
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Po-Hsiang Tsui,
Chang Gung University, Taiwan

REVIEWED BY

Lian-Ping He,
Taizhou University, China
Ahmad Nazlim Bin Yusoff,
Universiti Kebangsaan Malaysia,
Malaysia
Xiao-Yan Zhang,
Chinese Academy of Medical Sciences
and Peking Union Medical College
Hospital, China

*CORRESPONDENCE

Jun Li
1287424798@qq.com
Xin-Wu Cui
cuixinwu@live.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 15 May 2022

ACCEPTED 19 August 2022
PUBLISHED 28 September 2022

CITATION

Zhu P-S, Zhang Y-R, Ren J-Y, Li Q-L,
Chen M, Sang T, Li W-X, Li J and
Cui X-W (2022) Ultrasound-based
deep learning using the VGGNet
model for the differentiation of benign
and malignant thyroid nodules:
A meta-analysis.
Front. Oncol. 12:944859.
doi: 10.3389/fonc.2022.944859

COPYRIGHT

© 2022 Zhu, Zhang, Ren, Li, Chen,
Sang, Li, Li and Cui. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Systematic Review
PUBLISHED 28 September 2022

DOI 10.3389/fonc.2022.944859
Ultrasound-based deep learning
using the VGGNet model for the
differentiation of benign and
malignant thyroid nodules:
A meta-analysis
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of Medicine, Shihezi University, Shihezi, China
Objective: The aim of this study was to evaluate the accuracy of deep learning

using the convolutional neural network VGGNetmodel in distinguishing benign

and malignant thyroid nodules based on ultrasound images.

Methods: Relevant studies were selected from PubMed, Embase, Cochrane

Library, China National Knowledge Infrastructure (CNKI), and Wanfang

databases, which used the deep learning-related convolutional neural

network VGGNet model to classify benign and malignant thyroid nodules

based on ultrasound images. Cytology and pathology were used as gold

standards. Furthermore, reported eligibility and risk bias were assessed using

the QUADAS-2 tool, and the diagnostic accuracy of deep learning VGGNet was

analyzed with pooled sensitivity, pooled specificity, diagnostic odds ratio, and

the area under the curve.

Results: A total of 11 studies were included in this meta-analysis. The overall

estimates of sensitivity and specificity were 0.87 [95% CI (0.83, 0.91)] and 0.85

[95% CI (0.79, 0.90)], respectively. The diagnostic odds ratio was 38.79 [95% CI

(22.49, 66.91)]. The area under the curve was 0.93 [95% CI (0.90, 0.95)]. No

obvious publication bias was found.

Conclusion: Deep learning using the convolutional neural network VGGNet

model based on ultrasound images performed good diagnostic efficacy in

distinguishing benign and malignant thyroid nodules.

Systematic Review Registration: https://www.crd.york.ac.nk/prospero,

identifier CRD42022336701.
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Introduction

Thyroid nodules are the most common diseases of the

endocrine system, with an ultrasound population detection

rate of about 65%, of which approximately 10% is thyroid

cancer (1). Thyroid cancer, despite the low incidence, is one of

the fastest growing of all cancer types, having increased

approximately 2.4 times in the last 30 years (2). It has

become a public health concern in most parts of the world.

Therefore, early detection and early accurate diagnosis of

benign and malignant thyroid nodules are crucial to develop

treatment plans and predict prognosis for patients with

thyroid nodules, yet this is a great challenge for radiologists

and physicians.

Ultrasound is currently the first-line examination of choice

for the clinical diagnosis of thyroid nodules, and it is not only the

main method for cancer risk stratification of thyroid nodules,

but also usually used for the guidance of fine-needle aspiration

biopsy. However, the differential diagnosis of thyroid nodules by

2D ultrasound has certain limitations. The quality of ultrasound

images is susceptible to many factors, such as the cooperation of

patients, the performance of ultrasound machines, and the

operating techniques of radiologists (3). In addition,

ultrasound diagnostic results are affected by the experience

level of radiologists, and the recognition of ultrasound image

characteristics of nodules differs among radiologists with

different working experience, which is subjective (4).

Therefore, there is an urgent need to explore a diagnostic

tool that is noninvasive, accurate, and objective in the

differential diagnosis of the benign and malignant thyroid

nodules preoperatively.

In 2013, deep learning of artificial intelligence (AI) was

ranked as one of the top 10 breakthrough technologies by MIT

Technology Review, ranking no. 1. From then on, deep learning

entered an era of rapid development and played a pivotal role in

the medical field, especially in medical image recognition. Some

studies used the deep learning convolutional neural network to

extract ultrasound features to identify and diagnose benign and

malignant thyroid nodules, and some of the studies with

diagnostic performance could be comparable to or better than

the advanced physicians, which could reduce unnecessary

punctures and overtreatment, and help grassroots and

inexperienced physicians improve diagnostic efficiency and

accuracy (5–7). In addition, Lee et al. (8) explored the use of

deep learning convolutional neural networks in predicting the

presence of lymph node metastasis in thyroid cancer on

ultrasound, and their results indicated good predictive

diagnostic accuracy (accuracy of 83.0%). Accordingly,

ultrasound-based AI provides a new direction and method for

radiologists to accurately and non-invasively identify and

diagnose benign and malignant thyroid nodules and predict

lymph node metastasis in the neck before surgery.
Frontiers in Oncology 02
Previous published AI studies on thyroid disease can be

broadly classified into two categories: traditional machine

learning (ML) and deep learning (DL). Traditional ML uses

manual extraction of image features, but ultrasound images are

highly variable and feature extraction is dependent on physician

experience; therefore, the accuracy of diagnosing benign and

malignant thyroid nodules varies between empirical

practitioners. Deep learning is a development of machine

learning using automated extraction of image features, which

is independent of physician experience (9). Among them,

convolutional neural network (CNN) is a well-known deep

learning structure in the field of medical image analysis and is

a fully trainable deep learning algorithm consisting of an input

layer, a hidden layer, and an output layer (10, 11). The hidden

layer usually contains a convolutional layer, a pooling layer, and

a fully connected layer. Compared with traditional machine

learning methods, CNN performs better in target detection and

image classification, and can better extract semantic features

(12). Nowadays, CNN is considered one of the most advanced

methods among many representative algorithms of deep

learning, and VGGNet is a widely used model in CNN

algorithms (10, 11). This model is the first network structure

to reach “deep” in a real sense, as it takes a different research

direction from previous CNN models, namely, deepening the

network, and proves that the deep network with small filters is

superior to the shallow network with large filters (13). Therefore,

the deep learning VGGNet model alone was selected as the

research subject to avoid selection bias and ensure the stability

and reliability of the results.

At present, a number of studies have demonstrated that

using the deep learning VGGNet model can differentiate benign

and malignant thyroid nodules on ultrasound to assist

physicians in making diagnostic results, but the sensitivity of

different studies varies. The sensitivity was 93% in the study

results of Zhu et al. (5), but only 77% in the study results of Zhou

et al. (14). The sensitivity of ultrasound-based deep learning

VGGNet in the diagnosis of thyroid nodules was quite different,

and no meta-analysis of ultrasound-based deep learning

VGGNet models for the determination of the nature of

thyroid nodules has been found. Therefore, this meta-analysis

aims to evaluate the efficacy of the ultrasound-based deep

learning VGGNet model in distinguishing and diagnosing the

nature of thyroid nodules to help radiologists make more

accurate diagnoses.
Materials and methods

Search strategy

This meta-analysis was a study summarizing previously

published literature on the differential diagnosis of thyroid
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nodules with an ultrasound-based deep learning convolutional

neural network VGGNet model, thus requiring no ethical

confirmation or patient consent. The literature was

independently searched in PubMed, Embase, Cochrane

Libraries, China National Knowledge Infrastructure (CNKI),

and Wanfang databases up to September 2021, updated as of

June 2022. The main following keywords were searched: “Deep

learning” or “DL” or “Neural network” and “ultrasonography”

OR “ultrasound” OR “ultrasonic” or “diagnostic imaging” and

“thyroid” or “thyroid gland” or “thyroid nodules”. Moreover,

references of retrieved topic-related systematic reviews were also

manually searched, and other relevant studies were read and

identified to make the search more comprehensive.
Study selection

Inclusion criteria were as follows (1): studies that used the

deep learning VGGNet model for the differential diagnosis of

benign and malignant thyroid nodules (2); at least one

ultrasound imaging modality (3); literature that can provide

true positives (TP), false positives (FP), false negatives (FN), and

true negatives (TN) (4); test set data or validation set data would

be chosen; if both were present at the same time, we chose to use

the test set; if there were both external and internal test sets, we

also conducted a meta-analysis on the external test sets; if there

were more than one external test set results in a paper at the

same time, we would remove the highest and lowest diagnostic

performance results and select the intermediate results; and (5)

the gold standard was fine-needle aspiration (FNA), pathology,

or both.

Excluded studies include (1) studies that did not match the

gold standard (2); convolutional neural network models

unrelated to the deep learning VGGNet model (3); studies that

did not provide the necessary 2×2 contingency data (4);

literature with only abstracts, reviews, conference report,

papers not published in journals, full text that were not

accessible online, and so on; and (5) duplicate studies.
Quality assessment and data extraction

The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS) tool is a recognized tool for quality assessment of

diagnostic accuracy tests, because of its specific problem

definition and clinical actionability that is widely used in

diagnostic meta-analyses (15, 16). The QUADAS tool was

revised in 2011 and was called QUADAS-2, consisting of four

main parts: case selection, index test, reference standard, and

flow and timing, and all components are evaluated in terms of

risk of bias (17). The 11 studies included were independently

evaluated by two reviewers using the QUADAS-2 tool, and
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resolved by discussion between internal members if a

disagreement was encountered during the assessment.

QUADAS-2 results were output using RevMan 5.3, the

dedicated software for the Cochrane Collaboration Network.

In this study, two authors independently read the titles and

abstracts to screen eligible papers, and then read the full text to

determine the included papers. The information obtained from

each study was extracted independently, including first author,

year of publication, country, gold standard, training set size,

test set size, fourfold table data (TP, FP, FN, and TN),

sensitivity, specificity, VGGNet type, and testing objects. If

fourfold table data were not available in the literature, they

were excluded.
Statistical analysis

The entire data from the included studies were selected using

Excel 2019, and sensitivity, specificity, and diagnostic odds ratio

(DOR) [95% confidence interval (CI)] were summarized using

STATA software version 16.0. The area under the receiver

operating characteristic (ROC) curve and 95% CI were also

calculated, and the value of the diagnostic test was assessed by

the area under the curve (AUC) value, where AUC < 0.70 means

low diagnostic accuracy, 0.70 < AUC < 0.90 indicates moderate

diagnostic accuracy, and AUC ≥ 0.90 indicates high diagnostic

accuracy. Statistical inconsistency between studies was assessed

using the I2 and Cochrane Q tests; if I2 < 50%, it will choose a

fixed-effects model to assess sensitivity and specificity, and if I2 >

50%, a random-effects model would be used. Meta-regression

analysis was used and reasons were given when statistical

heterogeneity was large . p < 0.05 was considered

statistically significant.
Results

Literature searches

Through a comprehensive search, 2,495 records were obtained

for our study as of September 2021, updated as of June 2022,

including 544 papers from PubMed, 1,837 papers from Embase, 40

articles from Cochrane Libraries, 31 papers from CNKI, 37 papers

from Wanfang database, and 6 papers from other sources. After

preliminarily eliminating duplicate literatures, two researchers

independently read the titles and abstracts of the remaining

literatures, excluding literature reviews, cases, news, and other

research types. The full text of the literature obtained will be

further read through and eventually include 11 studies eligible for

the meta-analysis. The detailed selection procedure is shown

in Figure 1.
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Study characteristics

We registered this meta-analysis on the PROSPERO

website; the registration number is CRD42022336701.

Following the PRISMA-Diagnostic studies selection process,

we eventually included 11 papers; all studies are included in

Table 1. The following are some basic characteristics of the
Frontiers in Oncology 04
included literature. All studies were published within the last 5

years. Eight papers used the deep learning VGG-16 model (7,

14, 19–23, 25). Four papers clearly indicated retrospective

study (5, 6, 14, 18). Three papers did not give an explicit

number of training sets (18, 19). Three papers compared the

deep learning CNN algorithm with radiologists, and

the results were comparable to or better than those of the
FIGURE 1

Study flowchart. Eleven studies were included in this meta-analysis.
TABLE 1 Characteristics of the included studies.

Author Year Country Gold standard Training
database

Test
database

Se (%) Sp (%) TP FP FN TN VGG Testing objects

B M B M

Kwon S.W et al. (19) 2020 Korea FNA / pathology 199 260 62 83 0.92 0.70 76 19 7 43 16 Interior

Liu Z et al. (20) 2021 China FNA – – 67 96 0.79 0.87 76 9 20 58 16 Interior

Wu K et al. (21) 2020 China pathology – – 520 636 0.86 0.78 547 114 89 406 16 Interior

Qin P.L et al. (22) 2019 China pathology 424 484 115 133 0.93 0.98 123 2 10 113 16 Interior

Zhu J.L et al. (5) 2021 China pathology 6760 9641 73 227 0.93 0.85 212 11 16 62 19 Interior

6760 9641 502 530 0.95 0.90 503 50 27 452 19 Exterior

Zhou H et al. (15) 2020 China FNA / pathology 719 448 359 224 0.84 0.88 172 72 52 287 16 Interior

719 448 802 161 0.9 0.9 155 80 6 722 16 Exterior

Liang et al. (23) 2021 China pathology 545 530 136 133 0.86 0.98 114 1 19 133 16 Interior

Zhu Y.C et al. (6) 2020 China pathology 421 298 57 45 0.84 0.88 38 7 7 50 19 Interior

Zhu Y.C et al. (24) 2021 China pathology 300 300 100 100 0.85 0.79 85 21 15 79 16 Exterior

Chan W.K et al. (7) 2021 China pathology 4044 3316 264 204 0.81 0.8 100 14 24 56 19 Interior

Kim Y.J et al. (25) 2022 Korea FNA 9772 2555 310 122 0.92 0.73 122 84 10 226 16 Interior

0.87 0.68 106 99 16 211 19 Interior

9772 2555 34 25 0.79 0.77 20 8 5 26 16 Exterior

0.75 0.81 19 6 6 28 19 Exterior
Se, sensitivity; Sp, specificity; M, Malignant; B, Benign; TP, true positives; FP, false positives; FN, false negatives; TN, true negatives; FNA, fine needle aspiration.
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advanced radiologists (5, 7, 22). Qin et al. (20) extracted both

ultrasound image features and ultrasound elastic image

features. Zhu et al. (5) only included thyroid nodules in

female patients.
Methodology quality assessment

The results of evaluating the papers’ quality assessed by the

QUADAS-2 are shown in Figure 2. Most of the studies

themselves were of high quality, but a few studies had

potential risk of bias in flow and timing. In general, the

included studies were considered as eligible.
Accuracy of the ultrasound-based deep
learning VGGNet model in the
differential diagnosis of benign and
malignant thyroid nodules

The comprehensive Pooled Sensitivity (PSEN) and Pooled

Specificity (PESP) of the ultrasound-based deep learning

VGGNet model for the differential diagnosis of benign and

malignant thyroid nodules were 0.87 [95% CI (0.83, 0.91)] and

0.85 [95% CI (0.79, 0.90)], respectively (Figure 3). Higgins I2

statistics showed significant heterogeneity in terms of sensitivity

(p < 0.05, I2 = 91.09%) and specificity (p < 0.05, I2 = 92.12%);

therefore, we selected the random-effects model to analyze the
Frontiers in Oncology 05
sensitivity and specificity; the DOR was 38.79 [95% CI (22.49,

66.91)] (Figure 4). The AUC was 0.93 [95% CI (0.90, 0.95)]

(Figure 5). The result of Spearman correlation coefficient by

Meta-DiSc version 1.4 (r = −0.18, p = 0.50) indicated that there

was no significant threshold effect (p > 0.05), which also showed

that other factors may lead to the generation of heterogeneity.
Publication bias

Deek’s funnel plot drawn by STATA16.0 showed no

significant asymmetry, with a p-value of 0.84 (p > 0.05)

(Figure 6), which indicated that there was no possibility of

significant publication bias.
Heterogeneity detection

Given the heterogeneity of the studies included in the

pooled statistics, this research used regression analysis to

analyze several clinically relevant survey variables. The result

showed that year of study publication (≤2020 or >2020),

number or scale of the region of interest (ROI) (single or

multiple), and type of deep learning VGGNet (VGG-16 or

VGG-19) were all associated with heterogeneity and were

statistically significant for sensitivity (p < 0.05). Results of the

meta-regression analysis are shown in Table 2. Among these

covariates, the pooled sensitivity of studies published in 2020

and before was 0.89 [95% (0.84,0.95)] and 0.86 [95% (0.81,

0.91)] in papers published after 2020; the pooled specificity of

papers published in 2020 and before was 0.86 [95% (0.79,0.94)]

and 0.85 [95% (0.78,0.92)] in studies published after 2020, both

being statistically significant (p < 0.05). The pooled sensitivity

was 0.87 [95% (0.82, 0.91)] for a single ROI and 0.89 [95%

(0.82, 0.96)] for multiple ROIs, the pooled specificity was 0.84

[95% (0.78, 0.90)] for a single ROI and 0.89 [95% (0.80, 0.97)]

for multiple ROIs, and the pooled sensitivity difference was

statistically significant (p < 0.05); the pooled specificity showed

no significant differences (p > 0.05). The pooled sensitivity of

VGG-16 was 0.88 [95% (0.83,0.93)] and VGG-19 was 0.87

[95% (0.80,0.93)], and the pooled specificity of VGG-16 was

0.86 [95% (0.80,0.93)] and VGG-19 was 0.84 [95%(0.75,0.93)],

both of which were statistically significant (p < 0.05).
Sensitivity analysis

To explore whether the studies affected the stability of PSEN

and PSPE, this study used a method of eliminating the literature

one by one, and the results of sensitivity and specificity analysis

are shown in Table 3. The results demonstrated that with every

single paper excluded, neither PSEN and PSPE nor Higgins I²

had significant changes.
FIGURE 2

Bias risk of the included studies (QUADAS 2 criteria). The
authors’ assessment of each domain for each included study.
frontiersin.org

https://doi.org/10.3389/fonc.2022.944859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.944859
FIGURE 3

The forest plot of sensitivity and specificity for diagnosing thyroid nodules. Horizontal lines illustrate 95% confidence intervals of the individual
studies.
FIGURE 4

The diagnostic odds ratios (DOR) for diagnostic thyroid nodules. Horizontal lines illustrate 95% confidence intervals of the individual studies.
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Fagan plot analysis

The analysis of the Fagan plots showed that the ultrasound-

based deep learning VGGNet model could provide some help for

radiologists on the differential diagnosis of the nature of thyroid

nodules (Figure 7). When the prior probability was 50%, the
Frontiers in Oncology 07
posterior probability of the deep learning VGGNet model

correctly discriminating malignant nodules as “positive” was

86%, and the posterior probability dropped to 13% when it was

“negative”. When the prior probabilities were 25% and 75%, the

post-test probabilities for positive were 67% and 86%, and the

post-test probabilities for negative were 5% and 31%.
Discussion

This meta-analysis evaluated the efficacy of the ultrasound-

based deep learning VGGNet model in the differential diagnosis

of benign and malignant thyroid nodules. The results showed

that the deep learning VGGNet model achieved satisfactory

results in discriminating benign and malignant thyroid

nodules on ultrasound images; the pooled sensitivity and

specificity were 0.87 [95% CI (0. 83, 0.91)] and 0.85 [95% CI

(0.79, 0.90)], respectively, the DOR was 38.79 [95% CI (22.49,

66.91)], and the AUC was 0.93 [95% CI (0.90, 0.95)]. These

results indicated that ultrasound-based deep learning VGGNet

has high diagnostic accuracy for distinguishing the nature of

thyroid nodules.

Traditional machine learning usually involves feature

extraction and classification of ROI. Although the popularity

of machine learning has gradually increased in recent years, ROI

can only be manually selected and analyzed with machine

learning using single-area information such as image texture,

geometric shape, and statistical distribution (9). Ding et al. (24,

26) extracted statistical and textural features from thyroid

elastograms, and then trained support vector machine (SVM)
FIGURE 6

The publication bias of the included studies. No significant publication bias was found in the present meta-analysis. Each circle represented
eligible research. ESS, effective sample size.
FIGURE 5

The receiver operating characteristic curve (ROC). SENS,
sensitivity; SPEC, specificity; SROC, summary receiver operating
characteristic curve; AUC, area under the SROC curve.
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to detect malignancy of thyroid nodules with a maximum

classification accuracy of 95.2%. However, the classification

accuracy was affected by a hard threshold.

Compared with ML, deep learning can automatically extract

the multi-level features of the ROI, and learn features from the

nodule itself and the difference between the textures of different

tissues, which greatly improves the image classification and

detection performance (27). Buda et al. (28) used CNN for

feature extraction and nodule classification of thyroid nodules,

and also compared the diagnosis results with those of nine

radiologists; the average sensitivity and average specificity of

deep learning for diagnosis were higher than those of the nine

radiologists, indicating that deep learning has a good clinical

diagnostic value. Vasile et al. (29) used the fusion method of

CNN-VGG for thyroid disease feature extraction and image

classification, with an overall accuracy of 97.35%, showing that

the integrative method is an excellent and stable classifier.
Frontiers in Oncology 08
Previously, some meta-analyses were published about

cardiovascular disease (30), gastrointestinal disease (31), and

colorectal polyposis disease (32), and their combined AUCs were

equal to or greater than 0.9, showing the excellent performance

of CNN in disease diagnosis. Obviously, meta-analyses of

thyroid nodules in ultrasound-based artificial intelligence have

been conducted. Zhao et al. (33) included only five studies in

meta-analysis. Xu et al. (34) mainly evaluated the overall

computer-aided systems (CAD) efficacy of VGGNet, S-Detect,

AlexNet, Inception, and so on in meta-analysis. In addition, the

number of studies that included various single models was small,

and none of them yielded the diagnostic efficacy of single-class

models. Through further retrieval and reading of papers, no

meta-analysis using ultrasound-based deep learning VGGNet

model to differentially diagnose benign and malignant thyroid

nodules has been found so far. Therefore, the authors conducted

such a study.
TABLE 2 Meta-regression of ultrasound-based deep learning for differentiating and diagnosing benign and malignant of thyroid nodules.

Category N Se (95% CI) p Sp (95%CI) p

Year

≤2020 6 0.89 (0.84, 0.95) <0.05 0.86 (0.79, 0.94) <0.05

>2020 10 0.86 (0.81, 0.91) 0.85 (0.78, 0.92)

ROI

Single 12 0.87 (0.82, 0.91) <0.05 0.84 (0.78, 0.90) 0.18

Multiple 4 0.89 (0.82, 0.96) 0.89 (0.80, 0.97)

VGG

VGG-16 10 0.88 (0.83, 0.93) <0.05 0.86 (0.80, 0.93) <0.05

VGG-19 6 0.87 (0.80, 0.93) 0.84 (0.75, 0.93)
frontiers
N, number of included studies; Se, sensitivity; Sp, specificity; CI, confidence interval; ROI, region of interest.
TABLE 3 The sensitivity analysis using the method of eliminating papers one by one.

Delete papers Se (95% CI) I2 (95% CI) p Sp (95% CI) I2 (95% CI) p AUC (95% CI)

Zhou H et al. (14) 0.87 (0.82, 0.90) 90.54 (88.89, 94.18) 0.00 0.85 (0.78, 0.90) 91.16 (87.82, 94.49) 0.00 0.92 (0.90, 0.94)

Kim Y.J et al. (23) 0.88 (0.84, 0.91) 91.71 (88.64, 94.78) 0.00 0.86 (0.79, 0.90) 92.74 (90.15, 95.33) 0.00 0.93 (0.91, 0.95)

Kin Y.J et al. (23) 0.88 (0.83, 0.91) 91.80 (88.78, 94.83) 0.00 0.86 (0.79, 0.91) 92.75 (90.17, 95.33) 0.00 0.93 (0.91, 0.95)

Zhu J.L et al. (7) 0.87 (0.82, 0.90) 88.89 (84.40, 93.37) 0.00 0.85 (0.78, 0.90) 91.68 (88.60, 94.76) 0.00 0.92 (0.90, 0.94)

Zhu Y.C et al. (22) 0.88 (0.83, 0.91) 91.75 (88.70, 94.80) 0.00 0.86 (0.79, 0.91) 92.70 (90.09, 95.30) 0.00 0.93 (0.91, 0.95)

Kim Y.J et al. (23) 0.87 (0.83, 0.91) 91.74 (88.68, 94.79) 0.00 0.86 (0.80, 0.91) 90.04 (86.15, 93.93) 0.00 0.93 (0.91, 0.95)

Kim Y.J et al. (23) 0.87 (0.82, 0.91) 91.48 (88.29, 94.66) 0.00 0.86 (0.80, 0.91) 91.81 (88.79, 94.83) 0.00 0.93 (0.90, 0.95)

Chan W.K et al. (6) 0.89 (0.85, 0.91) 84.91 (78.27, 91.55) 0.00 0.86 (0.79, 0.90) 92.25 (89.93, 95.20) 0.00 0.93 (0.91, 0.95)

Liang J.W et al. (21) 0.88 (0.83, 0.91) 91.58 (88.45, 94.71) 0.00 0.83 (0.78, 0.87) 91.04 (87.65, 94.44) 0.00 0.92 (0.89, 0.94)

Zhu J.L et al. (7) 0.87 (0.82, 0.90) 90.89 (87.42, 94.36) 0.00 0.85 (0.79, 0.95) 92.50 (89.80, 95.19) 0.00 0.93 (0.90, 0.95)

Liu Z et al. (18) 0.88 (0.84, 0.91) 91.62 (88.51, 94.73) 0.00 0.85 (0.79, 0.90) 92.67 (90.05, 95.28) 0.00 0.93 (0.91, 0.95)

Wu K et al. (19) 0.88 (0.83, 0.91) 91.49 (88.31, 94.66) 0.00 0.86 (0.79, 0.91) 92.40 (89.66, 95.14) 0.00 0.93 (0.91, 0.95)

Zhu Y.C et al. (5) 0.88 (0.83, 0.91) 91.66 (88.57, 94.76) 0.00 0.85 (0.79, 0.90) 92.56 (89.89, 95.23) 0.00 0.93 (0.90, 0.95)

Zhou H et al. (14) 0.88 (0.84, 0.91) 90.89 (87.42, 94.36) 0.00 0.86 (0.79, 0.91) 92.52 (89.84, 95.21) 0.00 0.93 (0.91, 0.95)

Qin P.L et al. (20) 0.89 (0.84, 0.92) 91.12 (87.76, 94.47) 0.00 0.87 (0.81, 0.92) 91.35 (88.10, 94.59) 0.00 0.94 (0.92, 0.96)

Kwon S.W et al. (25) 0.87 (0.83, 0.91) 91.58 (88.45, 94.71) 0.00 0.84 (0.80, 0.91) 92.47 (89.75, 95.18) 0.00 0.93 (0.91, 0.95)
Se, sensitivity; Sp, specificity; CI, confidence interval; AUC, area under the curve.
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All the included studies reported good quality, indicating

that most of the included studies were of high quality and did

not show significant publication bias. However, a few numbers

of included studies did not inform about the continuity and

randomization of case selection and the incompleteness of the

implementation of the gold standard, resulting in a small

number of studies with slightly poorer quality reports, which

may lead to implementation bias and measurement bias,

resulting in high heterogeneity. Therefore, this study chose

meta-regression to explain this high degree of heterogeneity.

From the results, we can see that the year of study publication,

number or scale of ROI, and type of deep learning VGGNet

model may be important reasons for this heterogeneity. The

reasons for heterogeneity are analyzed separately in

detail below.

Firstly, there were 6 sets of data from five papers published in

2020 and before (5, 14, 19, 20, 25) and 10 sets of data from six

papers published after 2020 (6, 7, 18, 21–23); sensitivity and

specificity were statistically significant (p < 0.05). The papers

published after 2020 had a lower sensitivity than those published

in 2020 and before (0.86 vs. 0.89). The reason may be that some

papers published after 2020 included malignant images of

thyroid nodules of different pathological types (6, 18, 22),

which reduced the sensitivity of papers published after 2020.

In addition, the total number of benign nodules included in

papers after 2020 was less than that in 2020 and before, which

reduced the specificity.

Secondly, it is easy for the ROI depicted on a single scale to

ignore the rich details of ultrasound images of thyroid nodules

(35). Therefore, different numbers or scales of ROIs were an
Frontiers in Oncology 09
important factor affecting study heterogeneity. Among the

included studies, the number or scale of different studies in

dividing the ROI was varied, 12 sets of data from eight papers

delineated one ROI (5–7, 18–20, 22, 23), and 4 sets of data

from three papers delineated two or more ROIs at different

scales (14, 21, 25); sensitivity was statistically significant (p <

0.05). Among them, Zhou et al. (14) delineated three target

regions of thyroid nodules based on average size, which were

located roughly inside, around, and outside the thyroid

nodule, and all three ROIs contained the nodule, which

showed an AUC comparison of classification accuracy

between one ROI and three ROIs (0.82 vs. 0.87) indicating

that the classification accuracy using three ROIs was more

accurate. Therefore, it is reasonable to believe that the number

or scale of ROIs had an impact on the identification results of

thyroid nodules.

Finally, the all included studies used the deep learning

VGGNet model. The 11 sets of data from eight papers used

the deep learning VGG-16 models (7, 14, 19–23, 25), and 6 sets

of data from four papers used the deep learning VGG-19 models

(5, 6, 18, 23); the paper of Kim et al. (23) had both VGG-16 and

VGG-19. Our results suggested that the diagnostic sensitivity

and specificity of the VGG-16 model were higher than that of the

VGG-19 (0.90 vs. 0.79, 0.87 vs. 0.83); sensitivity and specificity

were p < 0.05. A study had similar results, Kim et al. (23) used the

VGGmodel to classify benign and malignant thyroid nodules on

ultrasound images and compared the diagnostic accuracy of the

VGG-16 model with the VGG-19 model. VGG-16 showed

higher diagnostic accuracy than VGG-19 in both internal and

external test sets.
A B C

FIGURE 7

Fagan plot analysis for VGGNet model in detecting thyroid nodules: (A) Pre-test probability at 25%. (B) Pre-test probability at 50%. (C) Pre-test
probability at 75%. The Fagan plot is composed of the left vertical axis representing the pre-test probability, the middle vertical axis representing
the likelihood ratio, and the right vertical axis representing the post-test probability.
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Moreover, the performance of the DL model is closely

connected with the number of training data, and the DL

model performs better when the data of the training sample

are sufficiently large (36). Based on an analysis of 11 included

studies, 2 sets of data from three papers did not give an explicit

number of training sets, 14 sets of data from eight papers did

give the number of training sets, but the amount of pre-training

varied across studies and the amount of learning varied; thus, it

is difficult to know the overfitting results of the model. In

addition, some researchers have explored the use of

autonomously VGGNet fine-tuned models. Currently, there is

no mature deep learning CNN model that can directly

differentially diagnose the nature of thyroid nodules on

ultrasound, which may inevitably lead to the generation of

high heterogeneity.

In addition, the Fagan plot explored the clinical utility of

ultrasound-based deep learning VGGNet models. The results

showed that the ultrasound-based deep learning VGGNet model

had the potential to differentiate benign and malignant thyroid

nodules. When a patient was considered to have a 50% chance of

developing thyroid cancer after initial clinical assessment, the

likelihood of developing thyroid cancer increases from 50% to

86% if the deep learning VGGNet model results appear positive.

Therefore, this high probability was highly accurate. In contrast,

if the deep learning VGGNet was negative, then patients had a

13% chance of thyroid cancer, which could help our radiologists

to exclude thyroid cancer. In real-world clinical practice, a

biopsy of masses with a predicted 25% probability of

malignancy will be performed regardless of the outcome of

deep learning VGGNet. Therefore, the Fagan plot showed

that the deep learning VGGNet model can aid in

radiologist diagnosis.

This diagnostic meta-analysis has several limitations. Firstly,

studies from Europe and America were excluded because they did

not meet the inclusion criteria of using the deep learning VGGNet

model to differentiate benign from malignant thyroid nodules,

which might cause geographic bias. Secondly, this study only

included papers published in English and Chinese, which might

cause an unavoidable language bias. Thirdly, this meta-analysis

only included 11 papers, and the small sample size of the test set in

some studies may affect the accuracy of the results of the meta-

analysis. To further assess the differential diagnostic efficacy of

deep learning VGGNet models, large-scale, prospective,

multicenter studies in different regions are necessary.
Conclusion

This meta-analysis suggests that the ultrasound-based

deep learning VGGNet model is a suitable and effective

method for radiologists to differentiate and diagnose benign
Frontiers in Oncology 10
and malignant thyroid nodules. However, given the

limitations of the sample size and the varying quality of the

studies themselves, additional prospective or multicenter

studies are expected to follow for further evaluation to make

up for the deficiency.
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