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Abstract: MoAlB fine powders were prepared in molten NaCl from Al, B and Mo powders. The effects
of key parameters affecting the synthesis process and phase morphology were examined and the
underpinning mechanisms proposed. MoAlB product particles exhibited different shapes/sizes,
as follows: spherical grains (1~3 µm), plate-like particles (<5 µm in diameter) and columnar crystals
with lengths up to 20 µm and diameters up to 5 µm, resultant from different reaction processes.
Phase pure MoAlB was synthesised under the following optimal conditions: use of 140% excess
Al and 6 h of firing at 1000 ◦C. This temperature was at least 100 ◦C lower than required by other
methods/techniques previously reported. At the synthesis condition, Mo first reacted with Al and B,
forming Al8Mo3 and MoB, respectively, which further reacted with excess Al to form Al-rich Al–Mo
phases and MoAlB. The Al-rich Al–Mo phases further reacted with the residual B, forming additional
MoAlB. The molten NaCl played an important role in accelerating the overall synthesis process.
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1. Introduction

Ternary transition metal borides have layered structures similar to MAX phase materials [1]
and are also regarded as a new class of promising non-oxide ceramics. Among them, MoAlB has
attracted particular attention because of its many excellent properties and great application potential
(e.g., electrocatalysis, composite reinforcement, solid lubrication and high temperature coating). It has
a good electrical/thermal conductivity, small thermal expansion, great compressive strength and
high fractural toughness [2–7]. It also has been confirmed to be stable at up to 1400 ◦C in an inert
atmosphere [3]. Differently from in MoB, the Al atoms in MoAlB are “sandwiched” between the MoB
layers, which renders MoAlB very oxidation resistant (via the formation of a dense alumina layer from
the initial oxidation on heating) [2,3,8,9].

Bulk or powder-formed MoAlB can be synthesised by using various techniques/methodologies,
including the Al flux method, spark plasma sintering (SPS), hot pressing and conventional mixed
powder technique. The Al flux method [1,10–12] requires a very high operation temperature (between
1400 and 1800 ◦C), and is mainly used to synthesise MoAlB single crystals (>100 µm). SPS [13] and hot
pressing [3,8,9] require a lowered firing temperature (1100~1200 ◦C) but a high pressure. They are
mainly used to prepare bulk MoAlB from MoB and Al powders. To our knowledge, the only method
that has been attempted to date to synthesise MoAlB powder is the conventional mixed powder
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technique [6,14], i.e., directly heating a mixture of MoB and Al at a high temperature (>1100 ◦C).
Unfortunately, with this technique, it is difficult to prepare high quality (phase pure, good dispersion
and fine size) MoAlB powders, because some intermediate/impurity phases (e.g., MoB2) almost always
remain in the final product powder.

In the work reported here, a liquid salt assisted synthesis method was used to prepare MoAlB fine
powder from Mo, Al and B powders. The main factors affecting the synthesis process and product’s
microstructure/morphology were examined and the underpinning mechanisms discussed.

2. Experimental Procedure

2.1. Raw Materials and Sample Preparation

Al (purity 99.7%, overall size < 25 µm), amorphous B (purity 95%), and Mo (purity ≥ 99%, overall
size < 250 nm) powders from Sigma-Aldrich were utilized as the starting materials, and NaCl (≥99%)
was used to form a liquid medium. The three raw materials were mixed in the stoichiometric ratios
corresponding to Reaction 1 (i.e., 0.96 g Mo, 0.108 g B and 0.27 g Al), or non-stoichiometric ratios
with excess Al, followed by further combination with 20 g NaCl in an agate mortar. The powder mix
was contained in a covered graphite crucible, placed in a tube furnace and then heated in argon at
5 ◦C/min to a given temperature within 850–1200 ◦C. After 6 h at the temperature, the sample was
furnace-cooled to room temperature.

Mo + Al + B = MoAlB (1)

The residual salt in the fired samples was removed by repeated water-washing. For some
samples, a 6M HCl solution was further used to leach out the residual Al, followed by rinsing with
distilled water. All of the resultant samples, after oven-drying overnight at 100 ◦C, were subjected to
detailed characterisation.

2.2. Sample Characterisation

The phases in the fired/purified samples were identified based on X-ray diffraction (XRD) analysis.
The diffractometer (Brukers D8 advance reflection diffractometer, Karlsruhe, Germany) was operated
at 40 mA/40 kV, with Ni-filtered CuKα radiation and at the scan rate of 2.4◦ (2θ)/min with an interval of
0.04◦. The following International Centre for Diffraction Data (ICDD) cards were used to identify the
corresponding phases: MoB (51-0940), Al2O3 (46-1212), Al (65-2869), MoAlB (65-2497), Al5Mo (44-1102),
Al4Mo (65-7072) and Al8Mo3 (65-1231). The microstructures and morphologies of the samples were
characterised using a scanning electron microscope (SEM Nova Nanolab 600, FEI Company, Hillsboro,
OR)) along with a JEM 2100 transmission electron microscope (TEM).

3. Results

3.1. Effect of Firing Temperature on MoAlB Formation

Figure 1 gives the XRD results of the samples with the stoichiometric composition after 6 h
at 850–950 ◦C. At 850 ◦C, Al8Mo3 and MoB were formed as the primary phases, along with minor
intermediate AlMo3 and impurity Al2O3 (the latter was likely resultant from the minor oxidation of
Al by the impurity of O2 in the Ar gas), but no MoAlB was detected (Figure 1a). Upon increasing
the temperature to 900 ◦C, the same phases were detected, and their contents increased evidently,
in particular, in the case of AlMo3. However, MoAlB was still not detectable by XRD (Figure 1b).
Upon further increasing the temperature to 950 ◦C, AlMo3 disappeared and MoAlB started to appear.
Mo8Al3 and MoB were also formed, and the content of the latter became slightly higher than at 900 ◦C
(Figure 1c). As a result of the formation of intermediate Mo–Al phases, most of the Al had been
consumed. Consequently, only small amounts of free Al were available for MoAlB formation, which
explained the limited formation of MoAlB at this temperature (Figure 1c).
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above results indicated that increasing the excess Al generally favoured MoAlB formation, but 
inhibited the formation of intermediate phases. The intermediate phases detected were mainly in the 
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The formation of Al–Mo phases in all of the samples indicated that they were stable in the presence 
of B at 850 °C. Therefore, a higher synthesis temperature had to be used to avoid their formation and 
to complete the MoAlB formation reaction. 

Figure 1. XRD spectra of the samples with the stoichiometric composition after 6 h at (a) 850, (b) 900
and (c) 950 ◦C.

3.2. Effect of Amount of Excess Al on MoAlB Formation

Figure 2 illustrates the effect of excess Al on the phase formation and reaction extent in the samples
after 6 h of firing at 850 ◦C. When the stoichiometric amount of Al was used (Figure 2a, i.e., Figure 1a),
as already stated above, no MoAlB was detected, and Al8Mo3 and MoB were formed as the primary
phases, along with minor impurity Al2O3. Upon increasing the excess Al to 60%~80%, the formation
of MoAlB became evident, but MoB and Al8Mo3 still remained as the main phases (Figure 2b,c). Upon
further increasing the excess Al to 100–120%, MoAlB further increased, whereas MoB and Al8Mo3

generally decreased. In addition, minor Al5Mo was detected (Figure 2d,e). The above results indicated
that increasing the excess Al generally favoured MoAlB formation, but inhibited the formation of
intermediate phases. The intermediate phases detected were mainly in the Al–Mo binary phases
along with minor MoB, indicating that there should be some unreacted B (although not detectable
by XRD because of its amorphous nature) remaining in all of the samples. The formation of Al–Mo
phases in all of the samples indicated that they were stable in the presence of B at 850 ◦C. Therefore,
a higher synthesis temperature had to be used to avoid their formation and to complete the MoAlB
formation reaction.

3.3. Combined Effects of Excess Al and Firing Temperature on MoAlB Formation, and Optimisation of
Synthesis Condition

To illustrate the combined effects of excess Al and the firing temperature on the phase formation
and reaction extent, and to further optimise the synthesis condition, samples with various amounts
of excess Al were fired at different temperatures. Figure 3, for example, shows the XRD patterns of
samples with 100–140% excess Al after 6 h of firing at 900 and 950 ◦C, respectively, revealing similar
phase formations in both cases, although slightly more MoAlB and less intermediate phases were
formed at 950 than at 900 ◦C. When 100% excess Al was used, Al8Mo3 and MoB were the main
intermediate Mo–Al phases. However, with increasing the excess Al, these two phases decreased,
but an Al-rich Al–Mo phase, Al5Mo, was detected. The above results revealed that out of all of the
samples, the one with 140% excess Al had the highest MoAlB formation and the least formation of
intermediate Al–Mo phases at 950 ◦C, further indicating that increasing the excess Al along with firing
temperature had a synergistic effect on MoAlB formation. So, to make even purer MoAlB, samples
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with 120% and 140% excess Al were further fired at 1000 ◦C for 6 h. As seen from Figure 4, when
120% excess Al was used, apart from the primary phase of MoAlB, only minor Al8Mo3 and residual
Al were detected. However, upon increasing the excess Al to 140%, all of the intermediate Al–Mo
phases disappeared, and nearly phase pure MoAlB, along with minor residual Al and minor Al2O3,
was formed. After leaching out the minor residual Al and Al2O3 with HCl, phase pure MoAlB was
finally obtained (Figure 5a). The elimination of Al was evidenced by the absence of its diffraction
peaks, e.g., the strongest one at about 38.5o (2θ) (Figure 5b). The synthesis temperature used here was
at least 100 ◦C lower than that required by other synthesis routes reported previously [1,3,8–13].

Materials 2020, 12, x FOR PEER REVIEW 4 of 11 

 

 
Figure 2. XRD spectra of the samples heated at 850 °C for 6 h, with different amounts of excess Al at 
(a) stoichiometric amount, (b) 60%, (c) 80%, (d) 100% and (e) 120%. 

3.3. Combined Effects of Excess Al and Firing Temperature on MoAlB Formation, and Optimisation of 
Synthesis Condition 

To illustrate the combined effects of excess Al and the firing temperature on the phase formation 
and reaction extent, and to further optimise the synthesis condition, samples with various amounts 
of excess Al were fired at different temperatures. Figure 3, for example, shows the XRD patterns of 
samples with 100%–140% excess Al after 6 h of firing at 900 and 950 °C, respectively, revealing similar 
phase formations in both cases, although slightly more MoAlB and less intermediate phases were 
formed at 950 than at 900 °C. When 100% excess Al was used, Al8Mo3 and MoB were the main 
intermediate Mo–Al phases. However, with increasing the excess Al, these two phases decreased, but 
an Al-rich Al–Mo phase, Al5Mo, was detected. The above results revealed that out of all of the 
samples, the one with 140% excess Al had the highest MoAlB formation and the least formation of 
intermediate Al–Mo phases at 950 °C, further indicating that increasing the excess Al along with 
firing temperature had a synergistic effect on MoAlB formation. So, to make even purer MoAlB, 
samples with 120% and 140% excess Al were further fired at 1000 °C for 6 h. As seen from Figure 4, 
when 120% excess Al was used, apart from the primary phase of MoAlB, only minor Al8Mo3 and 
residual Al were detected. However, upon increasing the excess Al to 140%, all of the intermediate 
Al–Mo phases disappeared, and nearly phase pure MoAlB, along with minor residual Al and minor 
Al2O3, was formed. After leaching out the minor residual Al and Al2O3 with HCl, phase pure MoAlB 
was finally obtained (Figure 5a). The elimination of Al was evidenced by the absence of its diffraction 
peaks, e.g., the strongest one at about 38.5o (2θ) (Figure 5b). The synthesis temperature used here was 
at least 100 °C lower than that required by other synthesis routes reported previously [1,3,8–13].  
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(a) stoichiometric amount, (b) 60%, (c) 80%, (d) 100% and (e) 120%.

3.4. Microstructural Characterisation of MoAlB Product Powder

Figure 6 shows the SEM images of the MoAlB product powder resultant from 6 h of firing at
1000 ◦C and the subsequent purification with HCl, revealing three different morphologies of the
particles, namely: small rounded grains of 1~3 µm (highlighted by “I” in Figure 6), platelet-like
(disc-like) particles of <5 µm in diameter (highlighted by “II” in Figure 6) and columnar crystals up to
20 µm in length and up to 5 µm in diameter (highlighted by “III” in Figure 6). These three forms of
particles looked similar to those prepared by Shi et al. via the conventional mixed powder route using
Al and MoB as the raw materials [15]. Some small pits were seen on the surfaces of the third form,
which were similar to those reported by Kota and Shi et al. [9,15], although the reason behind their
formations was not clear.

Figure 7a further presents a TEM image of a representative MoAlB particle from the sample whose
microstructure is shown in Figure 6. As a result of its micron-scale thickness, its lattice structure could
not be revealed under TEM. Nevertheless, the selected area electron diffraction (SAED) pattern of the
particle was obtained (Figure 7b). It was similar to that reported by Alameda et al. [16], confirming
that the particle was an MoAlB crystal, which is believed to be as a result of the preferential growth in
the [010] direction.
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4. Discussion

At the test temperatures, the NaCl (melting point ~714 ◦C) melted, forming a homogeneous
molten salt medium in which the Al (melting point 660.3 ◦C) melted, forming corresponding droplets.
Although the exact solubility data of the Al, Mo and B in the NaCl molten salt are not available, based
on the previous studies on the molten salt synthesis of Mo2C [17], borides [18–20] and TiB2–Al2O3 [21],
it can be considered that the solubility values should be in the following order: Mo> Al> B. At a
relatively low firing temperature (850 ◦C), Mo was partially dissolved in the liquid salt, diffused
quickly through it onto the Al droplets (or met with dissolved Al) and B particles and then reacted to
form intermediate phases Al8Mo3 and MoB according to Reactions (2) and (3), respectively (Figures 1a
and 2a).

8Al + 3Mo = Al8Mo3 (∆G◦ = −278.7 KJ at 1000 ◦C) (2)

Mo + B = MoB (∆G◦ = −110.4 KJ at 1000 ◦C) (3)

No intermediate Al–B phases (such as AlB2) were detected by XRD at this temperature (Figures 1a
and 2a). The reason might be that most of the Al had been consumed by the reaction with Mo, so almost
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no Al was left for its reaction with B. Because of this and the limited solubility of B in the molten
salt at this relatively low temperature, once Al8Mo3 and MoB were formed, it would be difficult for
them to be converted into MoAlB via reacting with B and Al, respectively, i.e., Reactions (4) and (5)
would not occur at this low temperature. This explained the absence of MoAlB in the sample with the
stoichiometric amount of Al after firing at 850 ◦C (Figures 1a and 2a).

Al8Mo3 + 3B = 3MoAlB + 5Al (4)

MoB + Al = MoAlB (5)

With increasing the amount of excess Al, MoAlB increased, whereas MoB decreased, indicating
the occurrence of Reaction (5) and its gradually enhanced extent (Figure 2). Apart from this, some of
the excess Al would react with the Al8Mo3 formed earlier, forming Al-rich Al–Mo phases (AlxMo),
as suggested by the Al–Mo phase diagram [22] and evidenced by the detection of Al5Mo (Figure 3).
Al5Mo was not stable at the test temperatures, so it was believed to be formed upon cooling from
the liquid with the same composition. This was responsible for the increased Al5Mo and decreased
Al8Mo3 upon using more excess Al (Figures 2 and 3).

Al8Mo3 + 7Al = 3Al5Mo (∆G◦ = −23.5 KJ at 1000 ◦C) (6)

AlxMo + B = MoAlB + (x − 1)Al (7)

In addition to the amount of excess Al, the firing temperature significantly affected MoAlB
formation, in cases both using and without using excess Al (Figures 1, 3 and 4). With increasing the
firing temperature, the solubility of B in the molten salt would be increased. So, dissolved B would
diffuse through the molten salt onto the remaining Al–Mo phases (Al8Mo3 and AlxMo), and reacted
with them to form MoAlB, according to Reactions (4) and (7) (Figures 1c, 3 and 4).

Based on the above discussion, it can be considered that phase pure MoAlB could only be prepared
by using appropriate amounts of excess Al and firing at an appropriate temperature (in the present
work, 140% excess Al at 1000 ◦C). It is believed that the multiple-step reactions, in particular, the three
different formation reactions (Reactions (4), (5) and (7)), were responsible for the different shapes and
sizes of the MoAlB product particles (Figures 6 and 7), although future work is still needed to classify
this further.

5. Conclusions

MoAlB fine particles were synthesised in molten NaCl at a lowered temperature, from Al, B and
Mo powders. The main conclusions are drawn as follows.

(1) MoAlB product particles exhibited three different shapes/sizes, namely: rounded particles
(1~3 µm), platelet-like particles (<5 µm in diameter) and columnar crystals with various lengths (up to
20 µm) and diameters (up to 5 µm), which are believed to be formed from different reaction processes.

(2) To prepare phase pure MoAlB, an appropriate amount of excess Al needs to be used and an
appropriate firing temperature is required. In the present work, the optimal synthesis conditions were
as follows: use of 140% excess Al and 6 h of firing at 1000 ◦C. This synthesis temperature was at least
100 ◦C lower than that required by the synthesis techniques reported previously.

(3) At the test temperatures, the NaCl and Al melted, forming a liquid pool and corresponding
droplets, respectively. If the temperature was low (at 850 ◦C), Mo and Al partially dissolved in the
liquid salt, but B did not dissolve. In this case, the dissolved Mo reacted with Al (dissolved and/or
undissolved) and undissolved B, forming intermediate Al8Mo3 and MoB, respectively. When excess
Al was used, it was partially dissolved in the salt and diffused onto the surfaces of MoB and Al8Mo3,
and reacted to form MoAlB and Al-rich Al-Mo phases (AlxMo), respectively. With increasing the
temperature to >900 ◦C, the dissolution of B in the salt became more significant. So, the dissolved B
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would diffuse through the molten salt onto the surfaces of the intermediate Al–Mo phases formed
earlier, and reacted with them to form additional MoAlB.
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