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Abstract: Informative frequency band (IFB) selection is a challenging task in envelope analysis for
the localized fault detection of rolling element bearings. In previous studies, it was often conducted
with a single indicator, such as kurtosis, etc., to guide the automatic selection. However, in some
cases, it is difficult for that to fully depict and balance the fault characters from impulsiveness and
cyclostationarity of the repetitive transients. To solve this problem, a novel negentropy-induced
multi-objective optimized wavelet filter is proposed in this paper. The wavelet parameters are
determined by a grey wolf optimizer with two independent objective functions i.e., maximizing
the negentropy of squared envelope and squared envelope spectrum to capture impulsiveness and
cyclostationarity, respectively. Subsequently, the average negentropy is utilized in identifying the IFB
from the obtained Pareto set, which are non-dominated by other solutions to balance the impulsive and
cyclostationary features and eliminate the background noise. Two cases of real vibration signals with
slight bearing faults are applied in order to evaluate the performance of the proposed methodology,
and the results demonstrate its effectiveness over some fast and optimal filtering methods. In addition,
its stability in tracking the IFB is also tested by a case of condition monitoring data sets.

Keywords: bearing; fault diagnosis; multi-objective optimization; grey wolf optimizer; wavelet
filter; negentropy

1. Introduction

Rolling element bearing is a key component of rotating machines. In many cases, it operates
with high speed, heavy load, and prolonged time. Thus, such localized defects as pitting, spalling,
fretting, scuffing may generate on the contact surfaces. These faults will lead to abnormal vibrations,
which will reduce the working accuracy and even cause catastrophic accidents [1,2]. Accordingly,
the detection of the bearing failures as early as possible is an important and meaningful subject for
mechanical maintenance. Vibration-based diagnostic of rolling element bearings has been interestingly
investigated in recent decades [3]. As the bearing rotates, the fault-induced impulses will repetitively
appear with a specific frequency that is decided by location of the defect. Generally, they are of short
duration and their responses are hardly directly identified in the temporal waveform or frequency
spectrum due to the background noises from machine [4]. Fortunately, these repetitive transients are
excited through a resonance of the system at a much higher frequency band, which amplifies and
preserves the fault information [5]. It implies that band-pass filtering the vibration signal around the
resonant frequency can extract the fault features as well as eliminate the interferences. This approach is
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generally called the high-frequency resonance technique or envelope analysis, as illustrated in Figure 1.
Hence, the most critical challenge in envelope analysis can be drawn as the informative frequency
band (IFB) selection [6], which has attracted a large amount of attention in recent years [7–11].
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Figure 1. Demonstration of the envelope analysis: (a) original signal; (b) frequency spectrum; (c) filtered
signal, (d) informative frequency band; (e) envelope and (f) envelope spectrum.

Spectral kurtosis (SK) [12], as well as its fast implementation called as kurtogram [13], were
viewed as a milestone for the IFB selection, in which the kurtosises of the coefficients at the output
of quasi-analytic filter-banks with different central frequencies and bandwidths were employed in a
frequency/frequency resolution plane for representing and detecting non-stationarities in the vibration
signal. Once proposed, it has been paid a lot of attention and effort for its improvement for fault
detection of rotating machines. In [14], an improved kurtogram was proposed by adopting wavelet
packet transform (WPT) to replace the FIR filters to improve the accuracy of identifying the IFB and
the signal-to noise ratio (SNR) of the filtered signal. After that, a new statistical index that is based on
alpha-stable distribution was applied in [15] to substitute for kurtosis to characterize the non-Gaussian
of fault signals. In [16], a sparsogram was further proposed while using the sparsity measurements to
select the wavelet packet node from WPT. Moreover, another alternative estimator, called the Gini index,
was introduced in [17] to improve the resistance of kurtosis-guided-grams to random-impulse. Recently,
spectral L2/L1 norm was given in [18] to explain the SK and spectral correlation in a comprehensive way
and in [19] the author compared it with kurtosis, smoothness index, and Gini index. The conclusion is
that all of these popular sparsity indexes may be unfortunately affected by outliers; only some are less
sensitive to outliers than others. In these above improvements of SK, the indexes are all utilized to
quantitatively evaluate the band-pass filtering signal or its analytic envelope to detect the impulses can
be categorized as time-domain estimators, whose biggest disadvantage is vulnerability to the outliers,
as mentioned above.

Correspondingly, some frequency-domain approaches have also been proposed from another
perspective to improve SK. A prime example is the protrugram [20], which selects the IFB based on
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the kurtosis of the envelope spectrum other than kurtosis of the time-domain demodulated signal to
eliminate the negative effect of non-Gaussian outliers in the fault signals. As far as the authors know,
it firstly applies the frequency-domain sparsity to characterize the fault impulses. Approximatively,
an enhanced SK was put forward in [21], where the kurtosis of the power spectrum of the envelope
of the filtered signal by WPT at each node was calculated to construct the kurtogram. However, the
frequency-domain sparsity might result from periodic interferences, such as rotor eccentricity or gear
meshing and results in fewer harmonics of fault characteristic frequencies (FCFs) in the envelope
spectrum. These two aspects are all unwanted for bearing fault diagnosis. After that, measuring
cyclostationarity [22] rather than the impulsiveness in IFB selection began to get more attention. In [23],
kurtosis of the autocorrelation of the squared envelope (SE) rather than the direct filtered signal
was utilized to generate the autogram for bearing fault diagnosis. In [24], a series of cyclostationary
indicators that were based on the generalized likelihood ratio were proposed under the hypothesis of
generalized Gaussian signals. In a recent work [25], a new IFB selection method that was based on the
log-envelope spectrum, called log-cycligram, was given to capture the cyclostationarity separately
from non-Gaussianity. Objectively, the effectiveness of the newly proposed methods [24,25] depends
on the FCFs as prior knowledges. Little difference between the calculated FCF and the actual in the
spectrum was required for extracting the specific repetitive transients to some extent. This flaw also
existed in our previous study [26], in which the correlated kurtosis (CK) of the power spectrum was
used as a novel estimator to replace kurtosis. From the above review, it can be concluded that a
single time-domain, frequency-domain, or cyclostationary indicator is incomplete for bearing fault
features extraction.

In recently, another interesting method that was motivated from the concepts of thermodynamics,
named infogram, was proposed in [27]. As the author introduced, the negentropy of the SE of the filtered
signal was employed to characterize the time-domain impulsiveness by SE infogram and negentropy
of the squared envelope spectrum (SES) was employed to characterize the frequency-domain one by
SES infogram. Furthermore, the average of SE infogram and SES infogram was employed to generate
the average (AVE) infogram to characterize both the impulsive and cyclostationary signatures of the
repetitive transients, according to Hirschman’s uncertainty principle.

The aforementioned study gave a combination of time and frequency-domain estimators for IFB
selection. However, there are also limitations that are associated with it. On one hand, infogram
divide the spectrum using fixed boundaries of the filter-bank like kurtogram, it might occasionally
mismatch the IFB [28]. In [9], accugram was proposed based on infogram in which the health data
was utilized as reference to improve its accuracy. Another effective way to deal with that is to extend
the fast filtering method to optimal filtering based on evolutionary optimization [29–31]. In [32], the
infogram was extended to Bayesian inference based optimal wavelet filter for identifying the localized
defects. However, only negentropy of SE was adopted in the measurement function. It againsts the
initial desire of infogram to both take impulsiveness and cyclostationarity into consideration. On the
other hand, the AVE infogram was obtained by the mean of an SE infogram and SES infogram. It does
not fundamentally overcome the drawback that the time-domain negentropy is not immune to the
impulsive noise and the frequency-domain one is not immune to the cyclostationary noise [33,34].
However, IFB selection is easily affected by impulsive or cyclostationary noise. In addition, the
impulsiveness and the cyclostationarity of repetitive transients are competitive. Hence, the sparsity of
the time-domain and frequency-domain should achieve a relative balance i.e., a compromise in IFB
selection. Therefore, how to balance the impulsiveness and cyclostationarity of the repetitive transients
but avoid the complex interferences effectively are still worth further consideration.

A negentropy-induced multi-objective optimized wavelet filter is proposed for extracting the
repetitive transients to solve the aforementioned problems. The parameters of an anti-symmetric
real Laplace wavelet (ARLW) are optimized with two objective functions: maximum of the time and
frequency-domain negentropy in order to characterize the impulsive and cyclostationary features,
respectively. With the help of competition mechanism of multi-objective grey wolf optimizer
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(MOGWO) [35], some Pareto optimal solutions will be generated that are non-dominated by the others.
It implies that the solution representing the most impulsive or cyclostationary components has been
eliminated at iterations. Subsequently, the IFB can be easily identified by the maximum average
negentropy of the Pareto set. The main contributions of the proposed method can be concluded, as
follows: (1) The IFB selection is directly modeled as a multi-objective optimization problem, and it is the
first attempt to solve it in bearing fault diagnosis while using the MOGWO. (2) The average negentropies
of the non-dominated solutions are utilized to extract and balance the fault features. Furthermore, the
maximum of average negentropies can be directly utilized to find the single optimal solution from the
Pareto ones for IFB selection. It is simple enough than the knee point selection methods.

The rest of the paper is organized, as follows. In Section 2, the detail of the proposed methodology
that is based on wavelet filtering and MOGWO algorithm is introduced. Next, its performances
are examined and comparatively studied using several experimental signals, including two cases
of incipient faults diagnosis and a case of IFB tracking in Section 3. Finally, Section 4 summarizes
some conclusions.

2. Methodologies

2.1. Wavelet Transform and Anti-symmetric Real Laplace Wavelet Filter

Wavelet transform is widely used in bearing fault diagnosis and it is defined by the inner product
between a wavelet ψ(t) and the analyzed signal x(t). The mathematical formula for wavelet transform
can be defined as [31]:

WT(a, b) =
∫ +∞

−∞

x(t) ×
1
√

a
ψ′

(
t− b

a

)
dt (1)

where a is the scale parameter, b is the translation parameter, and ψ′ is the complex conjugate of ψ. The
frequency-domain equivalent of Equation (1) can be rewritten as:

WT(a, b) = F−1
[
X( f ) ×

√
aΨ(a f )

]
(2)

where F−1 is the inverse Fourier transform, X( f ) and Ψ( f ) are the Fourier transform of x(t) and ψ(t).
The ARLW is chosen in this paper that has been experimentally verified to be suitable for extracting
the bearing fault features from a noisy signal, as introduced in the previous section [30]. Its temporal
waveform and Fourier transform are, respectively, defined as:

ψ(t) = e−πσ|t| sin (2πγt) (3)

Ψ( f ) =
σ

π[σ2 + 4( f − γ)2]i
−

σ

π[σ2 + 4( f + γ)2]i
(4)

where γ and σ are the center frequency and bandwidth of the designed filter. It can be found that the
ARLW is antisymmetric, real, exponentially damped, and has a similar morphological structure with
the real fault impact responses, as shown in Figure 2. This similarity will give considerable benefits for
the process of inner product, as shown in Equation (1). Afterwards, utilizing the ARLW to filter the
signal x(t) through the frequency band [γ− σ/2, γ+ σ/2] can be expressed as:

WT(γ, σ) = F−1[X( f )Ψ′( f )] (5)

Subsequently, the SE and SES of the narrowband filtered signal are formed as the subsequent
Equations (6) and (7):

SEx(γ, σ) =
∣∣∣WT(γ, σ)

∣∣∣2 (6)

SESx(γ, σ) = F[SEx(γ, σ)] (7)

where F denotes the Fourier transform.
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In previous works, some IFB indicators were generated from Equation (6) or Equation (7),
alternatively and then utilized in order to optimize the couple of γ and σ to design the optimal
wavelet filter. As discussed beforehand, a single indicator is not enough to guide the correct direction
in searching the IFB. Naturally, a potential and reasonable solution is to introduce the idea of
multi-objective optimization, which will be detailed in the next subsection.Sensors 2020, 17, x FOR PEER REVIEW  5 of 22 
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2.2. Multi-objective Optimization and Multi-objective Grey Wolf Optimizer

In fact, many real engineering problems can be modeled as a multi-objective optimization, in
which there is more than one objective to be considered simultaneously, as follows:

Maximize : F(
→
x ) = f1(

→
x ), f2(

→
x ), · · · , fm(

→
x ) (8)

Subject to :
→
x ∈ Ω (9)

where F(
→
x ) consists of m objective functions, Ω is the decision space, and

→
x ∈ Ω is a decision

vector. For a single-objective optimization, the solutions can be easily sorted with the help of unary
objective function to select the best i.e., the optimal for decision maker. However, for a multi-objective
optimization, a single optimal solution that can meet all the objectives does not usually exist. If some
objectives in Equation (8) are in conflict with each other, an increment of one might cause decrement of
another. In handling with multi-objective optimization, a comparison of two solutions is always done
under the concept of Pareto optimality [36], which is generally defined, as follows:

Definition 1. Pareto Dominance: A vector
→
x = (x1, x2, · · · , xk) is said to dominate another one

→
y = (y1, y2, · · · , yk) denoted by

→
x �

→
y, if and only if ∀i ∈ {1, 2, · · · , k}, f (xi) ≥ f (yi) and

∃i ∈ {1, 2, · · · , k}, f (xi) > f (yi).

Definition 2. Pareto Optimality: If a solution
→
x ∈ X is said to be Pareto optimal if and only if @→y ∈ X|F(

→
y ) �

F(
→
x ).

Definition 3. Pareto set: For a given multi-objective optimization problem, the set of all Pareto optimal solutions
is called as Pareto set Ps, and it is defined as:

Ps := {
→
x ,
→
y ∈ X|@F(

→
y ) � F(

→
x )} (10)

Definition 4. Pareto front: For a given multi-objective optimization problem, the image of the Ps in the objective
space is called as Pareto front P f , and it is defined as:

P f := {F(
→
x )|
→
x ∈ Ps} (11)
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A meta-heuristics algorithm from the social hierarchy and hunting behavior of grey wolves named
as MOGWO [35] is applied in this paper to obtain the Ps and its corresponding P f of the multi-objective
optimization in Equation (8). In the grey wolf optimizer (GWO) [37], the grey wolves have a strict
social dominant hierarchy: the alpha (α) wolf who is the best in population, the beta (β) and delta (δ)
wolves, who are the second and third best, and the rest are all classified as the omega (ω) wolves. In
GWO, the hunting (optimization) is guided by α, β, and δ, the ω wolves follow these three wolves.
The main phases of that include:

• Encircling prey:
→

D = |
→

C·
→

Xp(g) −
→

X(g)| (12)

→

X(g + 1) =
→

Xp(g) −
→

A·
→

D (13)

where g denotes the current iteration,
→

Xp is the position of prey and
→

X is the position of the wolf.
→

A and
→

C are two coefficients that are defined as:

→

A = 2
→
a ·
→
r 1 −

→
a (14)

→

C = 2
→
r 2 (15)

where
→
a is linearly decreased from 2 to 0 during the iterations, and

→
r 1,
→
r 2 are random vectors in

[0, 1].
• Hunting:

→

Dα = |
→

C1·
→

Xα −
→

X| (16)
→

Dβ = |
→

C2·
→

Xβ −
→

X| (17)

→

Dδ = |
→

C3·
→

Xδ −
→

X| (18)

where
→

Xα,
→

Xβ, and
→

Xδ indicate the best three positions attained by α, β, and δ wolves,
→

Dα,
→

Dβ, and
→

Dδ represent the distances between the best three wolves and the wolf population. Subsequently,
the position of the population will update under the leadership of α, β, and δ:

→

X1 =
→

Xα −
→

A1·
→

Dα (19)

→

X2 =
→

Xβ −
→

A2·
→

Dβ (20)

→

X3 =
→

Xδ −
→

A3·
→

Dδ (21)

→

X(g + 1) =

→

X1 +
→

X2 +
→

X3

3
(22)

where
→

A1,
→

A2, and
→

A3 are all generated from Equation (14) and they corresponded to α, β, and δ
wolves, respectively.

• Attacking prey: When |A| > 1, it indicates an exploration behavior of the search agent and
otherwise indicates an exploitation one i.e., to attack the prey. In handling multi-objective
optimization, another two operations are also introduced. Firstly, an external archive is employed
to restore the non-dominated solutions with a competitive update strategy that is similar to that
in [38]. Secondly, a leader selection mechanism is formulated with the help of crowding distance
comparison [39] and roulette-wheel selection. The detailed introduction can be referred in [35].
The pseudo code of MOGWO algorithm is given, as below Algorithm 1:
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Algorithm 1. Multi-objective grey wolf optimizer (MOGWO).

Begin
Initialize the grey wolf population Xi(i = 1, 2, · · · , P)
Initialize a, A and C
Calculate the objective values of each wolf, put the non-dominated solutions into the archive
Select the best three wolves from the archive and save as α, β and δ
g = 1
while (g < maximum number of iterations)

for each wolf
Update the position by Equations (16)–(22)

end for
Update a, A and C
Calculate the objective values of each wolf, update the archive
Update α, β and δ
g = g + 1

end while
Return archive

2.3. Proposed Negentropy-Induced IFB Selection Method

The above MOGWO algorithm is utilized due to its fast convergence and low complexity when
compared with traditional optimization techniques, such as Multi-objective particle swarm optimization
(MOPSO), Multi-objective evolutionary algorithm based on decomposition (MOEA/D), etc., to properly
select the wavelet parameters γ and σ of ARLW for bearing fault diagnosis. The key issue then is to
design the objectives for seeking the IFB. Conventionally, the vibration responses of a normal bearing
are Gaussian and stationary. When an impulse occurs, the system will deviate from its equilibrium
state and generate energy fluctuations in the SE. As the bearing rotates, the energy fluctuations will be
repetitive, and then harmonic frequencies will dominate in the Fourier spectrum. Based on the above
considerations, the negentropy of SE and SES are proposed to characterize the impulsiveness and
cyclostationarity separately, as defined as follows [27]:

ISE =
1
N

N∑
n=1

SEx(γ, σ)
1
N

∑N
n=1 SEx(γ, σ)

ln

 SEx(γ, σ)
1
N

∑N
n=1 SEx(γ, σ)

 (23)

ISES =
1
L

L∑
θ=1

SESx(γ, σ)
1
N

∑L
θ=1 SESx(γ, σ)

ln

 SESx(γ, σ)
1
L
∑L
θ=1 SESx(γ, σ)

 (24)

where θ is the cyclic frequency. The average negentropy is calculated based on the Hirschman’s
uncertainty principle to jointly consider these two aspects of repetitive transients:

I1/2 = (ISE + ISES)/2 (25)

Subsequently, the I1/2 was employed to select the IFB directly in [27]. To illustrate its drawback in
balancing the impulsiveness and cyclostationarity, negentropy of the SEs (the blue dot lines in Figure 3)
and SESs (the blue solid lines in Figure 3) of three simulated filtered signals (the red thin lines in
Figure 3) are analyzed. Signal 1, as plotted in Figure 3a, is generated from the following model:

x(t) = A(t)
∑

n
h(t− n/ fd) + n(t) (26)
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where A(t) is the impulse amplitude sampled from the uniform distribution U(0.75, 0.85), n(t) is
Gaussian white noise with the mean of zero and standard deviation of 0.05, and h(t) is the impulse
response function, which is defined by:

h(t) =
{

e−λt sin(2π f0t), t > 0
0, t ≤ 0

(27)

where f0 = 3200 and λ = 560. Signal 2 (Figure 3c) and Signal 3 (Figure 3) are also generated on the
basis of Equation (26) with A(t) ∼ U(0.25, 0.35) and A(t) ∼ U(0.45, 0.55). Besides, a high-amplitude
impulse noise i(t) is added in Signal 2 and two harmonic interferences c(t) are added in Signal 3, as:

c(t) = 0.2× sin(2π f1t) + 0.4× sin(2π f2t) (28)

where f1 = 780 and f2 = 1070. From the calculated values of SE and SES negentropy shown in Figure 3,
it can be found that the maximum negentropy of the SE is attributed to the impulsive noise i(t), while
the maximum negentropy of the SES is attributed to the harmonic interferences c(t). Furthermore,
the biggest average negentropy indicates the Signal 2, but not the clearest impulse-train in Signal 1.
Accordingly, the average negentropy as a compound index cannot evidence repetitive transients as
well for the impulsiveness might completely cover up cyclostationarity and vice versa, especially when
interfering contents. Therefore, it is difficult to solve this problem in the framework of single-objective
optimization. Otherwise, there is a compromise in evaluating the repetitive transients in Signal 1 from
SE and SES, which is consistent with the essence of Pareto optimality.
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Figure 3. Three simulated signals together with their squared envelopes in (a,c,e), and the associated
Fourier spectrums in (b,d,f).
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According to above analysis, two independent objectives for the IFB selection can be given, as:

f1(γ, σ) =
1
N

N∑
n=1

SEx(γ, σ)
1
N

∑N
n=1 SEx(γ, σ)

ln

 SEx(γ, σ)
1
N

∑N
n=1 SEx(γ, σ)

 (29)

f2(γ, σ) =
1
L

L∑
θ=1

SESx(γ, σ)
1
N

∑L
θ=1 SESx(γ, σ)

ln

 SESx(γ, σ)
1
L
∑L
θ=1 SESx(γ, σ)

 (30)

With the help of MOGWO, a set of Pareto optimal solutions rather than a single optimal one
is obtained, but these elite candidates are selected by both the impulsiveness and cyclostationarity.
Subsequently, the average negentropy of Ps can be calculated and the IFB i.e., the single optimal solution
can be determined by ranking the average values. With the help of negentropy as specific indicator
and the Hirschman’s uncertainty principle, it is easy enough to pick one “best” solution out of this
large set of alternatives when compared with some traditional knee point selection methods [40–42] by
calculating the reflex angle of the points in P f . After the selection of IFB, optimal ARLW demodulation
is performed in order to detect the bearing fault due to the repetitive transients in the temporal
waveform, as well as the characteristic frequencies in the Fourier spectrum, which are calculated by:

BPFO =
nFr

2

(
1−

d
D

cosφ
)

(31)

BPFI =
nFr

2

(
1 +

d
D

cosφ
)

(32)

FTF =
Fr

2

(
1−

d
D

cosφ
)

(33)

BSF =
DFr

2d

1− (
d
D

cosφ
)2 (34)

where Fr is the shaft frequency, n is the number of elements, d is element diameter, D is bearing
pitch diameter, and φ is the contact angle. Figure 4 shows the flow diagram of the proposed
method. The source codes of MOGWO and the proposed method can be found in https://ww2.
mathworks.cn/matlabcentral/fileexchange/55979-multi-objective-grey-wolf-optimizer-mogwo and
https://ww2.mathworks.cn/matlabcentral/fileexchange/74529-negentropy-induced-mogwo.

https://ww2.mathworks.cn/matlabcentral/fileexchange/55979-multi-objective-grey-wolf-optimizer-mogwo
https://ww2.mathworks.cn/matlabcentral/fileexchange/55979-multi-objective-grey-wolf-optimizer-mogwo
https://ww2.mathworks.cn/matlabcentral/fileexchange/74529-negentropy-induced-mogwo
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3. Experimental Studies

3.1. Case 1: Detection of Slight Artificial Outer Race Fault in a Ball Bearing

In this case, the effectiveness of the proposed method is firstly evaluated by the vibration signal
that was collected by a PCB 352C33 accelerometer with the sampling frequency of 25.6 kHz from the
test set-up shown in Figure 5. A single-point defect was introduced on the outer race of a NSK 6205RS
bearing using electro-discharge machining with diameter of 0.2 mm to simulate the early failure in
engineering. Table 1 lists the parameters of the tested bearings and manual conditions. According to
Equations (31)–(34), the bearing outer race fault frequency BPFO, the inner race fault frequency BPFI,
the roller spinning frequency BSF and the fundamental cage frequency FTF can be calculated as 88.2,
133.2, 58.0, and 10.0 Hz, respectively.

Table 1. Parameters of test NSK 6205RS bearing.

d (mm) D (mm) n φ (deg) Fr (Hz)

7.9 39.0 9 0 24.6



Sensors 2020, 20, 1845 11 of 23

Sensors 2020, 17, x FOR PEER REVIEW  10 of 22 

 

3. Experimental Studies 

3.1. Case 1: Detection of Slight Artificial Outer Race Fault in a Ball Bearing 

In this case, the effectiveness of the proposed method is firstly evaluated by the vibration signal 

that was collected by a PCB 352C33 accelerometer with the sampling frequency of 25.6 kHz from the 

test set-up shown in Figure 5. A single-point defect was introduced on the outer race of a NSK 

6205RS bearing using electro-discharge machining with diameter of 0.2 mm to simulate the early 

failure in engineering. Table 1 lists the parameters of the tested bearings and manual conditions. 

According to Equations (31)–(34), the bearing outer race fault frequency BPFO, the inner race fault 

frequency BPFI, the roller spinning frequency BSF and the fundamental cage frequency FTF can be 

calculated as 88.2, 133.2, 58.0, and 10.0 Hz, respectively. 

 

 

Figure 5. Experimental set-up for bearing fault detection in Case 1 and Case 2. 

Table 1. Parameters of test NSK 6205RS bearing. 

𝒅 (mm) 𝑫 (mm) 𝒏 𝝓 (deg) 𝑭𝒓 (Hz) 

7.9 39.0 9 0 24.6 

 

Figure 6a,b plot temporal waveform and its Hilbert envelope spectrum (ES) of the original 

vibration signal from the tested bearing. From that, we cannot find clear repetitive transients, but 

only a non-dominant bearing fault characteristic frequency BPFO, which implies that further IFB 

selection is needed for the diagnosis. The proposed method illustrated in Figure 4 is applied to select 

the proper wavelet parameters. The number of population P and maximum generation number G 

are all set to 50. After iterations, the 𝑃𝑓 and 𝑃𝑠 are calculated, as shown in Figure 6c,d. The average 

negentropy values are calculated with the maximum value of 1.0797 to select the best optimal one 

which is marked by a red +. Subsequently, the optimal couple of 𝛾 and 𝜎 are identified as 2010 Hz 

and 616 Hz, respectively. In Figure 6e,f, the temporal waveform filtered from the ARLW and its 

associated SES are depicted, respectively. The results can clearly indicate the outer race fault in the 

bearing due to the clear repetitive transients in Figure 6e and dominated BPFO, as well as its 

harmonics in Figure 6f. 

Subsequently, kurtogram [13] and infogram [17], as two famous fast filtering methods, are 

firstly conducted for comparisons to illustrate the superiority of the proposed method. Figure 7 plots 

four diagrams of kurtogram, SE infogram, SES infogram, and AVE infogram. We can find that 

kurtogram, SE infogram and AVE infogram all indicate the band with central frequency and 

bandwidth of 200 Hz and 400 Hz and SES infogram indicates one with central frequency and 

bandwidth of 3400 Hz and 400 Hz. The maximum value of the direct average negentropy is 0.6836, 

which is much less than the one in the previous method due to the insufficient seeking capability of 

Figure 5. Experimental set-up for bearing fault detection in Case 1 and Case 2.

Figure 6a,b plot temporal waveform and its Hilbert envelope spectrum (ES) of the original
vibration signal from the tested bearing. From that, we cannot find clear repetitive transients, but
only a non-dominant bearing fault characteristic frequency BPFO, which implies that further IFB
selection is needed for the diagnosis. The proposed method illustrated in Figure 4 is applied to select
the proper wavelet parameters. The number of population P and maximum generation number G
are all set to 50. After iterations, the P f and Ps are calculated, as shown in Figure 6c,d. The average
negentropy values are calculated with the maximum value of 1.0797 to select the best optimal one
which is marked by a red +. Subsequently, the optimal couple of γ and σ are identified as 2010 Hz and
616 Hz, respectively. In Figure 6e,f, the temporal waveform filtered from the ARLW and its associated
SES are depicted, respectively. The results can clearly indicate the outer race fault in the bearing due to
the clear repetitive transients in Figure 6e and dominated BPFO, as well as its harmonics in Figure 6f.
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signal; (b) envelope spectrum; (c) Pareto front; (d) distribution of the Pareto set; (e) filtered signal and
(f) its associated squared envelope spectrum (SES).
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Subsequently, kurtogram [13] and infogram [17], as two famous fast filtering methods, are firstly
conducted for comparisons to illustrate the superiority of the proposed method. Figure 7 plots four
diagrams of kurtogram, SE infogram, SES infogram, and AVE infogram. We can find that kurtogram,
SE infogram and AVE infogram all indicate the band with central frequency and bandwidth of 200 Hz
and 400 Hz and SES infogram indicates one with central frequency and bandwidth of 3400 Hz and 400
Hz. The maximum value of the direct average negentropy is 0.6836, which is much less than the one in
the previous method due to the insufficient seeking capability of infogram using fixed boundaries of
the filter-bank. In addition, from the filtered signals and their corresponding SESs that are plotted in
Figure 8, the results demonstrate that the selected frequency band by kurtogram, SE infogram, and AVE
infogram corresponds to the low-frequency interference of rotor unbalance. It clearly evidences that
the average negentropy might be easily affected by the impulsive or cyclostationary noise. Otherwise,
the frequency band that is given by SES infogram is not also “informative”, because we cannot find
dominate BPFO or its harmonics in Figure 8f.Sensors 2020, 17, x FOR PEER REVIEW  12 of 22 
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Figure 7. Kurtogram and infogram for the slight outer race fault diagnosis in Case 1: (a) kurtogram;
(b) squared envelope (SE) infogram; (c) SES infogram and (d) average (AVE) infogram.
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Figure 8. Results from kurtogram and infogram for the slight outer race fault diagnosis in Case 1:
(a,b) filtered signal and obtained SES from kurtogram; (c,d) filtered signal and obtained SES from SE
infogram; (e,f) filtered signal and obtained SES from SES infogram; (g,h) filtered signal and obtained
SES from AVE infogram.

After that, two optimal filtering methods are also conducted for comparisons. In the first one,
the AVE infogram is extended to optimal filtering in a similar way to [32], in which the parameters of
ARLW are optimized by the utilized GWO using average negentropy as the single objective. From the
results that are illustrated in Figure 9, we can find that the average negentropy eventually converge
to 1.0860 with a center frequency of 874 Hz and bandwidth of 644 Hz in the wavelet filter that is
shown in Figure 9b. Furthermore, from the filtered signal plotted in Figure 9c, we can see that the high
value is from several high-amplitude impulses, which might cause higher time-domain negentropy.
However, in the spectrum that is plotted in Figure 9d, there are no dominated FCFs. Therefore, it can
be concluded that this method fails to detect the slight outer race fault. Thus, the direct average can
hardly balance the impulsiveness and cyclostationarity in the optimization and the biggest does not
mean the best, as illustrated in Figure 3, beforehand.
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Figure 9. Results of the optimal filtering method 1 for the slight outer race fault diagnosis in Case 1:
(a) fitness value; (b) optimal wavelet filter; (c) filtered signal and (d) its associated SES.

In the second one, the signal plotted in Figure 6a, is further analyzed by a multi-objective optimal
filtering method in our previous study [33]. With the help of Bayesian inference, the P f is calculated as
shown in Figure 10a and the optimal complex Morlet wavelet is designed, as shown in Figure 10b with
center frequency of 2006 Hz and bandwidth of 779 Hz. It is similar with the selected IFB by the proposed
method due to the wavelet parameters all being multi-objective optimized by the time-domain and
frequency domain negentropies. The filtered signal and its associated SES plotted in Figure 10c,d
also indicate the multi-objective methods are more robust to extract the repetitive transients from the
background noise.
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(a) Pareto front; (b) optimal wavelet filter; (c) filtered signal and (d) its associated SES.
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3.2. Case 2: Detection of Slight Artificial Inner Race Fault in a Ball Bearing

In this case, the proposed method is further tested by an experimental signal that was collected
from another bearing with an inner race fault of the same size as previous, which is subsequently
installed in the set-up shown in Figure 5. Raw signal and its direct envelope spectrum from the test
bearing are plotted in Figure 11a,b, respectively. Using the addressed approach, the P f and Ps are
presented in Figure 11c,d, with the best solution being marked by red +. The maximum average
negentropy is calculated as 1.0329. We can clearly identify the fault-induced impulses in the temporal
waveform after band-pass filtering by the optimal ARLW with center frequency of 1324 Hz and
bandwidth of 619 Hz, as shown in Figure 11e. Besides, in the corresponding SES that is shown in
Figure 11f, we can easily detect BPFI and the side-frequency components, which suggests that there is
an inner race fault in the tested bearing.
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(f) its associated SES.

As comparisons, the fast filtering methods are also first conducted for the IFB selection. The
kurtogram, SE infogram, SES infogram and AVE infogram are plotted in Figure 12. We can find that
kurtogram and SE infogram indicate the band with central frequency and bandwidth of 400 and 800
Hz. SES infogram indicates one with central frequency and bandwidth of 6933 and 1067 Hz. After
averaging the time-domain and frequency-domain negentropies, the AVE infogram selects a band with
central frequency and bandwidth of 1600 Hz and 3200 Hz by the maximum average negentropy of
0.6706. From the filtered signals and their associated SESs that are plotted in Figure 13, one might find
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that only the last AVE infogram can detect the slight inner race fault but the time-domain waveform
in Figure 13g is less impulsive compared with the result plotted in Figure 11e and the BPFI is not
prominent enough in the spectrum in Figure 13h than the previous in Figure 11f. Accordingly, the
fast filtering methods all need to be further improved, especially for the diagnostic of weak faults. In
addition, the results also evidence that the impulsiveness as well as the cyclostationarity are all crucial
in finding the IFB.Sensors 2020, 17, x FOR PEER REVIEW  16 of 22 
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Figure 12. Kurtogram and infogram for the slight inner race fault diagnosis in Case 2: (a) kurtogram;
(b) SE infogram; (c) SES infogram and (d) AVE infogram.

In the same way, two optimal filtering methods are also analyzed in this case. In the first one,
Figure 14 illustrates the results from extension of AVE infogram using the single-objective GWO. We
can find that the average negentropy eventually converge to 1.0450 with center frequency of 836
Hz and bandwidth of 631 Hz in the wavelet filter, as shown in Figure 14b. Furthermore, from the
time-domain waveform that is plotted in Figure 14c, we can find any fault-induced impulses and in
the frequency-domain spectrum plotted in Figure 14d, only the rotating frequency Fr rather than the
FCFs can be identified. The comparison results all illustrate that the method fails to detect the incipient
fault once again.
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Figure 13. Results from kurtogram and infogram for the slight inner race fault diagnosis in Case 2:
(a,b) filtered signal and obtained SES from kurtogram; (c,d) filtered signal and obtained SES from SE
infogram; (e,f) filtered signal and obtained SES from SES infogram; (g,h) filtered signal and obtained
SES from AVE infogram.

In the second one, Figure 15 illustrates the results that are given by the multi-objective method
while using Bayesian inference [33]. From that, we can find the optimal complex Morlet wavelet is
designed with center frequency of 6511 Hz and bandwidth of 1187 Hz. Moreover, we cannot find the
fault-induced repetitive transients in the filtered signal and dominant BPFI, as well as the sideband
frequencies in the SES. There are two reasons for its failure in detecting the slight inner race fault. One
is the complex Morlet wavelet, which is symmetric. The other is due to the weakness of Bayesian
inference in global searching.
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Figure 15. Results of the optimal filtering method 2 for the slight inner race fault diagnosis in Case 2:
(a) Pareto front; (b) optimal wavelet filter; (c) filtered signal and (d) its associated SES.

In addition, the efficiencies of the proposed as well as the compared methods are also tested in a
computer with Inter®® Core™ i7-4790 CPU @ 3.60 GHz and RAM of 8 GB. Table 2 lists the results,
from which we can find that the proposed method has no obvious advantage in efficiency, but it has
significant advantages in its effectiveness.
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Table 2. Time-consuming of the proposed and compared methods.

Cases Kurgogram SE/SES/AVE
Infogram

Optimal
Filtering
Method 1

Optimal
Filtering
Method 2

Proposed
Method

Case 1 0.24 s 0.14/0.19/0.31 s 1.97 s 4.89 s 4.70 s
Case 2 0.24 s 0.15/0.19/0.32 s 1.29 s 2.37 s 4.01 s

3.3. Case 3: Tracking IFB for a Condition Monitoring Data Set

In the above subsections, the results and comparisons in slight fault diagnosis illustrate the
effectiveness of the proposed method. Furthermore, the stability of the proposed method is tested on
a condition monitoring data set from [43], which is carried out for 164 h using the set-up shown in
Figure 16 with an outer race defect occurred in Bearing 1 at the end. The sampling frequency is equal
to 20 kHz and the length of each individual signal is equal to 1 s. The rotating speed of the shaft is
set to 2000 rpm, and the fault characteristic frequency of outer race BPFO is 235.4 Hz. More details
regarding this test-to-failure experiment can be found in [44].
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Figure 16. Experimental set-up for tracking the informative frequency band in Case 3.

Before the analysis, Figure 17 presents the kurtosis of each individual in the entire life cycle,
which reveals that the kurtosis started to grow after about 90 h, and jumped when the test had been
carried out for 117 h. When considering the time cost, only 240 individuals in the interval of 80–120
h are analyzed. Figure 18a,b illustrate the optimal ARLW filters of each individuals obtained from
the proposed method and the SESs of the associate filtered signals, respectively. From the results, we
can find that the novel multi-objective method can detect the outer race fault at 88.83 h due to the
dominated BPFO and its harmonics in the SES. More important is that the results also indicate that the
addressed method has good stability and robustness in locating the IFB and extracting the repetitive
transients during the development of fault.
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Figure 17. Kurtosis for the whole life cycle.
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Figure 18. Results of the proposed method for tracking the informative frequency band in Case 3:
(a) wavelet filters; (b) SESs of the filtered signals.

4. Conclusions

In this paper, a novel IFB selection technique that is based on multi-objective optimized wavelet
filter is reported to extract the repetitive transients in fault diagnosis of rolling element bearings. Two
independent objective functions are properly selected in the optimization of ARLW parameters to
combine the impulsiveness and cyclostationarity in the fault features extraction. One is to maximize
negentropy of the SE and the other is to maximize that of the SES. With the help of MOGWO, some
Pareto solutions can be obtained to eliminate the impulsive or cyclostationary noises. Subsequently, the
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optimal parameters of the filter could be selected among the non-dominated solutions that are based
on the average negentropy to combine and balance the impulsive and cyclostationary features. The
analysis results of two real fault signals of rolling element bearings and the comparisons with some fast
and optimal filtering strategies all indicate the effectiveness of the proposed method. Moreover, the IFB
tracking and fault diagnosis of a condition monitoring data set also show its stability and robustness.

Author Contributions: X.G. and S.Y. conceived and designed the experiments; Y.L. performed the experiments;
R.H. contributed the analysis method; X.G. and Z.L. analyzed the data and wrote the paper. All authors have read
and agreed to the published version of the manuscript.
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