR have been found to induce HMGA2 expression such as
AU-rich elements (AREs) that interact with HuR ARE-binding protein [65], repressive regulatory
elements include characteristic binding sites for the tumor suppressor microRNA let-7 family [62,64,66].
The role of let-7 in HMGA2-induced mesenchymal tumor pathogenesis is further discussed below.

2.1.3. Chimeric HMGA2 Transcript Fused to Ectopic Sequences

Translocation breakpoints in the chromosome 12 locus of the HMGA2 gene preferentially
occurs in the large intronic space linking exons 3 and 4 resulting in a truncated gene with intact
DNA and protein binding domains but lacking a carboxy terminus including the 3’ untranslated
region (3’ UTR) [39,67]. These aberrant HMGA2 transcripts can fuse to ectopic sequences from
translocation partners whose protein functions are frequently lost due to gene rearrangements [48]
(Figure 1E). Table 1 lists the balanced chromosomal rearrangements in mesenchymal tumors that
form chimeric HMGA2 fusion transcripts. Supporting previous cytogenetic reports, Table 1 shows
that the lipoma preferred partner gene (LPP) was one of the most abundant fusion gene partners to
HMGA2 in lipomas, in a case of pulmonary chondroid harmatomas, and in soft tissue chondromas,
and involved translocation loci t(3;12)(q14~15;q12~21) [29,37,39,68–74]. The HMGA2-LPP gene codes
for a transcription factor containing the AT-hook domains of HMGA2 fused to three LIM domains at
the C-terminal [75]. The expression of the HMGA2-LPP fusion protein typically leads to neoplastic
transformation although the expression of the fusion gene did not increase the transformative ability of
the truncated HMGA2 [57,75]. Interestingly, another fusion gene, the SET binding protein 1 (SETBP1),
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encoding a protein that binds the SET nuclear oncogene involved in DNA replication, was also
found to recur in lipomas and osteochondrolipomas (t(12;18)(q27~28;q13~15)) [42]. SETBP1 was
fused to truncated HMGA2 containing exons 1–3, or to an intragenic sequence 18q12.3 that is 10kbp
distal to SETBP1 [42]. In the HMGA2-SETBP1 chimeric transcripts, the translocation breakpoint in
SETBP1 occurred at the 3’-UTR essentially deregulating HMGA2 and possibly influencing expression
of SETBP1 [42]. Of note, intragenic chromosomal breakpoints predominated in sarcomas where in
almost all cases investigated, chimeric fusion HMGA2 transcripts were formed [76]. On the contrary, in
lipomas where rearrangements of the HMGA2 gene involve multiple chromosomal partners, chimeric
fusion genes are rarely observed (Supplementary Table S1).

Figure 1. let-7 regulatory mechanisms govern HMGA2 misexpression, driving benign mesenchymal
tumorigenesis. (A) Absence of tumor suppressor let-7 miRNA expression in the undifferentiated
mesenchyme ensures ubiquitous HMGA2 expression during mammalian embryogenesis. (B) Increased
let-7 expression as mesenchymal tissues mature and differentiate inhibits HMGA2 expression by
binding to sites in the 3’ UTR of HMGA2 mRNA leading to transcript degradation. (C) Abundant
HMGA2 transcription in many uterine leiomyomas and mammary fibroadenomas yield enough mRNA
possessing multiple 3’ UTR binding sites that can soak up available let-7 allowing for remnant HMGA2
misexpression of full-length transcripts. (D) Intragenic chromosomal breaks at preferred locations
between exons III and IV and (E) balanced translocations with chromosomal partners forming chimeric
HMGA2 fused to ectopic sequences, are two mechanisms ensuring loss of HMGA2 3’ UTR and its
let-7 binding sites allowing for misexpression of full-length HMGA2 transcripts and activation of the
HMGA2 pathway in differentiated benign mesenchymal tumors.
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Table 1. Balanced Chromosomal Rearrangements Forming Hmga2-Induced Gene Fusions in Human Mesenchymal Tumors.

Tumor Type [Refs] Chromosomal Translocation
Partners Chromosomal Rearrangement Fusion Protein

Lipoma

[29,30,43] 1 t(1;12)(p32;q14) HMGA2/PPAP2B
[77,78] 2 t(2;12)(q37;q14) HMGA2/ACKR3

[29,39,69–74] 3 t(3;12)(q28;q14) HMGA2/LPP
[29,43,73,79] 5 t(5;12)(q33;q15) HMGA2/EBFEBF/BC058822

[79] 5 t(5;12)(q33;q14) HMGA2/EBF1
[29,79] 5 ins(5;12)(q33;q14q21) Partial Genomic Loss

[29,73,79] 5 t(5;12)(q33;q15) No Genomic Loss/Gain
[79] 5 t(5;12)(q32;q14) No Genomic Loss/Gain
[79] 5 t(5;12)(q32;q15) No Genomic Loss/Gain

[29,80] 5 ins(12;5)(q15;q33q13) No Genomic Loss/Gain
[81–83] 9 t(9;12)(p22;q14) HMGA2/NFIB

[42] Intragenic t(12;12)(q14;q14) HMGA2/GRIP1
[38] 13 t(12;13)(q14;q13) HMGA2/LHFP
[51] 15 t(12;15)(q14;q24) HMGA2/Ser-Thr domain
[42] 18 t(12;18)(q14;q12) HMGA2/SETBP1
[42] 18 t(12;18)(q14~q15;q12~q21) HMGA2/SETBP1
[42] 18 t(12;18)(q14~q15;q12~q21) HMGA2/GRIP1
[42] 18 t(12;18)(q14~q15;q12~q21) HMGA2/18q12.3 Sequence

Osteochondrolipoma [42] 18 t(12;18)(q14~q15;q12~q21 HMGA2/SETBP1

Uterine Leiomyoma

[50] 7 t(7;12)(q31;q14) HMGA2/COG5
[39,55,56] 8 t(8;12)(q22;q14) HMGA2/COX6C

[84] Intragenic der(12)(q14) HMGA2/RTVL-H
[85–87] 14 t(12;14)(q14;q24) RAD51l1/HMGA2

[54] 14 t(12;14)(q15;q11) HMGA2/HE110
Soft Tissue Chondroma [37] 3 t(3;12)(q27;q15) HMGA2/LPP

Sarcoma

[76] Intragenic t(12;12)(q15;q14) FRS2/HMGA2
[76] 1 t(1;12)(p32;q14) HMGA2/DAB1
[76] Intragenic t(12;12)(q14;q13) HMGA2/PCBP2
[76] Intragenic t(12;12)(q14;q12) HMGA2/NELL2
[76] Intragenic t(12;12)(q14;q21) HMGA2/PPFIA2
[76] 1 t(1;12)(p32;q14) HMGA2/C1orf87
[76] Intragenic t(12;12)(q14;q13) HMGA2/SARNP
[76] 11 t(11;12)(p11;q14) HMGA2/ARFGAP2
[76] Intragenic t(12;12)(q14;q22) HMGA2/NR2C1
[76] 6 t(6;12)(q24;q14) UTRN/HMGA2
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Table 1. Cont.

Tumor Type [Refs] Chromosomal Translocation
Partners Chromosomal Rearrangement Fusion Protein

Myolipoma [88] 9 t(9;12)(p22;q14) HMGA2/C90RF92
Aggressive angiomyxoma [89] 1 t(1;12)(p32;q15) HMGA2(3’UTR)/NT032977.8

Extra-skeletal Osteochondroma [90] Intragenic inv(12)(p12q14) HMGA2/SOX5
Spindle Cell Sarcoma [91] Intragenic t(12;12)(q14;q15) HMGA2/DYRK2

Pulmonary Chondroid
Harmatoma (PCH) [68] 3 t(3;12)(q27;q14;q15) HMGA2/LPP
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2.1.4. let-7 Regulation of HMGA2 Misexpression in Benign Mesenchymal Tumors

As all forms of HMGA2 transcript exhibit similar transformative potential, it can be hypothesized
that a single regulatory regimen could chiefly govern the misexpression of these different transcript types
and their propensity to drive the pathogenesis of benign mesenchymal tumors [18]. One such regulatory
element is the let-7 microRNA family of tumor suppressors which have conserved complementary
binding sites encoded in the 3’-UTR of the HMGA2 gene [61,62]. Let-7 expression is inversely
related to HMGA2 expression, is undetectable during embryogenesis (Figure 1A), but increases
after differentiation and in mature tissues [62]. In line with established models of miRNA action in
mammalian cells [92], in the normal differentiated mesenchyme, let-7 post-transcriptionally recognizes
its target sites in the full-length HMGA2 mRNA and recruits it to exonucleases leading to target
mRNA decapping and degradation of the HMGA2 gene transcript (Figure 1B). This would account
for the reciprocal relationship between HMGA2 and let-7 expression [62]. These let-7-HMGA2
molecular associations can further specify tissue-type differentiation of normal mesenchymal tissues,
selectively enhancing human osteogenesis while repressing adipogenesis [93].

In uterine leiomyomas, the inverse physiological relationship between let-7 and HMGA2 also
persists such that large leiomyomata were observed to express low levels of let-7 and high levels
of HMGA2, while small leiomyomata expressed high levels of let-7 and low levels of HMGA2 [94].
These findings establish a direct correlation between endogenous HMGA2 and let-7 levels and suggest
that additive binding of let-7 to 3’ UTR complementary sites in HMGA2 could progressively decrease
protein translation and HMGA2 pathway activation, limiting tumor size. Given the multiple binding
sites for let-7 in many chromosomal 3’ UTR loci, it is possible that HMGA2 is mis-expressed when
the relative abundance of HMGA2 mRNA transcripts suffice to bind available let-7 and sustain
HMGA2 re-expression in benign mesenchymal tumors. High levels of HMGA2 transcription in larger
leiomyomata could encode more 3’ UTR binding sites to soak up available mature let-7 miRNA limiting
the repressive and degradative function of let-7 on HMGA2 expression [40,41], and allowing for
greater rates of tumorigenesis compared to smaller sized uterine fibroids. This potential tumorigenic
mechanism is depicted in Figure 1C and could explain the expression of full length HMGA2 mRNA
transcripts in these uterine leiomyomata. This mechanism could also account for slight differences
in the tumor spectrum mediated by full length forms of Hmga2 versus truncated Hmga2 forms
lacking the let-7 binding sites in mice [18,95]. Ectopic expression of truncated HMGA2 transgenes in
an immortalized mesenchymal stem-like cell line stymied adipogenic differentiation and upregulated
genes for transcription and intracellular protein transfer compared to wildtype HMGA2 indicative of
higher tumorigenicity and lesser let-7 repressive activity in cells expressing truncated HMGA2 [96].

In many other mesenchymal tumors, activated LIN28A or LIN28B RNA-binding protein homologues
directly interact with the terminal loop region of either pre-let-7 and/or primary let-7, preventing their
biogenesis and tumor repressive function, and can induce their degradation [97–99]. Additionally,
by repressing let-7, LIN28A/B indirectly upregulates cell cycle regulators targeted by let-7 such as cyclinD1/2,
CDK6, CDC34, CDC25A, and TRIM71, and cell proliferation pathway targets PI3K/AKT, MAPK, MYC,
RAS and BLIMP1 leading to aberrant proliferation of tumor cells [99]. Conversely, let-7 can also bind to
complementary sites in the 3’ UTR of LIN28A/B mRNAs inhibiting their expression and function [100].
Other RNA-binding proteins like IMP3 exist in stable cytoplasmic granules which physically associate with
and protect HMGA2 mRNA from let-7-dependent degradation [101].

Most frequently, chromosomal break points truncate the HMGA2 3’ UTR in mesenchymal
tumors and can thus prevent the docking of let-7 to its binding sites and the canonical repression
of HMGA2 expression in differentiated mesenchymal tumors [62] (Figure 1D). Truncated HMGA2
also occur as chimeras fused to ectopic sequences by chromosomal translocations (Figure 1E). It has
been suggested that the loss of let-7 complementary sites in 3’UTR stabilizes HMGA2 mRNA in
some of these tumors [63] leading to a deficiency in let-7-mediated regulation [61], increased cell
proliferation and tumorigenesis [43,102]. These studies highlight the central role let-7 expression plays
in multiple mechanisms of HMGA2 misexpression causing mesenchymal tumorigenesis. Given that
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multiple genes distributed throughout the human genome encode for let-7, loss of the 3’UTR might
not suffice to explain all HMGA2-mediated tumorigenic events in the mesenchyme [62]. Indeed,
in a recent study, let-7 accounted for only 15% of the total regulatory effects determining HMGA2
expression/misexpression [64]. This seemingly limited influence of let-7 in directly regulating HMGA2
misexpression could be more reflective of its cooperative roles with other translation regulatory
networks in the ontogenesis of mesenchymal tumors. In mechanistic studies using adipogenic
progenitor cells of lipomas and uterine leiomyomas, a p14Arf-MDM2-TP53-let-7 network stabilized
HMGA2 expression, lowering the tendency for malignant transformation while maintaining stem-like
proliferative characteristic of benign mesenchymal tumor cells [26]. p14Arf repressed HMGA2 via a TP53
mechanism that has been linked to increased expression of let-7, whereas FGF1-stimulated increase
in HMGA2 increased p14Arf [26,103]. These study results are indicative of a bimodal mechanism of
regulating cellular senescence and stem-like cell renewal forming the pathobiological basis for benign
mesenchymal tumorigenesis [9].

Unlike the preponderance of studies performed on benign mesenchymal tumors, only a few
preliminary studies have determined the role of HMGA2 misexpression in malignant mesenchymal
tumors such as well differentiated liposarcomas and osteosarcomas [37,60,76,91]. This may suggest
that HMGA2 misexpression is a relatively rare event in malignant mesenchymal tumors. In addition to
canonical HMGA2 misexpression presently described, these tumors commonly possess supernumerary
ring structures and giant rod chromosomes exhibiting gene amplifications at the 12q13–15 HMGA2 loci
and in proximally located genes such as MDM2 [59,104,105].

2.2. Effects of HMGA2 Misexpression on Chromatin Structure

Accessibility to DNA within chromatin remains central to the epigenetic regulation of eukaryotic
DNA-dependent nuclear processes such as transcription, replication, recombination, and repair [106].
Nucleosomes are the structural and functional units of chromatin, comprising DNA surrounding histone
octamers to form nucleosome cores that are joined by linker DNA [107]. Two major epigenetic regulatory
processes—post-translational modification of histones and chromosome remodeling—yield chromosomal
conformations that allow transcriptional access to DNA in chromatin [108]. Some of the post-translational
modifications necessitating architectural changes in chromatin include DNA methylation and histone
acetylation [108–110]. As an example, in gliomas, HMGA2 was shown to form a complex with histone
lysine acetyltransferase GCN5 and bind to AT-rich promoter region of matrix metalloproteinase 2 (MMP2),
catalyzing the histone acetylation and chromatin conformational remodeling of the promoter that induced
gene transcription and invasive phenotype of glioblastoma cells [111].

In addition, H1 histones can bind to linker DNA and increase the compactness of chromatin,
providing a barrier to sequence-specific recognition sites on DNA [112,113]. In turn, the HMGA2
and HMG families of proteins also bind to nucleosomes and functional AT-rich motifs in DNA
minor groove, competing with H1 histones for binding to linker DNA [114,115]. In doing so,
HMGA2 modulates H1 histone binding to chromatin, replacing post-translationally modified H1
histones in some cases [106,116]. This induces loosening and conformational changes in the chromatin
structure, that affects nucleosome accessibility in both genetically active euchromatin and inactive
heterochromatin [106,116]. This ability of HMGA2 to constrain chromatin supercoiling has been shown
to confer protection and genome stability in human fibrosarcoma, embryonic stem cells (HESCs),
lung epithelial cells, and adenocarcinomas during DNA replication [22,117,118]. HMGA2 inhibits
replication fork regression and cytotoxic double stranded breaks (DSBs) generated by chemotherapeutic
agents (anti-topoisomerases) and/or during excessive DNA supercoiling [22,117,118]. As such, at high
levels of expression, HMGA2 is a critical determinant of tumor response to chemotherapy and tumor
cell survival and invasiveness [117,119].

For complete access to transcriptional regulatory elements on target genes, chromatin remodelers
such as the FACT complex [120] and the anti-silencing function 1 histone chaperone (ASF1) [121] will
be necessary participants. These protein complexes have been shown to facilitate eviction/deposition
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of histones from nucleosome cores, destabilizing/stabilizing nucleosome structure for transcription
elongation processes [120,121]. Given that HMGA2 also binds to these chromatin remodeling
protein complexes, a role of HMGA proteins in the dynamics of nucleosome core architectures
during transcriptional regulation has been suggested [106]. These HMGA2–nucleosome associations
help establish cell identity, and initiate tissue differentiation programs, such as the EMT-driven
epithelial tumorigenesis [106] discussed in the subsequent section. However, causative mechanisms
of mesenchymal tumorigenesis by HMGA2-induced alteration of chromatin structure is yet to be
delineated for most mesenchymal tumors.

2.3. HMGA2-Induced Tumorigenesis in Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is the major pulmonary manifestation of the tuberous
sclerosis complex disorder (TS) presenting as benign mesenchymal tumors and lesions that
cause recurrent pneumothorax, lung cysts, chylous pleural effusions and renal and abdominal
angiomyolipomas (AMLs) [122–126]. This disorder occurs either sporadically (S-LAM), or as
an autosomal dominant inheritance of mutations in the Tsc1 or, more frequently, Tsc2 tumor suppressor
genes (TSC-LAM) [126–132]. Heterozygous TSC1/2 mutations have been causatively linked to
hyperactivation of the mammalian target of rapamycin (mTOR) pathway, leading to the aberrant cell
growth and proliferation characterizing benign tumors in LAM [133–138]. However, as many LAM
patient tumors do not exhibit TSC mutations especially in S-LAM cases [139], biochemical signaling
due to activation of the mTOR pathway does not solely account for tumorigenesis in LAM [138,140,141].
This explains why pharmacological inhibition of mTOR pathway targets is not curative [142–144],
and in most treatment cohorts, disease symptoms tend to recur upon discontinuation of therapy [145].
It is thus imperative that alternative etiologies to LAM pathogenesis in addition to genetic mechanisms
at the TSC1/2 loci be considered.

In our laboratory, we focused on the mechanisms of HMGA2 in LAM pathogenesis, and established
that although HMGA2 was mis-expressed in 100% of tumors resected from LAM patients in our
studies and from Tsc2+/− mice, an established animal model for LAM [14,146], Hmga2−/−Tsc2+/−

mice exhibited minimal renal (epithelial) tumors and no extra-renal (mesenchymal) tumors) [146].
These results indicate that Hmga2 expression is absolutely required for mesenchymal tumorigenesis
in the Tsc2+/− mice. We further observed analogous expression of IGF2BP2, an oncofetal protein and
downstream target of HMGA2 in 100% of human LAM and TSC lesions [146], similar to the gene’s
pattern of co-expression with HMGA2 in rhabdomyosarcoma and during myoblast proliferation [5,147].
Importantly, the tuberin protein product of Tsc2 expression was present in all Tsc2+/− mouse and
human mesenchymal tumors, and about 80% of Tsc2+/− mouse renal carcinoma [146]. Adding that
only 50% of human mesenchymal tumors, and 31% of Tsc2+/− mouse renal tumors exhibit altered
mTOR pathway activation, supports the existence of tumorigenic mTOR-independent mechanisms
causing LAM pathogenesis [146]. The lack of HMGA2 expression in similar proliferative interstitial
lung diseases to LAM, like interstitial pneumonitis and pulmonary fibrosis, also suggests that HMGA2
misexpression transforms tumor cells in LAM, and is not solely due to an abnormal increase in cell
proliferation rates [14].

However, there has been a dearth in studies investigating the mechanistic potential of
HMGA2-induced neoplasms in LAM. As LAM pathogenesis is characterized by benign tumors with
differentiating characteristics towards a mesenchymal phenotype, we postulated that the oncogenic
triangle involving LIN28-let-7-HMGA2 observed in most mesenchymal tumors might account for the
tumorigenic pathway employed by HMGA2 in LAM. Using an established Tsc2+/- mouse model of
LAM [148], we have assessed the expression of Hmga2 pathway targets in both mesenchymal and renal
(epithelial) tumors. Compared to matched normal tissues, our results reveal significant downregulation
of let-7a expression and upregulation of Lin28a, Lin28b and Igf2bp2 in all mesenchymal tumors
assessed including hepatic hemangiosarcomas, foot lymphomas, and hemangiomas, and in pulmonary
adenomas by RT-PCR (unpublished data). In these mice, the absolute necessity for the repression
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of let-7a was observed for both epithelial and mesenchymal tumors supporting previous findings of
the key role of the let-7–Hmga2 axis in these carcinogenic processes [63,99]. Cytogenetic studies in
the Tsc2+/− mouse mesenchymal tumors will determine whether chromosomal rearrangements play
a pathogenic role in these LAM mouse models.

3. Mechanisms of HMGA2-Induced Epithelial Tumorigenicity

Nascent epithelial tumors and early adenomas typically exhibit undetectable or low levels
of HMGA2 mRNA [149] and low to moderate levels of the HMGA2 protein product [15].
However, an increasing expression of HMGA2 was observed to be distributed from non-neoplastic,
well-differentiated centers of human colorectal tumors, human squamous carcinoma, and MMTV-Wnt1
transgenic mice mammary tumors towards the extremity invasive front where the overwhelming
majority of tumor cells were HMGA2-positive [15,150]. In mammary and colorectal tumors,
these invasive HMGA2-positive tumor cells exhibited membrane-to-nucleus re-localization of
β-catenin, loss of E-cadherin, increase in levels of vimentin, and an analogous expression of
HMGA2 downstream target IGF2BP2 [15,151]. This observed cytological transition in phenotype
known as epithelial-mesenchymal transition (EMT) is a highly conserved gradual process that also
occurs during embryonic development, histogenesis, and wound repair, and is precursory to tumor
invasion and malignancy [15,152,153]. Indeed, HMGA2 expression increased proportionally with
anchorage-independent growth and metastasis of many epithelial tumors including colon, gastric,
and breast cancer cells [15,154,155]. In mammary tumor cell lines stably expressing HMGA2 by vector
transfection, primary tumors formed at a faster rate and exhibited higher metastatic potential to
the liver parenchyma and lungs than tumor cells with empty vectors after inoculation in mice [15].
In many studies, EMT has been reported to be the key mechanism for HMGA2-induced tumorigenesis
in epithelial tissues [16,156,157].

How does ectopic expression of HMGA2 induce EMT for epithelial tumorigenesis, metastasis and
invasion? In both in vitro and in vivo models of epithelial tumorigenesis, HMGA2 has been observed
to activate the TGFβ pathway via TGFβRII leading to the phosphorylation and translocation of
Smad3 from the cytoplasm to the nucleus [15], a mechanism necessary for EMT initiation [157,158].
For HMGA2 to induce epithelial tumorigenesis and invasiveness via EMT, it is necessary that TGFβ
pathway is activated [15,157]. It is suggested that epithelial tumor cells, upon HMGA2 induction,
might become more responsive to the TGFβ ligand typically present in tumor microenvironments,
signaling for increased tumor metastasis [15]. Indeed, downstream of SMAD proteins, HMGA2 was
resolved to directly activate zinc-finger transcription families Snail, Slug, and Twist and downregulate
Inhibitor of differentiation 2 (Id2) in mammary tumor cells which altogether are known to repress
E-cadherin (CDH1) expression [157,159,160]. In addition, ectopic HMGA2 expression also remodels
chromatin in mammary tumor and breast cancer to a closed conformation at the Cdh1 locus by
hypermethylation governed by HMGA2 interaction with DNA methyltransferases (DNMT3A) [161].
This biochemical mechanism represents a second layer of epigenetic control of E-cadherin expression
during EMT-induced epithelial tumorigenesis.

Other small molecule regulators including microRNA and RNA-binding proteins also govern
epithelial tumorigenesis induced by HMGA2. The let-7 miRNA family have been shown to exert
repressive control over HMGA2-induced epithelial tumorigenesis by binding to the 3’-UTR of human
HMGA2 gene [162]. In the course of EMT advancing carcinogenesis, ovarian cancer cells expressing
an epithelial gene signature exhibited significantly higher levels of seven of the twelve members
of the let-7 family compared to cells defined by mesenchymal genes [162]. Individual let-7 family
members have also been implicated in a variety of tumor pathogenic mechanisms involving HMGA2.
For instance, let-7c was shown to suppress EMT and proliferation of head and neck squamous cell
carcinoma by targeting HMGA2 and IGF1R [163], while let-7a knockdown exhibited an analogous
inhibitory function in nasopharyngeal carcinomas induced by HMGA2 expression, decreasing HMGA2
and the expression of EMT marker genes Snail, Slug, and vimentin [164]. However, LIN28 RNA-binding
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protein, serves as a competitive inhibitor of let-7 binding preventing its maturation by inducing terminal
uridylation and degradation of let-7 precursors, and can thus de-repress HMGA2 expression, restoring
tumorigenicity and invasiveness of epithelial tumors [165]. The LIN28-let-7-HMGA2 signaling axis is
further modulated by Raf-1-kinase inhibitory protein (RKIP), a metastasis suppressor which induces
expression of epithelial miR-200b that directly inhibits Lysyl Oxidase (LOX) expression leading
to decreased transcription of LIN28, elevated let-7 expression and inhibition of HMGA2 [166,167].
In another study of prostate cancer metastasis, overexpression of BTB and CNC Homology 1 (BACH1)
transcription factor led to a significant decrease in let-7A expression and subsequent increase in
HMGA2 which facilitated metastasis by promoting EMT [168]. Given the genomic ubiquity of let-7 in
regulating HMGA2 expression [62], further studies are required to clearly distinguish the role of let-7
in mesenchymal versus epithelial tumorigenesis.

Ectopic expression of HMGA2 can also promote epithelial tumor cell proliferation and
metastasis by influencing the cell cycle in a tumor cell-type dependent manner, where, for instance,
its knockdown arrests ovarian cancer cells at G1 [169] and G2/M arrest for leukemia cells [19].
In some instances, HMGA2 can exert tumorigenic effects on cell cycle by directly inducing cyclin
A2 [20], activating protein-1 (AP1) expression [170], and MDM2-mediated p53 ubiquitination [171]
facilitating cell proliferation. Indirectly, HMGA2 can activate phosphatidylinositide 3-kinase
(PI3K)/AKT/mTOR/p70S6k signaling which inhibits tumor suppressors p16INK4A, p21CIP1/WAF1 [172],
retinoblastoma protein (pRB) [173] and p14Arf [9] to enable transitions through cell cycle checkpoints,
facilitate cell proliferation and restrain cellular senescence. During these replicative cycles, HMGA2 has
also been postulated to either inhibit DNA damage response (DDR) mechanisms that ensure genomic
stability at replication forks, which leads to increased DNA mutational rates at onset of tumorigenesis,
or augment these DDR mechanisms to reduce replication recovery times after replication fork arrest
in stem and cancer cells [22,174]. HMGA2 can also mediate epithelial tumorigenesis by modulating
apoptosis in cancer cells. Breast adenocarcinoma cells overexpressing HMGA2 exhibit fewer apoptotic
events compared to cells with low HMGA2 expression by a mechanism involving HMGA2-mediated
inhibition of miR-34a and subsequent de-repression of Bcl-2 [25]. HMGA2 also protects cancer cells
from apoptosis by hyperactivating the PI3K/Akt pathway, which impairs the activation of caspase-9
and Bad in a gastric cancer cell line [175].

Dynamic intracellular localization processes of HMGA2 mRNA transcripts and translation
products have been reported to also influence epithelial tumorigenesis and metastatic potential. Hmga2
expression has been detected in the cell membrane of quiescent non-transformed, post-natal mouse
keratinocytes but upon onset of proliferation, membrane-to-nuclear translocation of the protein was
observed [176]. Analogous Hmga2 nuclear translocation was also been observed upon ex vivo
culture of mouse keratinocytes and during cutaneous carcinogenesis in DMBA and TPA mouse
models where Hmga2 induces its own expression in an autoregulatory loop by binding to the Hmga2
promoter [176]. Normal human epithelial prostate cell also exhibited low levels of HMGA2 expression
in the plasma membrane which switched to predominantly cytoplasmic then nuclear localization with
increasing prostate tumor grade, metastatic potential, and HMGA2 expression [177]. Specific small
non-coding circular RNAs (circNSUN2) promotes EMT and human and mouse colorectal cancer
(CRC) cell metastasis by stabilizing high levels of cytoplasmic HMGA2 RNA-protein interactions in
a circNSUN2/IGF2BP2/HMGA2/ complex and activating the HMGA2 pathway [178]. In this study,
lower levels of cytoplasmic HMGA2 mRNA were associated with lower liver metastasis in CRC [178].
HMGA2 mRNA cytoplasmic stability is similarly governed by higher order ribonucleoprotein
complexes formed with RNA binding proteins as observed in solid cancers where for instance,
HMGA2 mRNA is physically associated with IMP3 RNP in vivo [179]. There is a need for studies of
these HMGA2 intracellular translocation processes and their relevance in mesenchymal tumorigenesis.

These studies make it clear that HMGA2 oncogenic mechanisms differ between mesenchymal
tumors and their epithelial counterparts and even between tissue-specific tumor subtypes.
HMGA2-induced mesenchymal tumorigenesis recapitulates the gene’s embryonic expression signature
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in mature differentiated tissues using various mechanisms leading to neoplastic growth [17,18,44].
In epithelial tumors, HMGA2 drives epithelial-to-mesenchymal cell transformations (EMT) towards
a tumorigenic phenotype [15].

4. Therapeutic Considerations for HMGA2-Induced Neoplasia

High expression of HMGA2 has been associated with highly malignant phenotypes described
by resistance to chemotherapeutic agents and metastases [180,181]. Along with let-7 expression,
HMGA2 has been determined to be a predictive biomarker of poor clinical outcomes in many
epithelial and hematopoietic malignancies including acute myeloid leukemia [182], ovarian and
colorectal carcinoma [162,169], and oral squamous cell carcinoma [183]. In some neoplasia, however,
disease severity does not always correlate with increased HMGA2 expression levels [184,185],
necessitating the resolution of other biomarkers in the HMGA2 pathway. Downstream of HMGA2,
IGF2BP2 was found to be overexpressed and correlative to poor survival and induction of EMT in
pancreatic ductal adenocarcinoma [186]. Given that many interacting partners in the HMGA2 pathway,
including up- and downstream genes IGF2BP2, LIN28 and let-7 have been elucidated, they serve
as attractive targets whose modulation could be curative for many cancers involving the HMGA2
pathway. However, most therapeutic strategies adopted to probe targets in this pathway have focused
chiefly on perturbing HMGA2 expression in epithelial neoplasms with limited success.

Gene silencing therapy using siRNA suppressed proliferation and growth of ovarian cancer
cell lines overexpressing HMGA2 by cell cycle arrest at G1 phase, and decreased the size of tumor
xenografts in athymic nude mice treated with a Hmga2-targeting construct [169]. A similar effect was
observed when siRNA- and miRNA-mediated silencing of HMGA2 induced apoptosis, G2/M cell
cycle arrest, and suppressed proliferation and invasion of human colorectal carcinoma [187,188].
Additionally, p53-induced miR-1249 expression was antagonistic to HMGA2 expression and inhibited
HMGA2-induced invasiveness of colorectal cancer cells by stabilizing the epithelial phenotype,
decreasing expression of N-cadherin and vimentin and increasing E-cadherin expression [189].
Sustained expression of the epithelial phenotype was also observed in HMGA2-/- prostate cancer cells
in which EMT was also inhibited [190]. Similarly, perturbation of HMGA2-HOXA9 signaling arrested
the differentiation of human myeloid leukemia cells towards a pathogenic phenotype [191].

In another therapeutic strategy, small molecule inhibitors such as netropsin were found to block the
binding of HMGA2 to DNA minor groove in AT sequences in a biosensor-surface plasmon resonance
assay designed to screen for potent HMGA2 inhibitors [192]. However, a recent study found that
netropsin was not selectively cytocidal to only HMGA2-overexpressing colorectal cancer cells [193],
and its potential binding to other AT-hook DNA domains might introduce off-target side-effects,
making it therapeutically inefficient. Rather, an antihelminthic drug niclosamide has been repurposed
and is selective against HMGA2-overexpressing colorectal cancer cells, reversing the HMGA2-driven
gene signature, and inhibiting cell cycle-related genes in these cells [193]. Analogously, successful
treatment of poorly differentiated thyroid carcinoma with tyrosine kinase inhibitor selumetinib and
histone deacetylase inhibitor panobinostat led to the significant downregulation of HMGA2 expression,
correlating with an upregulation or stable expression of associated miRNA let-7b [194].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/9/3151/
s1.
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