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Accurate optic disc and optic cup segmentation plays an important role for diagnosing glaucoma. However, most existing
segmentation approaches suffer from the following limitations. On the one hand, image devices or illumination variations always
lead to intensity inhomogeneity in the fundus image. On the other hand, the spatial prior knowledge of optic disc and optic cup,
e.g., the optic cup is always contained inside the optic disc region, is ignored. Therefore, the effectiveness of segmentation
approaches is greatly reduced. Different from most previous approaches, we present a novel locally statistical active contour model
with the structure prior (LSACM-SP) approach to jointly and robustly segment the optic disc and optic cup structures. First, some
preprocessing techniques are used to automatically extract initial contour of object. Then, we introduce the locally statistical active
contour model (LSACM) to optic disc and optic cup segmentation in the presence of intensity inhomogeneity. Finally, taking the
specific morphology of optic disc and optic cup into consideration, a novel structure prior is proposed to guide the model to
generate accurate segmentation results. Experimental results demonstrate the advantage and superiority of our approach on two
publicly available databases, i.e., DRISHTI-GS and RIM-ONE r2, by comparing with some well-known algorithms.

1. Introduction

Glaucoma is the second leading cause of blinding in modern
times and approximately 80 million persons to be afflicted
with glaucoma by the year 2020 [1, 2]. Since the lost ca-
pabilities of the optic nerve fibers caused by glaucoma
cannot be recovered, early detection and timely treatment of
glaucoma can be regarded as the most effective way for
patients to slow down the procession of visual damage.
Glaucoma screening is done by ophthalmologists who
use the retinal fundus images to assess the damaged optic
disc. Nevertheless, this process is subjective, time con-
suming, and expensive. Therefore, automatic glaucoma
screening would be very beneficial [3]. There are two dif-
ferent regions within the optic disc. A center bright zone is
the optic cup, and the peripheral region between the optic

disc and optic cup boundaries is the neuroretinal rim (see
the region of interest (ROI) depicted in Figure 1).

According to the characteristics of the optic disc, several
strategies can be used to assess the optic disc. One of the
effective strategies is to utilize the image features for optic
disc assessment [4]. Nevertheless, how to select the suitable
image features and classifiers is the challenging issue. Apart
from the aforementioned feature extraction strategy, the
usage of the clinical indicators is another strategy to assess
the optic disc, such as the vertical cup to disc ratio (CDR) [5],
ISNT rule [6], and notching. Although these clinical in-
dicators are different from each other, precise optic disc and
optic cup boundary information is necessary.

To date, there are a series of approaches that have been
developed for optic disc and optic cup segmentation [7-27].
They can be roughly classified into the following two
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FIGURE 1: Major structures of the optic disc. Red line: the optic disc
boundary; green line: the optic cup boundary; the region between
the red line and green line is the neuroretinal rim.

categories: nonmodel-based and model-based approaches
[7]. For nonmodel-based approaches [3, 8-11], the contours
of both the optic disc and the optic cup are extracted by
means of some techniques, i.e., morphological operations,
pixels clustering, and thresholding. However, intensity in-
homogeneity is a frequently occurring phenomenon in
retinal fundus images caused by imperfection of image
devices or illumination variations, which affects the contour
extraction of the optic disc (Figure 2(a)).

For model-based approaches, they can be divided into
shape-based template-matching approaches [12-15], de-
formable model approaches [16-29], and deep learning-
based model approaches [30-32]. Considering that the shape
of the object is round or slightly oval, the contour of the optic
disc can be estimated as a circle [12-14] or an ellipse [15].
However, the shape-based template-matching approaches
cannot represent contours of complex topology and handle
topological changes, such as the optic disc regions with
shape irregularity due to some pathological changes (i.e.,
peripapillary atrophy (PPA), see Figure 2(b)) or variations in
view.

To address it, many deformable model approaches have
been presented which can be further divided into edge-based
active contour models [16-21] and region-based active
contour models [22-27]. Edge-based active contour models
can bridge the discontinuities in the image feature being
located. Besides, they can deform the shape of the object
freely due to the fact that they have no global structure of the
template. In [16, 17], the optic disc boundary is extracted by
the gradient vector flow (GVF). Then, the optic disc contour
is evolved via a minimization of the effect on the perturbance
in the energy value due to the high variations at the vessels
locations. In [18-21], the authors used a modified level set
approach, with ellipse fitting to detect the optic disc and
optic cup margins. Although these approaches perform well
in most regular cases, an irregularly shaped optic disc having
high gradient variations will fail in detecting the entire optic
disc. More recently, motivated by the main idea of the
Mumford-Shah model [28], some region-based active
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FIGURE 2: Intensity inhomogeneity challenges in optic disc and
optic cup segmentation.

contour models such as Chan-Vese (C-V) model [22] and its
variations [23-27] have been applied to optic disc contour
extraction. Although these models can perform better in
dealing with the local variations of the optic disc, they can
hardly deal with the images with intensity inhomogeneity. In
a recent paper, a robust level set approach called locally
statistical active contour model (LSACM) is presented [29]
by exploiting local image region statistics in an unsupervised
manner. Compared with the existing region-based active
contour models, LSACM approach performs better per-
formance, especially for the image segmentation in the
presence of intensity inhomogeneity. However, one diffi-
culty with active contour model-based approaches is that the
spatial correlation prior information between the optic disc
and optic cup is ignored. Therefore, the useful spatial in-
formation cannot guide and constrain the contour
evolution.

Nowadays, deep learning has widely been used in
computer vision and pattern recognition areas and achieved
remarkable performance, and some optic disc and optic cup
segmentation approaches based on deep network have been
proposed [30-32]. Although these approaches can achieve
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good performance in optic disc and optic cup segmentation,
there are still some limitations in them [33, 34]. On the one
hand, a large number of training samples consisting of pixel-
level annotations are necessary to train the deep network
model for testing. However, it is difficult for the network to
achieve promising segmentation performance in the con-
dition of insufficient labeled training samples. On the other
hand, these networks ignore the prior knowledge of objects,
thereby the spatial information being lost in encoder
through max-pooling resulting in irregular segmentation.

To address all the limitations raised above, a novel locally
statistical active contour model with structure prior
(LSACM-SP) approach is developed in this paper which
aims at jointly segmenting optic disc and optic cup in retinal
fundus images. The major innovations are as below: first of
all, unsupervised LSACM is employed to join optic disc and
optic cup segmentation over different retinal fundus images,
which can address the issue of insufficient labeled samples
and the influence of the retinal fundus images with a large
range of appearance and illumination variations. Second,
since the spatial correlation information is typically ignored
by the existing deep network-based approaches, the seg-
mentation performance is accordingly reduced. To address
it, we design a structure prior to satisfy with the topological
structure in retinal images that “cup” region is contained in
the “disc” region. At last, we develop an efficient segmen-
tation approach by incorporating locally statistical active
contour model with the proposed structure prior together to
simultaneously extract optic disc and optic cup contours.
Since minimizing the proposed energy functional can ac-
quire the contours, there is no need to use predefined
geometric templates to guide auto-segmentation. Therefore,
our approach reduces the segmentation performance deg-
radation on the fundus images with a large range of intensity
and shape variations. The overview of the proposed ap-
proach is shown in Figure 3.

The rest of this paper is organized as follows. First, some
preprocessing techniques are depicted in Section 2. Then, the
introduction of the proposed LSACM-SP is given in Section
3. Next, the experimental results and analyses are presented
in Section 4. At last, we summarize this paper in Section 5.

2. Preprocessing

To perform accurate optic disc and optic cup segmentation,
some preprocessing operations are necessary before carrying
out our approach. In this paper, the preprocessing process
consists of optic disc location, optic disc ROI extraction, and
contour initialization. Figure 4 depicts the process of
preprocessing.

Given a retinal image (see Figure 4(a)), we employ our
previous proposed approach based on saliency detection and
feature extraction techniques to locate optic disc [1]. The
detected optic disc location is marked in black “+” (see
Figure 4(b)). Meanwhile, a 400 * 400 ROI around the optic
disc is extracted for further segmentation, as shown in
Figure 4(c). Since blood vessels in the retinal images vary
much in size, and meanwhile their locations and shapes

among individual cases, a high variance in the data will affect
the performance of segmentation (see Figure 4(c)). Hence, it
is necessary to remove the influence caused by blood vessels
before contour evolution. Recently, B-COSFIRE filters that
combine the aligned responses of DoG filters with geometric
mean are simple and robust for blood vessels segmentation.
Therefore, we firstly use two rotation-invariant B-COSFIRE
filters given in [35] to segment blood vessels, as illustrated in
Figure 4(d). After obtaining the blood vessels, an image
inpainting algorithm proposed in [36] is employed to fill in
the blood vessel areas. In our setting, the blood vessel re-
moval is to replace each vessel pixel intensity value by the
median of the intensity values of the pixels in its neigh-
borhood image that are not vessel pixels. According to our
experience, we set the size of neighbor at 15. Meanwhile,
image information around the vessel regions is used to fill in
vessels and the obtained “vessels-free” image is shown in
Figure 4(e). Considering that red color channel gives a good
definition both on the optic disc and optic cup regions, this
paper chooses the red channel of “vessels-free” image (see
Figure 4(f)) for segmentation. For the obtained red channel
of blood vessel-removed optic disc image, we use canny edge
detection and circular Hough transform to estimate the
positions and sizes of the optic disc and the optic cup [23]. In
experiment, we set the parameters of threshold and sigma at
0.3 and 0.8, respectively, for canny edge detection. Finally,
the estimated results are regarded as the initialization
contours for our approach.

3. Methods

In Section 3.1, first of all, we briefly review the locally statistical
active contour model (LSACM). Then, the structure prior is
given in Section 3.2. Finally, we design a novel LSACM-SP
model for simultaneous segmentation of optic disc and cup by
joining the LSACM and the structure prior together in Section
3.3. In order to better understand the proposed approach, in
the following sections, we will use bold italic variables (e.g., X, y)
to denote vectors, small letters (e.g., n) to denote scalars, and
capital letters (e.g., I) to denote functions.

3.1. Locally Statistical Active Contour Model (LSACM).
According to [37], we can learn that the regions in the
images with severe intensity inhomogeneity must have sharp
discontinuities in the statistics. Inspired by it, Zhang et al.
[29] presented a locally statistical active contour model
(LSACM) to deal with the images with intensity in-
homogeneity. In [29], the authors firstly modeled the objects
with intensity inhomogeneity as Gaussian distributions of
different means and variances. Then, transforming the pixels
in original image into another domain makes the intensities
in the transformed space having less overlapping in the
statistics. Besides, to approximate the true image, a maximum
likelihood energy functional is employed. In comparison with
the existing statistical model-based segmentation algorithms
[23-28], LSACM is more robust and stable. For more detailed
descriptions, refer to [29].
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FIGURE 4: Preprocessing. (a) Original color image; (b) detected optic disc center in black “+”; (c) extracted ROI; (d) blood vessels extraction;
(e) “vessels-free” image; (f) red channel of (e). Blue: the extracted optic disc initialization contour and green: the extracted optic cup
initialization contour.

For a given input image I, its segmentation can be done I, ly-xI<p,
by minimizing the following energy functional: K, (xy) = 0. else
" M.(D 1, yeQ,
ESM @B 0= ) | EM@Md () @O=10 e,

i=1 )
where 7 is the number of objects in I. x,y € Q ¢ R? are pixel
coordinates; Q= U,_, €, represents image domain, in

I B s which €; is the domain of the i-th objectand ;N Q; = © for
F,= J K, (x, y)<10g (0;) +( (I~ Z(X)Ci) ))dx, all i # j. The symbol ® denotes an empty set. I (y) is the pixel
Q 20 value at the location of pixel coordinate y. B(x): Q — R is

where

i
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an unknown bias field. ® is a series of level set functions. If
y € Q;, then M,;(®(y)) =1, otherwise M;(®(y)) =0 in
which M, (® (y)) is the membership function of the region
Q;. The symbol O, denotes a neighboring region centering at
location x, i.e., O, = {y|ly — x| <p}, y is the neighborhood
point relative to x, and p is the radius of the region O,. The
symbol 0 = {c;,0,,i = 1,2,...,n} are needed to be estimated
parameters, where the constant c; is the true signal of the i-th
object and the object in region €); is assumed to be Gaussian
distributed with standard deviation ;. B(x)c; is the spatial
varying mean that is estimated at the local region Q,NO,.
K, (x,y) denotes the indicator function.

Considering that one level set function @ just represents
two different regions, namely, the inside region of contour S,
Q, =in(S) = {® >0} and the outside region of contour S,
Q, = out(S) = {® <0}, this model is defined as two phase.
However, one level set cannot work well for more than two
different regions. To deal with this case, incorporating four-
phase model is necessary, which uses two level set functions,
ie, ®, and @,, to represent all different regions [29]. Hence,
four-phase model denotes any two adjacent regions indicated
by different colors. Figure 5(a) depicts the segmentation results
obtained from the four-phase LSACM, in which the blue line
and the green line represent two-level set functions (i.e., @, and
®, ), respectively. The corresponding regions, such as “R11” (in
gray color), “R12” (in red color), “R13” (in yellow color), and
“R14” (in purple color) depicted in Figure 5(b), are extracted
from Figure 5(a). Seen from the segmentation results in
Figure 5(b), optic disc and optic cup regions cannot be de-
termined directly due to the existing nonobject segmentation
region (ie., “R12”). The main reason is that the evolution

processes of the regions from different classes (i.e., “R11,”
“R12,” “R13” and “R14”) are independent while ignoring the
prior that “cup” region is contained in the “disc” region.
Therefore, how to control the evolution of two level set
functions which one locates inside another, to approximate the
true optic disc and optic cup contours, is a main issue.

3.2. Structure Prior. To address the aforementioned issue,
this paper proposes a structure prior to guarantee the truth
that the “cup” region is contained in the “disc.” The structure
prior together with the effective optimization of LSACM can
enable the proposed approach generate robust and reliable
segmentation results. In this paper, the structure prior
consists of hierarchical image segmentation and attraction
term. Specifically, hierarchical indicates evolution manner of
two-level set functions, that is, the evolution of optic disc is
performed on the whole image region while the evolution of
optic cup is constrained inside the optic disc region. The
symbols ¢ and ¢ are two-level set functions. In this study, we
use ¢ >0 and ¢ > 0 to represent the optic disc region and the
optic cup region, respectively. The whole image region
represented as () and E is an energy functional.

3.2.1. Hierarchical Image Segmentation. Observing that the
optic cup in the retinal image always places inside the optic
disc, optic cup segmentation is enough to be done inside the
optic disc. Here, we propose the hierarchical image seg-
mentation EP (c;,c,, 03,0y, B (x),$,9) to indicate the
image region in which the contour evolution of optic cup is
enforced. We consider

h
Ecup(c3, €4, 03,04, By (%), 4, (p) = EH<C3, €4, 03,04, By (%), 4, (p) + EHOSmooth (), (3)

EH(C3, €4 03,04 By (%), ¢, (p) =a J¢>OJQKP (x,y) (log(a3)) + <

2
I(y)- B
Sk 2 (es) >H(so (y))dx dy
3
(4)
(I (y) - BCup (X)C4)2
+ jMJQKP xy)| (log(a,)) + 207 (1-H(g(y))dxdy |,
(5)

EHCSmooth (¢) = ‘MJ [VH (¢ (y))ldy,
Q

where EH(c3,c4,¢73,04,BcuP (x), ¢, 9) is used to constrain
the evolution of the optic cup which should be done inside
the optic disc region. Thus, the background region is not
considered in (3) while reducing the influence of non-
objects. [EHCSmooth ¢ @) is used to make the extracted contour
more smoother. B, is an unknown bias field for seg-
menting the OC, which accounts for the intensity in-
homogeneity in the optic disc. a and p are positive
parameters and the level set functions ¢ and ¢ are positive

inside zero-level sets. H represents the Heaviside function.
V is the gradient operator. o, is the standard deviation
subject to the object in the optic cup region and o, is the
standard deviation subject to the object in the neuroretinal
rim region.

3.2.2. Attraction Term. The optic cup region ¢ > 0 should be
in the optic disc region ¢ >0 to reduce the background
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(a)

(b)

FIGURE 5: Segmentation results obtained by LSACM. (a) Segmentation results by the four-phase-based LSACM and (b) the corresponding
regions by four-phase LSACM. Green: optic cup result and blue: optic disc result.

region. A term measuring the intersection area of the regions
{¢ <0} and {¢ > 0} plays a role to pull the region {¢ >0} to
inside the region {¢ > 0}:

pAtmaction () = vJQ (1-H(¢(y))H (¢(y)dy, (6)

where v is a positive parameter. Obviously, the objective
function value in (6) becomes zero when the region ¢ > 0 is
inside the region ¢ > 0.

(hierarchical image segmentation and attraction term) to-
gether. The details of the proposed LSACM-SP model are given
as follows:

EISACMESP (0,B,¢,9) = EP (¢15€2, 01,03, Bpigc (%), 9)

+ Ecup(c3, C4> 03, 04 Boy (X), 6, go)

+ EAttraction ( ¢’ (P)’

(7)

3.3. LSACM-SP. The proposed model is designed by com-  where

bining the locally statistical model and structure prior
EP™ (c1,€2, 01502, By (%), §) = ERAN (c1,€2, 01,02, Bpigc (%), ) + gPSmeoth () (8)
1(y) - By, g
E"AM (¢, ¢, 01,05, Boye. (X), ) = JQJQK” (x, y)(log (o)) + <( (y) 22;‘: (x)cy) ))H(‘P(Y))dx dy
1
)
(I (y) — BDisc (X)CZ)Z
+ J J' K, (x,y)| log(o,) + > (1 - H(¢(y)))dxdy,
ala 205

BP0 () =2 [ 1VH (9 (n)ldy, (10

where 0 = {¢;,0,,i =1,2,3,4}, B= {BDiSC (%), Beyp (x)}, and
EMSAM (¢ ¢,, 01,05, Bpjer §) and EPSmo0th () are the orig-
inal LSACM model and the smoothing term, respectively.
Bpii (%) is an unknown bias field for segmenting the optic
disc. A is a positive parameter. o, is the standard deviation
subject to the object in the optic disc region and o, is the
standard deviation subject to the object in the background
region (the outside region of the optic disc). The segmen-
tation result obtained by LSACM-SP is illustrated in
Figure 6(a), and the corresponding segmentation regions are
shown in Figure 6(b). Here, “R24” is the optic cup region,
“R23” is the neuroretinal rim region, “R22” is the optic disc

region consisting of “R23” and “R24,” and “R21” is the
background region.

In the proposed segmentation approach, we set n as 4
indicating 4 regions, namely, outer and inner regions of the
optic disc (“R21” and “R22” in Figure 6(b)) and the outer and
inner regions of the optic cup (“R23” and “R24” in
Figure 6(b)). Specially, the outer region of optic cup (“R23”in
Figure 6(b)) is the complementary set of the inner optic cup
region (“R24” in Figure 6(b)) relative to the optic disc region
(“R22” in Figure 6(b)). According to the aforementioned
descriptions, we further rewrite (7) and obtain the objective
function as
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(a) (b)

FIGURE 6: The segmentation results by the proposed model. (a) Segmentation results by the proposed LEACM-SP and (b) the corresponding
regions by the proposed LSACM-SP. White: optic disc ground truth by an expert, black: optic cup ground truth by an expert, green: optic
cup result by an approach, and blue: optic disc result by an approach.

2 4
LSACM-SP _
E (6,B, ¢, 9) = ; JQFiMDisc_idy + AJ‘Q|VH(¢(Y))|dY + 0‘; jQFchuP—idy -
vu IVHGp@Idy +v[ (- H@GH @)y,
where
F, (1,01, Bpis () = JQKP (X>Y)(log (0,)+ (I(y)- 1;1();1“ (x)cy) ))dx,
F (CZ’GZ’BDlsc (X) = JQKP (X,y)(log ( I(Y) gilsc )dX,
2
(1)~ Boy ® (2
F (63,0’3, cup (x) = JQK (x, Y)(log(03 < y 2;1p X)cy >>dx,
3
~ By (¥)c,)’
F4(c4,04,BCuP (x) K (x,y)<log(g4 < 202;, XC4) ))dx,
4
MDisc_l (¢) =H (‘P(Y)),
Mpisc 2 (@) =1-H (¢ (y)), 03
M3 (6:9)=H (¢ (y)) (H (¢(¥))),
Meyp_4 (¢,9) = H (¢ (y)) (1-H(¢(y)))s
where 0 = {¢;,0;,i =1,2,3,4}, B= {BDiSC (%), Beyp (x)}, model in LSACM, they are different in fact. The main dif-

Mpie 1 and Mp;.. , denote the membership functions for
inner and outer regions of the optic disc, and Mc,, ; and
Myp_4 are the membership functions for inner and outer
regions of the optic cup in the optic disc. Although the
membership functions in (13) are alike with the four-phase

ference is that the proposed approach incorporates the
structure prior knowledge to constrain the contour evolu-
tion based on hierarchical. Therefore, the evolution space of
feasible segmentation is reduced, which improves the ac-
curacy of segmentation.



Seen from (7), it requires a hard work to find a minimizer
EMSACMSSE for ¢, 9, 0={c;,0,,i=1,2,3,4}, and B ={Bp; (x),
Beyp (x)}, simultaneously. Similar to the [29], we solve the
minimization problem for each variable alternatively to find
a minimizer of (7). The procedure will be repeated until
satisfying a stopping condition. In this study, the initial
conditions of the gradient descent method are given as
Bpise (X) =1, By (x)=1, 0;=i(i=1,2,3,4), and the region
scale parameter p is set as 6. Accordingly, the initialization of
¢;(i=1,2,3,4) can be calculated by (A.2)-(A.5). Meanwhile,
the time step for level set evolution is set at Af; =1 and the
time step regularization is set at At =1. The level set func-
tions ¢ = ¢, and ¢ = ¢,,. For more details, refer to Appendix.

4. Results

4.1. Database. In this paper, two publicly available data-
bases, namely, DRISHTI-GS [38] and RIM-ONE r2 [39], are
used to verify the effectiveness of our approach.

The DRISHTI-GS database [38] contains a total of 101
images containing 31 normal images and 70 glaucomatous
images in 2896 x 1944 resolutions. For each image, the optic
disc and optic cup are accurately annotated via a majority
voting manual markings obtained from four glaucoma
ophthalmologists. In our experiments, we use the marking
result obtained by a value of threshold 0.75 as the final
ground truth for evaluation.

The RIM-ONE r2 database [39] contains 455 retinal
fundus images with 255 normal images and 200 glaucoma
images. In experiment, all of the images in the database are
firstly arranged in the same dimension by resizing, and then
the preprocessing techniques depicted in Section 2 are used
to these images. Finally, the obtained red channel of blood
vessel-removed optic disc image and extracted initialization
contours are regarded as the inputs for our approach.

In this paper, all the experiments are evaluated under the
Matlab programming environment and on a desktop of
3.30 GHz CPU with 16G RAM. Figure 7 illustrates two
examples for the application of our model to optic disc and
optic cup segmentation, in which Figure 7(a) gives the
original image; Figure 7(b) shows the optic disc and the
corresponding ground truth image; and Figure 7(c) depicts
the optic cup and the corresponding ground truth.

4.2. Evaluation Measurements. In our experiment, three

widely used measurements are utilized to evaluate the

performances of different approaches, including Dice co-

efficients (DI), boundary-based distance, and accuracy.
Dice coefficients (DI):

2 X Nrpp

DI = ,
2X Npp + Ngp + Npy

(14)

where N is the number of true positive, Npp is the number
of false positive, and Npy is the number of false negative.
Positive and negative refer to pixels belonging to the seg-
mentation area and background in accordance to the ground
truth segmentation, respectively. The DI is a standard
evaluation metric for segmentation tasks [18].
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Boundary-based distance:

, (15)

1 &
D= Y|dl-d)
k9:1

where dz and dg represent the distances from the expert’s
curve centroid to the points on the expert’s curve C, and our
method’s curve C,, respectively, in the 0-th angular direction
and k denotes the count of angular samples. According to
[23], we set k as 8 along angular directions 0°, 45°, 90°, 135°,
1807, 225°, 270°, and 315°, respectively. Ideally, the distance
D should be close to zero. Figure 8 gives a detailed de-
scription of boundary-based distance. Figure 8(a) shows the
center of expert’s curve and eight directions (OR1-ORS).
Figure 8(b) depicts the distance between C, and C,.
Accuracy:

TP + TN

= , (16)
TP + TN + FP + FN

Acc

where true positive (TP) is the number of glaucoma images
that are correctly identified, false negative (FN) is the
number of incorrectly found as nonglaucoma images, false
positive (FP) is the number of incorrectly found as glaucoma
images, and true negative (TN) is the number of non-
glaucoma images that are correctly identified. Positive and
negative refer to testing retinal images belonging to glau-
coma and normal in accordance to the vertical CDR value.
Similar to the existing approaches [3], when vertical CDR
value is greater than a threshold, it is glaucomatous, oth-
erwise, healthy, we set the standard threshold value as 0.5 for
glaucoma diagnosis in this paper [40].

4.3. Optic Disc Segmentation Results. In this section, five
models are implemented for optic disc segmentation per-
formance comparison, namely, gradient vector flow (GVF)
[16], C-V model [24], LIC model [41], superpixel [3], and
LSACM [29]. Several optic disc segmentation results ob-
tained by different approaches are shown in Figure 9. As
shown in this figure, the white lines show the segmentation
results marked by the expert and the blue one by an ap-
proach. Since the first two row images in Figure 9 contain
PPA having high gradient variations, all the segmentation
approaches have error segmentation results, but our ap-
proach, LSACM approach, and superpixel approach are
better than the others. For an irregular shaped optic disc
image example with high gradient variations depicted in the
fourth row, the segmentation results by the GVF model are
sensitive to the local gradient minima. Although the C-V
model can deal with the local gradient variations, it is not
suitable to deal with intensity inhomogeneity image due to
the fact that it uses piecewise constant functions to model
images. For the LIC model based on locally weighted K-
means clustering approach, it may fail to discriminate the
intensities of an object from its background when the in-
tensity inhomogeneity is severe. The main reason is that the
clustering variance is ignored in it. Although superpixel-
based approach can improve the segmentation performance
by extracting features from the superpixel level, it may have a
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(a) (b) ()

FiGure 7: Optic disc and optic cup boundaries extraction. (a) Original color images, (b) original color images with contours of both optic
disc and ground truth superimposed, and (c) original color images with contours of both optic cup and ground truth superimposed. Black
line: ground truth marked by an expert and white line: results obtained by the proposed method.

(a) (b)

FIGURE 8: The description of boundary-based distance measurement. (a) The reference point (expert’s curve centroid) and eight directions
(OR1-OR8); (b) the detail of the distance between the expert’s curve C g (white) and our method’s curve C, (blue).

bias of underestimating large optic discs and overestimating  approaches are robust to intensity inhomogeneity (i.e.,
small optic discs when the medium-sized optic discs are =~ PPA). However, our approach takes the spatial correlation
employed to train the model. Moreover, LSACM and our  prior information into consideration while LSACM does
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LSACM-SP

Superpixel

F1GURre 9: Optic disc segmentation results. First column: original images; second column: GVF model results [16]; third column: C-V model
results [24]; fourth column: LIC model results [41]; fifth column: superpixel [3]; sixth column: LSACM [29]; seventh column: LSACM-SP.
White line: ground truth and blue line: detected result by an approach.

not. Therefore, our approach is more robust than other
comparison approaches.

To assess the performance of our approach, we compare
it with other approaches in terms of DI and boundary-based
distance measurements, as shown in Table 1. Seen from
Table 1, our approach can achieve the highest DI and lowest
average boundary distance among all the approaches, in-
dicating the effectiveness of the proposed approach.

Seen from the aforementioned comparison results, our
approach performs the best. The main reason is that the
proposed model takes local image region statistics in-
formation into consideration, which is robust to noise and
intensity overlapping (i.e., PPA). Besides, based on the in-
corporation of structure prior, all of the nonobject regions
outside the optic disc are regarded as the background region
in the proposed approach (see “R21” in Figure 6(b)), and
thus all nonobject segmentation regions are eliminated (see
“R12” in Figure 5(b)). Finally, an optic disc with fuzzy
boundary is depicted in the fourth row. Comparing the
results of our approach with those of the existing ap-
proaches, the optic disc boundary obtained by our approach
is matching closely with the ground truth. The reason is that
our approach models the objects as Gaussian distributions
with different means and variances. Therefore, different
objects will be separated from each other. Overall, the
proposed optic disc segmentation approach is robust to a
large range of variations in retinal images.

In order to further verify the effectiveness of the pro-
posed LSACM-SP, the pairwise one-tailed t-tests is used in

this paper. In this test, the null hypothesis is our LSACM-SP
makes no difference when compared with the existing optic
disc segmentation approaches and the alternative hypothesis
is our LSACM-SP makes an improvement when compared
with other approaches. For example, if we want to compare
the performance of LSACM-SP with that of C-V (LSACM-
SP vs. C-V), the null and alternative hypotheses are defined
as Hy : Mispem-sp = Mc-y and H, : Mygaep-sp > Mc-ys
respectively, where Mjcacm-sp and My are the mea-
surement results obtained by LSACM-SP and C-V ap-
proaches on different datasets. In our experiment, we set the
significance level at 0.05. Seen from Table 2, all the p values
are much less than 0.05, which means that the null hy-
potheses are disapproved in all pairwise tests. Therefore, the
proposed LSACM-SP significantly outperforms other optic
disc segmentation approaches.

4.4. Optic Cup Segmentation Results. For cup segmentation,
we employ two different approaches, i.e., thresholding [24]
and clustering [42], for comparison. The corresponding
comparison results obtained from different approaches are
shown in Figure 10.

According to Figure 10, it can be seen that our approach
achieves small deviation of the detected optic cup boundary
from the ground truth both on the nasal and temporal sides.
However, other approaches suffer from a significant influ-
ence on the segmentation accuracy, especially for dense
blood vessels presented on the nasal side. Specially, our
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TaBLE 1: Optic disc segmentation results on the DRISHTI-GS and RIM-ONE r2 databases.

Boundary-based distance Boundary-based distance

Methods DI (DRISHTI-GS) (DRISHTL-GS) DI (RIM-ONE r2) (RIM.ONE 12)
GVF [16] 0.867 39.239 0.735 42.768
C-V [24] 0.885 26.578 0.734 29.648
LIC [41] 0.910 11.900 0.779 15.764
Superpixel [3] 0.932 10.747 0.816 13.611
LSACM [29] 0.931 10.012 0.808 13.155
LSACM-SP 0.955 8.711 0.853 10.232

TaBLE 2: The p values of the pairwise one-tailed t-tests of LSACM-SP and other optic disc segmentation approaches on DI

Methods p values (DRISHTI-GS) Methods p values (RIM-ONE r2)
LSACM-SP vs. GVF 3.43e-05 LSACM-SP vs. GVF 1.37e—06
LSACM-SP vs. C-V 3.44e-05 LSACM-SP vs. C-V 2.80e — 05
LSACM-SP vs. LIC 1.35¢—04 LSACM-SP vs. LIC 5.35e—05
LSACM-SP vs. superpixel 8.90e - 04 LSACM-SP vs. superpixel 6.32e - 04
LSACM-SP vs. LSACM 4.34e—03 LSACM-SP vs. LSACM 8.73e—04

(a) (b) (© (d)

F1GuRre 10: Optic cup segmentation results. (a) Original color image, (b) thresholding [24], (c) SWFCM clustering [42], and (d) LSACM-SP.
Black line: ground truth and green line: detected results obtained by an approach.
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TaBLE 3: Optic cup segmentation results on the DRISHTI-GS and RIM-ONE r2 databases.

DI (DRISHTI-GS)

Boundary-based distance
(DRISHTI-GS)

Boundary-based distance

DI (RIM-ONE r2) (RIV.ONE 12)

Thresholding [24] 0.625 51.337 0.602 56.658
SWECM clustering [42] 0.803 26.361 0.741 29.874
LSACM-SP 0.847 20.863 0.785 23.245

TaBLE 4: The p values of the pairwise one-tailed t-tests of LSACM-SP and other optic cup segmentation approaches on DI

Methods p values (DRISHTI-GS)
LSACM-SP vs. Thresholding 8.12¢-04
LSACM-SP vs. SWECM clustering 1.04e—-03

Methods p values (RIM-ONE r2)
LSACM-SP vs. Thresholding 1.26e - 05
LSACM-SP vs. SWECM clustering 2.21e—-03

approach is always superior to the nonjoint approaches
[24, 42] due to the fact that our approach makes full use of
the useful prior of optic disc boundary for optic cup
boundary extraction. Comparing with the existing ap-
proaches, our approach has the following advantages: (1)
intensity inhomogeneity, a frequently occurring phenome-
non within optic cup is addressed, and thereby the dis-
crimination between the optic cup and nonoptic cup is
enhanced. (2) The proposed structure prior can guide the
optic cup contour evolution in an effective region, which can
reduce the negative effect of nonobjects, generating robust
and reliable segmentation results. (3) Our approach is free
from any training process and shape constraint, which is
robust and effective in capturing a large range of intensity
and shape variations. More detailed quantitative assessment
results of the optic cup segmentation using DI and
boundary-based distance criteria are shown in Table 3. As
seen from Table 3, the proposed approach outperforms
others comparison approaches in terms of the two important
segmentation measurements.

Furthermore, the pairwise one-tailed ¢-tests [43] are used
to verify the effectiveness of our approach for optic cup
segmentation. The corresponding results are depicted in
Table 4. Seen from Table 4, all the p values are much less than
0.05, indicating that the null hypotheses are disapproved in
all pairwise tests. As a whole, the proposed approach shows a
significant improvement in the optic cup segmentation
results.

4.5. Glaucoma Assessment. In this section, we will give the
performance of the glaucoma detection based on our ap-
proach. Since the vertical CDR value is one of the most
important indicators for glaucoma detection, we use the
segmented optic disc and optic cup results to calculate the
vertical CDR. Here, the normalized CDR value Q; of the ith
image can be calculated by

— Qi - Qmin

' Qmax - Qmin
where Q. and Q.;, are the maximum and minimum
vertical CDR values. Here, the area under ROC curve (AUC)

is used for glaucoma assessment, as shown in Figure 11.

0.8 -
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—— RIM-ONE r2 (AUC = 0.800)
—— DRISHTI-GS (AUC = 0.846)

FIGURE 11: The ROC curves of LSACM-SP in glaucoma detection
on the Drishti-GS and RIM-ONE r2 databases.

TaBLE 5: Comparison of the proposed approach against the state-
of-the-art approaches on the DRISHTI-GS and RIM-ONE r2
databases.

Accuracy (%) Accuracy (%)

Methods DRISHTI-GS  RIM-ONE r2
Superpixel segmentation [3] 69.27 78.64
Wavelet features [44] 40.19 59.81
Multifeature fusion [45] 75.84 83.57
Deep learning [46] 84.38 80.18
SDC [47] 87.25 84.17
AWLCSC [48] 88.63 85.56
LSACM-SP 89.01 84.69

4.6. Comparison with the State-of-the-Art Approaches.
After the optic disc and optic cup boundaries extraction, we
use the accuracy as a common measurement for glaucoma
assessment. In this section, some state-of-the-art glaucoma
diagnosis approaches are employed for verifying the effec-
tiveness of the proposed approach, i.e., superpixel seg-
mentation [3], wavelet features [44], multifeature fusion
[45], deep learning [46], SDC [47], and AWLCSC [48].
Table 5 shows the classification results obtained by different
algorithms on the DRISHTI-GS and RIM-ONE r2 databases.
According to the comparison result, we can learn that the
proposed LSACM-SP achieves a promising performance.
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TaBLE 6: The p values of the pairwise one-tailed t-tests of LSACM-SP and other glaucoma diagnosis approaches on accuracy.

Methods p values (DRISHTI-GS)

Methods p values (RIM-ONE r2)

LSACM-SP vs. superpixel 9.34e - 04
LSACM-SP vs. wavelet features 5.98¢—-05
LSACM-SP vs. multifeature fusion 0.0097
LSACM-SP vs. deep learning 0.0110
LSACM-SP vs. SDC 0.0183
LSACM-SP vs. AWLCSC 0.0421

LSACM-SP vs. superpixel 5.56e — 04

LSACM-SP vs. wavelet features 2.92¢ - 05
LSACM-SP vs. multifeature fusion 0.0014
LSACM-SP vs. deep learning 0.0019
LSACM-SP vs. SDC 0.0272
LSACM-SP vs. AWLCSC 0.0303

Besides, we also use the pairwise one-tailed #-tests on
accuracy to further verify the effectiveness of the proposed
approach. The results are shown in Table 6. From these
results, we can learn that the p values obtained by the
pairwise one-tailed t-tests are less than 0.05, which indicates
that our approach significantly outperforms other glaucoma
diagnosis approaches.

5. Conclusions

Since glaucomatous damage is irreversible, automated as-
sessment of glaucoma is of interest in early detection and
treatment. A novel model for simultaneous segmenting optic
disc and optic cup for glaucoma diagnosis is presented in
this paper. First, LSACM is introduced to overcome the
influence caused by intensity inhomogeneity. Then, the
proposed approach is presented by combining structure
prior consisting of the hierarchical image segmentation and
the attraction term. After that our approach is updated it-
eratively and constantly adjusted both the optic disc and

optic cup boundaries to approximate the true object
boundaries. The proposed approach is tested and evaluated
on two publicly available DRISHTI-GS and RIM-ONE r2
databases. Seen from the experimental results, the proposed
approach outperforms the state-of-the-art approaches. Al-
though good segmentation performance can be achieved by
the proposed approach, it may fail in some of the normal
fundus images with extremely small optic cup sizes. In the
future, we will introduce the priors on the location and shape
of optic disc and optic cup to overcome this issue.

Appendix

Minimizing the energy functional EXSACM™SP with respect to
€1> €5 €3, €4 Bpisc (X), Bey, (X), 07, 05, 03, and 0, we can
achieve the minimizer for each variable. That is,

(1) Energy minimization with respect to {c;, 0;}, Bpjs (X),
By (%): functionals for {c;, 0;}, Bpic (%), Beyy (%) of

ELSACMZSE are givens as

I(y)-B
81 (BDisc (X), Cl’ Ul) = JQJQKP (X, y)(log (0’1) + ( (Y) Zglsc (X)Cl) ))H(¢(y))dx dY,
1(y) - By,
e (B 0. ,0,) = [ [ K, Gy g () (0= 0% )(1 - H($(y)dxdy,
(A.1)
I (y) = Beyp (X)c5
&3(Beyp (%),¢3,05) = JQJ K, (x, Y)(log ) < Y 22; o >>H(¢(y)) (H (¢ (y)))dx dy,
(I1(y) ~ Beyy (0)cs)”
84(BCup (%), ¢4, 04) = JQJQKP (x, Y)(log(04) + < 2(‘%‘? ! >>H(¢(y)) (1 - H (¢(y)))dxdy,
f:ccll: {,L;’;f;]i(;za?}g Ef?s)l) has an explicit minimizer for . [ [ K, (x,y)® By, (x)] ()M + dy’ "
[ o [K, (%) ® By (0] (1) My ,dy ) | Q[K (x,y)® B, (x) [ My, 5dy
c = , .
Ja [K (.7)® B (X)]MDiSC‘ldy c ,[Q [K (%) ®Bey, (X)]I(Y)MCupAdy (A.5)
4 — d > .
c, = .[Q [ ®BDISC (x)]I(Y)MDlsc ZdY) (A3) jQ [K (X Y) ® BCup (X)]MCupA Y

.[Q [K (x, ¥) ® By (x)]MDingdy
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BDisc (X) =

K,(xy)® [I(Y)MDisc,l] (cr/a?) + K,(xy)® [I(Y)MDiSQZ] (c2/03)
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) (A.6)

BCup (X) =

Kp (X’ y) ® MDist (C%/O’%) + Kp (X, y) ®MDisc72 (C%/G%)

K,(%Y)® [I(y)Mc,, 5] (c3/03) + K, (x,y) ® [I () My 4| (c4l0?})

) (A7)

o, = IQIQKP (%) (I(y) - Bpisc (X)CI)ZMDisc_ldX dy
1 \ Jof oKy (oY) Mpy_1dxdy ’
(A.8)

P IQIQKp (%) (I(y) = Bpisc (X)Cz)zMDisc_de dy
’ \ fQIQKp (%, y)Mp;s_pdxdy ,
(A.9)

. = IQIQKP (X’ Y)(I (Y) B BCup (X)C3)2MCup,3dX dy
’ \ J QI oK, (. y)Mcy, sdxdy )

(A.10)

>

04 = IQIQKP (x, y)(I (y) = Bewp (X)C4)2MCup_4dx dy
) \ IQIQKp (x, Y)MCup_4dX dy
(A.11)

where ® denotes the convolution operator.

(2) Energy minimization with respect to ¢ and ¢: min-
imizing EYSACM™SP yith respect to ¢ and ¢, it can be
solved by the standard gradient descent method.
After a series of calculations, the solution is obtained

as follows:
g—f _ Adiv(%)&(@ {(F, ~ F, +aF,)
Xt y

+ (aF5 — aF ) H (9) — vH (9)}8(¢),
(A.12)

op . Vo
E = [Jle(m)&(([)) —{((XF3 - OCF4)H(¢)

+v(1 - H($)}d(p),
(A.13)

where V denotes the gradient operator, div(-) is the
divergence operator, and & (¢) is the Dirac functional
[29].

In this paper, a simple and stable approach [29] is
employed to regularize the level set functions during

Kp (X’ y) ®MCup_3 (C%/O’%) + Kp (X> Y) ®MCup_4 (Ci/O’i)

each level set evolution. Therefore, level set functions
depicted in (A.12) and (A.13) are regularized by the
following formulas:

o = ¢+ AV, (A.14)

gol+1 = q)l + At - qu)l, (A.15)
where ¢ and ¢' are two level set functions acquired
at the [-th iteration, V? is the Laplacian operator, and

At denotes time steps.
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