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Abstract
Progress in functional genomics and structural studies on biological macromolecules are generating a growing

number of potential targets for therapeutics, adding to the importance of computational approaches for small

molecule docking and virtual screening of candidate compounds. In this review, recent improvements in several

public domain packages that are widely used in the context of drug development, including DOCK, AutoDock,

AutoDock Vina and Screening for Ligands by Induced-fit Docking Efficiently (SLIDE) are surveyed. The authors

also survey methods for the analysis and visualisation of docking simulations, as an important step in the overall

assessment of the results. In order to illustrate the performance and limitations of current docking programs, the

authors used the National Center for Toxicological Research (NCTR) oestrogen receptor benchmark set of 232

oestrogenic compounds with experimentally measured strength of binding to oestrogen receptor alpha. The

methods tested here yielded a correlation coefficient of up to 0.6 between the predicted and observed binding

affinities for active compounds in this benchmark.

Keywords: drug discovery, small molecule docking, virtual screening, docking packages, visualisation of docking poses,

oestrogen receptor, oestrogen activity prediction, SAR

Introduction

Docking simulations and virtual screening are

being routinely used in drug design, enabling rapid

identification of hits and lead compounds.1–3 The

goal of docking simulations is to determine

the binding mode (bound conformation) and the

strength of binding (binding affinity) between a

ligand, which is typically assumed to be a small

molecule, and a macromolecular receptor, such as a

protein.1,3,4 Given a resolved or modelled structure

of a target receptor, virtual screening involves per-

forming docking simulations for a large number of

candidate compounds in order to identify putative

leads.2,5,6 These candidates can subsequently be

characterised and validated by empirical binding

and activity assays, and by assessing their toxicity,

pharmacokinetics and other properties for further

drug development.7–9

Many methods for molecular docking and

virtual screening have been developed to date,

including AutoDock,10,11 DOCK,12–14 Flex,15

Glide,16 GOLD,17 RosettaDock,18 SLIDE19,20 and

Surflex.21 These methods introduce various

approximations to simplify the problem — for

example, assuming a rigid body docking model in

which the receptor structure is fixed. Rigid body

docking allows one to speed-up computations by

comparison with flexible docking (in which the

receptor structure is allowed to move) by pre-

computing the forces experienced by the ligand on
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a grid. In general, docking simulations involve two

main components: sampling algorithms to find

plausible conformations of the complex, and

scoring functions to estimate relative binding affi-

nities and rank ligand poses.1

The sampling of alternative conformation is

coupled with the search for the optimal solution —

that is, poses with the highest binding affinity (or

score), which typically involves solving a global

optimisation problem. Consequently, various optim-

isation techniques — such as Monte Carlo, simulated

annealing or genetic algorithms — are used in the

context of docking simulations.1 Atomic force fields

that describe both intra- and intermolecular inter-

actions in the system,4 simplified solvation potentials

and empirical scoring functions are typically used to

estimate the strength of interactions between the

ligand and receptor and to score alternative poses of

the ligand.6 Docking methods are being constantly

improved in each of these aspects, with newer

implementations also seeking to take advantage of

current computing architectures.3,6,22,23

Following the progress in the field, reviews and

comparisons of docking methods are being pub-

lished regularly. These surveys and evaluations focus

primarily on re-docking experiments, benchmark-

ing performance on sets of compounds with

known binding affinities, and assessment of enrich-

ment (into true binders) in the context of virtual

screening.2,3,5,9,24–26 A general conclusion from

these studies is that no single method outperforms

other methods consistently, suggesting that different

targets may require different combinations of

sampling approaches and scoring functions for

optimal performance.2,6,23,24,26,27 This review

focuses on several widely used public domain

packages for docking and virtual screening. With

recent improvements, these packages are becoming

better integrated, more accurate and faster, and are

poised to increase their impact as platforms of

choice, especially within the academic community.

Docking programs surveyed

The public domain docking programs surveyed

here are listed in Table 1. These include three

well-benchmarked and widely used public packages

— namely, AutoDock,11 DOCK12 and SLIDE20

— as well as the recently developed AutoDock

Vina (also referred to as AD Vina).28 Below, some

of the characteristics and distinct features of each

program are summarised briefly. For detailed

descriptions and documentation, the reader is

referred to the original resources listed in Table 1.

While each of the programs surveyed here offers

different solutions to both the sampling and scoring

problem, they provide a similar overall functionality

and range of options reflecting improvements in

docking methods. In particular, ‘flexible’ models of

both ligands and receptors are available in each of

these programs, allowing one to sample not only

different conformations of the ligand, but also of

the receptor — for example, by means of introdu-

cing a subset of residues (active space) for which

alternative conformations can also be sampled to

find optimal complex structure. In addition, these

public domain docking programs have evolved to

take advantage of the prevalence of distributed

computing and the emergence of new computing

platforms, as discussed in the next section.

AutoDock offers well-benchmarked force fields

(including the widely used Amber molecular force

field in the latest version), efficient (grid-based)

implementation of rigid body docking, a flexible

(receptor) docking protocol with an active space

Table 1. Public domain programs for small molecule docking and

virtual screening assessed in this survey, with the most current

version, parallel capabilities and the primary website shown

Program Version Parallelism Primary site

DOCK 6.4 MPI http://dock.

compbio.ucsf.edu/

AutoDock 4.2 Seriala http://autodock.

scripps.edu/

AutoDock

Vina

1.1 Multithreading http://vina.scripps.

edu/

SLIDE 3.0 Serial http://www.bch.

msu.edu/~kuhn/

software/slide
aMPI- and CUDA-enabled versions available29,30
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consisting of residues which are allowed to undergo

conformational changes, and efficient implemen-

tations of the Lamarckian genetic algorithm (GA)

to search for the ligand pose with the highest

binding affinity, while sampling and ‘mixing’ sub-

optimal solutions to solve the underlying global

optimisation problem.11 In spite of its name, AD

Vina uses a very different search strategy, which

couples Newton-type local minimisation steps with

global optimisation, involving concurrent (on mul-

ticore central processing units [CPUs]) runs of a

number of local minimisations which can be com-

bined to improve sampling.28

DOCK uses a well-tested shape-matching

approach to sample alternative poses of the ligand,

given the receptor structure. These alternative con-

formations of the complex subsequently can be

assessed and scored using the Amber molecular

force field coupled with several alternative implicit

solvent models.12 Some of the new features added

in DOCK 6 include conjugate gradient minimis-

ation and molecular dynamics simulation capabili-

ties, ligand conformational entropy corrections,

ligand and receptor desolvation and receptor

flexibility.

SLIDE20 was designed to account efficiently for

receptor flexibility. The mean-field theory-based

model used in SLIDE implies that multiple confor-

mations of the receptor contribute to the inter-

actions with the ligand, as the search proceeds

through alternative conformations of the complex.

This strategy allows one to account implicitly for

receptor flexibility and induced-fit complementar-

ity between the ligand and receptor. Another

advantage of SLIDE is that its force field accounts

explicitly for hydrogen bonds of different types.

Fast implementations of docking for
computational clusters

The speed of docking is clearly very important for

virtual screening, and many recent improvements

have aimed at taking full advantage of current dis-

tributed computing platforms. In this regard,

DOCK (as of version 5) offers an efficient

MPI-based parallel implementation which can be

used on computational clusters. An MPI version of

AutoDock has also been developed,29 although it

does not appear to be widely used. The advent of a

novel parallel computing architecture — Compute

Unified Device Architecture (CUDA) — which

utilises graphics processing units (GPUs), spurred

the development of molecular modelling software

for this new platform as well, including a recently

developed CUDA-enabled version of AutoDock.30

Further improvements and developments in this

regard are likely to improve the accuracy of virtual

screening by enabling more extensive sampling and

testing of the results.

It should be noted, however, that even serial

codes can be used efficiently for virtual screening

by exploiting the ‘embarrassing parallelism’ of

docking; this involves simply screening subsets of

compounds from in silico libraries on individual

cluster nodes. In this context, multicore servers

with hyperthreading have recently become a main-

stay of scientific computing. AD Vina aims to use

multithreading optimally to increase the speed of

docking simulations. It has been reported to

achieve a near 60-fold increase in speed (with a

further near-linear decrease in CPU time when

using multiple cores), compared with AutoDock,

with similar (or better) accuracy.28 In our own tests,

similar increases were observed using the Xeon(R)

X5570 2.93 GHz quad-core server, with the depth

of sampling that allows one to achieve correlations

between the predicted and experimental binding

affinities reported by Fang et al.3 for a benchmark

set of 232 oestrogens. That benchmark is used to

illustrate and compare the performance of the

methods surveyed here.

Tools for the visualisation and
analysis of protein–ligand docking

Limitations of the current methods, such as those

concerning scoring functions for docking, make the

analysis of predicted complexes (eg in terms of con-

sistency of ligand poses across multiple runs) an inte-

gral part of docking simulations and virtual

screening. Assessment of the results usually starts with

a visual inspection of the predicted binding modes
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for hits, and subsequently can be extended using

structural analysis, geometric clustering of predicted

poses, re-scoring and cheminformatic approaches.

The output from ligand docking programs usually

includes a coordinate file (in PDB format or other

standard formats) and supplementary data, such as

estimated binding affinity, clustering of alternative

poses, etc. To view coordinate files, commonly used

macromolecular visualisation programs, such as

Jmol,31 PyMol,32 Visual Molecular Dynamics

(VMD)33 and others can be employed, whereas

additional information may require ad hoc programs

to be used for data analysis. Table 2 summarises

several (free for academic use, with the exception of

more advanced functionality in DockingServer)

tools that enable the visualisation and assessment of

predicted ligand poses in the protein–ligand

complex, and provide other specifically designed

features for the analysis of docking results.

Most tools discussed here are coupled with a

specific docking program to facilitate setting up

simulations and subsequent analysis of the results

for that program. In this review, however, the

survey of visualisation and analysis methods starts

with LIGPLOT,34 which is a simple tool that can

be used in conjunction with any docking program

(LIGPLOT does not provide any specific interfaces

and the results are assumed to be in the PDB

format). LIGPLOT automatically generates a

detailed two-dimensional diagram of protein–

ligand interactions, with distances between

interacting atoms and classification of interactions

according to the type of interaction centres

involved. Therefore, LIGPLOT can be easily

coupled with docking pipelines to enable visualisa-

tion of docking poses.

The AutoDockTools (ADT) package was devel-

oped specifically for AutoDock.11 ADT provides

the possibility of viewing clustered alternative poses

of a ligand accompanied by estimated docked

energy, cluster size and the root mean square differ-

ence (RMSD) of the poses within a given cluster,

as well as RMSD to the input (reference) structure.

Alternative conformations of the ligand can be

viewed using the animated mode. ADT can also

represent the ligand using the isocontour rendering

that facilitates the visual evaluation of the model as

to whether pairwise interactions between atoms of

the receptor and ligand are reasonable. vsLab35 is

another tool that provides an improved interface to

AutoDock, including setting the docking simu-

lations and analysing them. Results are represented

using both tabular, easy-to-navigate views and

graphical rendering by VMD.33

DockingServer36 automatically generates images

of the docked ligands using VMD and provides the

possibility for an interactive view using the Jmol

applet. In addition, the server generates summary

tables that can be used to assess the main forces

driving a specific protein–ligand interaction.

ViewDock combines the Chimera37 rendering of

docking models (including animation) with the

interface for interactive analysis of multiple ligands

docked to the receptor. The list of compounds and

alternative poses can be sorted by the estimated

binding energy, number of hydrogen bonds formed

and other characteristics.

The POLYVIEW-MM server38 combines mul-

tiple annotations for both the receptor structure

and the protein–ligand interaction. Alternative

poses of the ligand can be visualised and analysed

using the Jmol applet or high-quality PyMol ren-

dering, as both static slides and animations. The

server also enables analysis of clustering patterns

computed by AutoDock for potential re-scoring of

docking poses, provides a quick interface interac-

tively to map residues in contact with the ligand

for each pose and can be used to visualise distances

for atom–atom pairs in multiple poses.

Additionally, the structure of the receptor (and

ligand binding sites in particular) can automatically

be annotated by mapping the location of structural

domains, conserved residues, known (derived from

structurally resolved complexes in PDB) and pre-

dicted (using SPPIDER39) protein interaction sites

and other structural and functional features.

Oestrogen receptor (ER) binding
benchmark

Nuclear receptors (NRs) are transcription factors

that are activated by sex hormones and play major
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roles in embryogenesis, development and tumori-

genesis.40 Consequently, NRs constitute an impor-

tant class of targets for drugs. Many such drugs

have been specifically designed to compete with

natural hormones for binding to ligand binding

domains of NRs, including tamoxifen and raloxifen

used in breast cancer.8,40,41 NRs are also activated

by numerous environmental factors, adding to the

importance of studying their interactions with

small molecules. In particular, ERs can be activated

by many naturally occurring substances (eg genis-

tein found in soybean) and industrially made

compounds (eg bisphenol A [BPA]) which exhibit

oestrogenic effects.7,42,43

In this context, this paper will now assess

whether current docking programs are sufficiently

accurate to provide a basis for the prediction of

activity and toxicity risks for potential oestrogens,

using the National Center for Toxicological

Research (NCTR) ER set of 232 structurally

diverse natural, synthetic and environmental com-

pounds with a wide range of biological activities

that are potentially mediated by ERs.7 This set pro-

vides an excellent benchmark for docking and

Table 2. Surveyed tools for the analysis of docking simulations and protein– ligand complexes (presented in alphabetical order)

Tool Platform Availability Accepted

formats

Primary

application

Reference

AutoDockTools Standalone:

Windows, Linux,

MacOS

Pre-compiled and

source code

Free for academic

use

Proprietary

(DLG)

AutoDock 10

URL http://autodock.scripps.edu/resources/adt

DockingServer

Jmol- and

VMD-based

Web-based,

platform

independent

Commercial

product, limited

free use

PDB AutoDock 36

URL http://www.dockingserver.com/web

LIGPLOT Stand alone:

Windows, Linux

Pre-compiled

Free for academic

use

PDB, Proprietary

(HHB, NNB)

PDB 34

URL http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/

POLYVIEW-MM

Jmol- and

PyMol-based

Web-based,

platform

independent

Free for everyone PDB, Proprietary

(DLG)

Any ligand docking

program with

output in the PDB

format

38

URL http://polyview.cchmc.org/conform.html

ViewDock,

Chimera-based

Standalone:

Windows, Linux,

MacOS

Pre-compiled and

source code

Free for academic

use

PDB, MOL2,

Proprietary

(MORDOR)

DOCK 37

URL http://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/viewdock/framevd.html

vsLab,

VMD-based

Standalone: Linux,

MacOS

Source code

Free for everyone

PDB, MOL2 AutoDock 35

URL http://www.fc.up.pt/pessoas/nscerque/vsLab/vLab/HomePage.html
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structure–activity relationship (SAR) models, by

virtue of comparing predicted ER binding affinities

with experimental binding data obtained using a

well validated in vitro rat uterine cytosol ER alpha

competitive binding assay.44 The NCTR ER

benchmark also provides an opportunity to illus-

trate some of the features of the docking programs

surveyed here.

Based on experimentally observed ER relative

binding affinities (ER-RBA), each chemical was

classified as active (131 chemicals) or inactive (101

chemicals). The ER-RBA was calculated by divid-

ing the concentration of chemical that causes 50

per cent inhibition of E2 binding (IC50) of the

natural ER ligand, E2, by the IC50 of the competi-

tor, and multiplying the ratio obtained by 100.

Thus, ER-RBA . 100 means a binding affinity

greater than that of E2. A compound was desig-

nated as inactive if 50 per cent inhibition was not

reached within concentrations of competitor

ranging from 1 nM to 1 mM (versus 1 nM E2), or

if no activity was observed.7 This classification pro-

vides an opportunity further to assess the capacity

of docking programs successfully to discriminate

true hits and inactive compounds, with implications

for virtual screening.

The docking simulations for programs surveyed

here were performed using E2-, raloxifen- and

tamoxifen-bound crystal structures of the ligand

binding domain of ER alpha (PDB codes 1ERE,

1ERR and 3ERT), using re-docking of native

ligands to test if user-defined parameters and the

simulation systems (including the grid box) had been

properly set up for each of the programs. Default

values were used for most parameters, with the

exception of those effectively defining the depth of

the search, which were gradually increased to

provide better sampling until no further improve-

ment, in terms of overall correlations, was obtained.

For example, the results reported here for AutoDock

were obtained using 50 Lamarckian GA runs, 10

million energy evaluation steps and a population size

of 150. With this somewhat extensive sampling, the

average running time per compound was 2,987

CPU seconds on a Xeon(R) X5570 2.93 GHz

quad-core server (when using 1 CPU).

An example of the top scoring pose for tamoxi-

fen, obtained using DOCK and the tamoxifen-

bound structure of the receptor, is shown in

Figure 1. As can be seen from the figure, the pre-

dicted pose is very close to the native structure

(RMSD of about 1.9 Å for all atoms of the ligand).

Qualitatively similar results were obtained for other

programs. In addition, the predicted binding affi-

nities for E2, the ER antagonist tamoxifen and the

weak oestrogen BPA were found to follow a clear

trend, consistent with experimental data.40 The

strongest binding was found for tamoxifen,

followed by relatively strong binding for E2 and

much weaker binding for BPA. For example, rigid

body docking with AutoDock yielded inhibition

constants of 7.51 nM, 357 nM and 6.35 mM for

tamoxifen, E2 and BPA, using tamoxifen-, E2- and

raloxifen-bound structures, respectively.

Figure 1. Binding of tamoxifen to the ligand binding domain of

ER alpha showing the native pose from a crystal structure of ER

alpha resolved in complex with tamoxifen (PDB ID: 3ERT) in

blue and the pose obtained by the re-docking of tamoxifen

using DOCK in red. An all-atom RMSD of about 1.9 Å between

the native and docking poses is obtained in this case, which is

consistent with the level of success typically observed in

re-docking experiments. Figure generated using PyMol.32

SOFTWARE REVIEW Biesiada et al.

502 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 5. NO 5. 497–505 JULY 2011



The results of docking for NCTR ER com-

pounds obtained using an ‘intermediate’ ER alpha

structure with a binding pocket similar (but not

identical) to that of E2 (PDB code 1ERR45) are

summarised in Figures 2 and 3. For active com-

pounds, Pearson correlation coefficients (CCs)

between predicted and experimentally measured

binding affinities of about 0.6 were obtained using

SLIDE and rigid body AutoDock (see Figure 2),

with somewhat lower CCs for flexible AutoDock,

Vina and DOCK. It should be noted, however,

that each method failed to generate results for a

number of compounds. Therefore, these CCs

cannot be compared directly, as they were com-

puted on a slightly different subset of compounds

in each case. A direct comparison of (rigid body)

AutoDock and SLIDE is shown in Figure 2, and

indicates high concordance between these two

well-performing methods (CC of 73).

As can be seen from Figure 3, the distributions

of scores for active and inactive compounds are

shifted and, in fact, their means are significantly

different, as assessed by a t-test (p ¼ 0.00001).

Qualitatively similar results are obtained for other

programs, although SLIDE yields the best overall

separation. Applying a threshold of 8 for a scaled

SLIDE inhibition constant results in selecting about

80 per cent true positives (active compounds), as

opposed to about 56 per cent expected for a

randomly selected subset. At the same time, about

20 per cent of inactive compounds are predicted to

be active (predicted scores larger than 8). Thus, a

significant false-positive rate is observed (even

taking into account that some of the compounds

classified as inactive may, in fact, be weak binders),

reflecting the limitations of current docking

Figure 2. Correlations between experimental and predicted binding affinities using AutoDock and rigid-body docking affinity scores

(A) and between predicted binding affinities using SLIDE and AutoDock (B).

Figure 3. Histograms of predicted binding affinities using

SLIDE binding affinity scores for active (white bars) and inactive

(crossed bars) oestrogen-like compounds from the NCTR ER

set.
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methods. It should also be noted that the false-

positive rate is likely to increase when docking arbi-

trary rather than potentially oestrogenic ligands, or

when using receptor conformations that are differ-

ent from a targeted bound state, as these factors

contribute to rates of false positives (and true nega-

tives) observed in virtual screening.2,6,24–27

Summary and conclusions

In this survey, several public domain docking pro-

grams, including AutoDock, AutoDock Vina,

DOCK and SLIDE, were briefly described and

their performance compared using the NCTR ER

set, yielding encouraging (albeit moderate) corre-

lations between predicted and experimentally

observed binding affinities for active compounds

(with CCs of up to 0.6). At the same time,

however, all of the methods tested result in signifi-

cant false-positive rates when used for discrimi-

nation between active and inactive compounds,

underscoring the limitations of current docking

methods. The importance of induced fit in the

binding of oestrogens to ERs,45 inherent limitations

of scoring functions used by docking programs

along with other factors are likely to contribute to

the difficulties in virtual screening for candidate

inhibitors of ERs and pose limitations for the pre-

diction of oestrogenicity.

The field of toxicogenomics examines cellular

responses to xenoestrogens, such as BPA, in order

to provide a basis for the understanding of their

mode(s) of action and for improved risk assess-

ment.8,42,46,47 Assessing the health risk of environ-

mental chemicals remains challenging, however, as

multiple complex pathways may be involved in

integrating the responses to chemical exposures.46

Therefore, SAR models are widely used to circum-

vent these limitations, and to predict the activity of

chemical compounds based on their physicochem-

ical and structural characteristics.7,42,43,48 SAR

methods typically rely on statistical and machine

learning techniques to capture complex correlations

between relevant descriptors and outcomes to be

predicted.48 In this context, molecular docking

could provide estimates of the strength of physical

interactions with relevant receptors, to be used as

complementary features for the development of

more accurate SAR models, even if the accuracy of

binding affinity prediction is far from perfect.

In conclusion, while limitations remain (especially

with regard to scoring functions), methodological

advances and the development of more integrated,

faster and easier-to-use current generation software

packages for docking simulations, including the

public domain programs surveyed here, are likely to

expand further the realm and scope of applications

of docking methods. These applications include

virtual screening and drug development, functional

annotations for apo-proteins, as well as the elucida-

tion of the modes of action, and assessment of the

toxicity, of environmental factors.
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